BES Highlights

You are here

November 25, 2019
(Top) Non-contact atomic force microscopy images can identify pollutant-causing atoms in aromatic hydrocarbon compounds found in crude oil. (Bottom) nc-AFM images of dibenzothiophene, carbazole, and acridine, with corresponding chemical structure.
Looking at Atoms in Molecules to Make Cleaner Fuels from Petroleum
New method quickly identifies atoms that are neither carbon nor hydrogen in small molecules and resolves their chemical structures in complex mixtures
November 18, 2019
The Tkachenko-Maslov model shows monomers cycling between “day” and “night” (top). Ultimately, the cycling process results in a complex system made from a small number of polymer fragments, with decreased information entropy (bottom).
Polymer Model Helps Explain the Origins of Life
The way the model reduces information in an increasingly complex system can be applied to make biopolymers and nanostructures.
November 18, 2019
The salt-extraction molecule is composed of six triazole “motifs” (computer-generated image). The motifs are five-membered rings composed of nitrogen, carbon and hydrogen. Together, these rings form a 3-D “cage” perfectly shaped to trap chloride.
How to Build a Better Salt Trap for Fresh Water
Molecular cage to trap chloride could help reduce rising level of salt contaminants flowing into freshwater streams & lakes across the United States.
November 18, 2019
This composite image shows an illustration of a carbon-rich red giant star (middle) warming an exoplanet (bottom left) and an overlay of a newly found chemical pathway that could enable complex carbons to form near these stars.
Revealing the Reactions Behind How Complex Carbon Molecules Form in Space
Understanding how polycyclic aromatic hydrocarbons form can help scientists better understand the origin and evolution of carbon in our galaxy.
November 5, 2019
Plasmonic artificial cells are formed by self-assembly of Au–Ag nanorods into hollow compartments.
Harvesting Energy from Light using Bio-inspired Artificial Cells
By mimicking biological machinery with non-biological parts, artificial cells work to convert light into chemical energy.
October 29, 2019
(Top) Schematic of a rechargeable battery with magnesium (Mg) anode. (Bottom) Close-up of the Mg anode/electrolyte interface, showing the solid electrolyte interphase and formation of Mg nanocrystals during battery operation.
Nanocrystals Help Magnesium Batteries Go On-the-Move
Magnesium metal anodes display improved cycling and temperature performance capabilities for rechargeable magnesium batteries.
October 29, 2019
Dataflow in the design-to-device study for a panchromatic photovoltaic cell.
Investigating Dyes for Solar Cells from Start to Finish
Finding the right dyes for a new type of solar cell can be challenging, but this study used supercomputers to speed up the process.
October 22, 2019
When nanomaterials are attached to the surface-layer proteins of Caulobacter crescentus, the bacterium is transformed into a platform for creating self-assembling biomaterials.
Engineering Living Scaffolds for Building Materials
Researchers take cues from nature to form living materials with unprecedented control and versatility.
October 22, 2019
Artist's interpretation of “hypersurfaces” embedded in “noise space.” By combining experiments at different noise rates (spheres) and fitting hypersurfaces to the data (surfaces), Argonne scientists are able to recover “noise-free” quantum information.
Excavating Quantum Information Buried in Noise
New methods quiet noise and reduce error in measurements of elusive quantum properties.
October 22, 2019
A high-resolution microscopy image shows the atomic structure of a layered electronic material. The schematic shows electrons moving from the surface of the upper layer (lanthanum strontium manganese (Mn) oxide) to the interface with the substrate.
How Electrons Move in a Catastrophe
Layer-by-layer analysis uncovers microscopic mechanisms that affect thin film magnetism important to electronics.
October 16, 2019
This schematic drawing shows the apparatus, with the cryogenic ion trap shown in the inset, used to predict the behavior of ions more accurately.
When Ions and Molecules Cluster
New approach to studying ions accurately predicts behavior, providing insights for biological systems, environmental processes, materials development.
October 10, 2019
(left) Surface diffusion of lithium ions across battery nanoparticles changes an electrode. (right) A molecular dynamics simulation of liquid-assisted surface diffusion of lithium ions.
End-run Spreads Lithium Throughout Battery Electrodes
A new path is identified to keep lithium in its place during battery discharge, benefitting efforts to design better energy storage options.
