CX-270842: The MITRE Corporation - All-Optical Chiplets for Energy-Efficient Artificial Intelligence
Funding will support the project team's small-scale research and development of computer chiplets based on photonic integrated circuits that use light instead of electricity for computation.
Funding will support the project team's small-scale research and development of an electrochemically catalyzed graphitization process using molten salts, operating at much lower temperatures (approx. 850°Celsius) and in shorter timescales (3-6 hours) to produce high-purity synthetic graphite.
CX-270829: Stanford University - Scaled Synthesis of Carbon Nanotubes via Autonomous Experimentation
Funding will support the project team's small-scale research and development of a reactor to produce high quality carbon nanotubes (CNT) at high production rates via combustion processes.
Funding will support the project team's small-scale research and development of an advanced ultra-conductive carbon aluminum composite (UCAC) cable with superior electrical and mechanical properties, applicable to electrical power transmission and distribution, including utility-scale infrastructure, renewable energy integration projects, and the development and modernization of grid systems.
Funding will support the project team's small-scale research and development of a Nested Pebble Bed Blanket (NesPeB) to address current blanket concepts' shortcomings and technical immaturity and to pave the way for rapid deployment of fusion power plants.
The Nuclear Energy Waste Transmutation Optimized Now (NEWTON) program will support the research and development of technologies that enable the transmutation of used nuclear fuel to reduce the impact of storage in permanent disposal facilities.
Funding will support the project team's small-scale research and development of a low-loss grain-oriented steel technology to improve the efficiency of transformers used in the electric grid.
Funding will support the project team's small-scale research and development of a caustic aqueous phase reforming (C-APR) technology for the purpose of producing carbon-negative, clean hydrogen from raw bioethanol (i.e., ethanol plus water solution from the fermentation process).
Funding will support the project team's small-scale research and development of a robotic-assisted laser joining technology for the purpose of enabling robust, high-temperature-resistant, and hermetic joining of complex and large silicon carbide (SiC)-based materials.
Funding will support the project team's small-scale research and development of a low-pressure and lower temperature, and fully electric, green ammonia (NH3) production photoreactor technology to advance dispatchable, energy and fuel infrastructures.