September 24, 2019
On the left, a computer model depicts a self-assembled tetrahelix made up of tetrahedral quantum dots. On the right, a skeleton view of the tetrahelix demonstrates the chiral structure of the assembly.
Tune in to Tetrahedral Superstructures
Scientists image complex superstructures self-assembled from tetrahedral quantum dots, expanding our understanding of forming small, complex crystals.
September 24, 2019
Scientists produced this map of tiny glassy grains (blue with green specks) inside a cometary-type interplanetary dust particle using the FEI TitanX microscope at the Molecular Foundry. Carbonaceous material (red) holds these objects together.
Tracing Interstellar Dust Back to the Solar System’s Formation
Interplanetary particles offer insights into the chemistry of the cosmos.
September 18, 2019
In metallic glasses, atoms are arranged randomly, leading to unique properties. These glasses are brittle. A map of calculated “strength” in the structure shows “hard” and “soft” spots. The team predicts the soft spots are the sites that initiate failure.
Even Hard Materials Have Soft Spots
Scientists find the weak points to facilitate industrial applications of metallic glasses.
September 18, 2019
Waves of heat, called phonons, cause atoms to rotate in a certain direction. Selenium atoms (yellow) collectively go through a clockwise circular atomic motion while the tungsten atoms (blue) don’t move.
2-D Atoms Do the Twist
Scientists discover a completely new atomic motion in a 2-D material.
September 10, 2019
The position of a charged monomer (blue dots) along a polymer chain impacts the final structures (structures 1, 3, and 5 from the sequence library) following assembly into micelles (bottom).
Location, Location, Location… How charge placement can control a self-assembled structure.
Location, Location, Location… How charge placement can control a self-assembled structure.
September 10, 2019
Electron microscopy of crack injection. Corrosion creates a nanoporous layer in the material (left) that propagates almost twice as far into the grain boundary as it does away from the boundary. The right image shows an injected crack.
Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time
Redefining the mechanisms of stress corrosion cracking for materials in energy generation and industrial systems.
September 10, 2019
In a novel simultaneous clean-and-repair mechanism, flowing oil-in-water droplets move nanoparticle (NP) debris, shown as green spheres, into the cracks. The droplets pick up the NPs, then deposit them in the cracked regions.
Simultaneous Clean and Repair
Simple fluid-driven nanoparticle catch-and-release process directs repair of cracks with debris from the damage.
August 23, 2019
A faceted metal island of the rare-earth element dysprosium formed under a layer of graphite. The team deposited the metal at 577 degrees Celsius after they bombarded graphite with argon ions.
Getting Metal Under Graphite’s Skin
A new route to make metal beneath a layer of graphite opens potentially new applications in solar cells and quantum computing.
August 23, 2019
A molecular model of the team’s designer nanosheet shows loop structures of sugars that bind to the Shiga toxin, which causes dysentery. Artificial peptides, named peptoids by the inventing team, assemble themselves into ordered nanosheets.
Tiny, Sugar-Coated Sheets Selectively Target Pathogens
Researchers design self-assembling nanosheets that mimic the surface of cells.
August 23, 2019
A team used kinetic and mechanistic data from model studies to create an approach that could predict the selectivity of a catalyst. They tested it on a nanoporous gold catalyst under a large range of experimentally relevant conditions.
Crossing the Great Divide Between Model Studies and Applied Reactors in Catalysis
Controlled pulses of chemicals over a wide pressure range can link fundamental studies to practical performance, informing catalyst design.
August 23, 2019
FIONA is a new system at Berkeley Lab’s 88-Inch Cyclotron that enables direct mass number measurements of superheavy elements.
Building a Scale to Weigh Superheavy Elements
Expanding our understanding of the structure and decay properties of some of the most exotic elements.
August 16, 2019
The electrical conductivity of a single atomic layer of iron selenium (FeSe) deposited on an electrically insulating crystal (strontium titanate, SrTiO3) can be strongly modified when exposed to light.
This Superconductor Does Not Take Light Lightly
Low-power ultraviolet light manipulation of superconductivity may lead to next-generation quantum devices.
August 16, 2019
A representation of the shift of atoms after the electrons are excited by an ultrafast pulse of light. Before and after positions are superimposed, showing transitions. Scattering data taken at a tenth (top) and one picosecond (bottom).
Excited Atoms Rush Independently to New Positions
Ultrafast X-rays track how associated pairs of atoms find new locations when triggered by light.