Renewable Systems Integration

You are here

Microgrid testing at Idaho National Laboratory
Microgrid testing facility at Idaho National Laboratory’s Energy Systems Lab in Idaho Falls.

The Department of Energy's (DOE's) Wind Energy Technologies Office (WETO) works with electric grid operators, utilities, regulators, academia, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid.

Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind power's possible impacts on electric power system operations, because wind's variability adds uncertainty beyond what is present due to variations in electricity demand (also called load). These concerns, if not adequately addressed, could limit the development potential of wind power in the United States.

As the nation moves toward an energy system with higher penetrations of wind energy, it is increasingly important for grid operators to understand how they can reliably integrate large quantities of wind energy into system operations; additionally, it is important to develop capabilities that enable these new wind power plants to provide much-needed Essential Reliability Services (e.g. frequency and voltage support) that can improve the reliability and resilience of the electric grid.

Goal

The office's goal in renewable systems integration is to remove barriers to wind energy grid integration, find innovative way to couple renewable energy technologies, and accelerate deployment to enable  economic and reliable power grid operation with large shares of wind energy. This can be accomplished through integration studies, modeling, demonstrations, and assessments at both the transmission and distribution levels, coupled with working directly with utilities to help ensure adoption of best practices.

Current Research Project Highlights

Office researchers work with industry partners on projects aimed at better understanding integration issues and building confidence in the reliability of wind generation. This includes conducting wind integration studies; developing models needed for transmission system planners; understanding how wind energy can impact electricity markets; and assessing a variety of other technical impacts of integrating wind into the grid. To explore grid integration projects funded by the Wind Energy Technologies Office, see the summaries below or view our WETO R&D Projects Map and select Program Area: Grid Integration.

As part of the DOE’s launch of the Grid Modernization Initiative (GMI) in 2016, WETO systems integration activities were re-evaluated to align with the structure of the GMI. WETO supports projects in the GMI technical areas through the Grid Modernization Laboratory Consortium, which is a strategic partnership between DOE and the national laboratories to collaborate on grid modernization:

Device and Integrated Systems Testing

New distributed devices (e.g. inverters, distributed wind, rooftop PVs) and systems (e.g. advanced distribution management systems) will help deliver the flexibility required by the future grid for managing variable generation, engaging customers, and enhancing reliability and resiliency while keep electricity affordable.

This technical area develops devices and integrated systems, coordinates integration standards and test procedures, and evaluates the grid characteristics of both individual devices and integrated systems to provide grid-friendly energy services.

Understanding the Role of Short-Term Energy Storage and Large Motor Loads for Active Power Controls by Wind Power

DOE’s National Renewable Energy Laboratory and Idaho National Laboratory are developing and testing coordinated active power control by wind generators, short-term energy storages, and large industrial motor drives. The coordinated control, which controls the power output, will be able to provide optimized ancillary services such as inertia control and frequency regulation to the grid. This will minimize loading impacts, thereby reducing operation and maintenance costs and subsequently the cost of wind energy. 

Sensing and Measurements

Measuring and monitoring vital parameters throughout the electric power network are necessary to assess the health of the grid in real-time, predict its behavior, and respond to events effectively. Lack of visibility and accurate device- or facility-level information makes it difficult to operate the electricity system efficiently and has contributed to large-scale power disruptions and outages. Additionally, next-generation sensors will allow energy management systems to integrate buildings, electric vehicles, and distributed systems.

WindView: An Open Platform for Wind Energy Forecast Visualization

DOE’s Argonne National Laboratory and National Renewable Energy Laboratory are creating an open situational awareness and decision support platform, "WindView," which will provide grid operators with knowledge on the state and performance of their power system, with an emphasis on wind energy. WindView will use advanced visualization to display pertinent information, extracted through computational techniques from wind power forecasts for a high-wind penetration system.

System Operations, Power Flow, and Control

The existing grid control systems were developed over several decades using a set of 20th-century design characteristics: centralized dispatchable generation connected to transmission, relatively slow system dynamics that permitted manual control, no significant grid energy storage, passive loads, one-way flow of real power at the distribution level, operation for reliability, and generation-following load for balancing. Several of these design parameters have become outmoded by new technologies, changing economics, and shifting customer expectations. This area focuses on new control technologies to support new generation, load, and storage technologies.

Multiscale Integration of Control Systems (EMS/DMS/BMS)

DOE’s Lawrence Livermore National Laboratory  is leading the collaboration with other national laboratories to create an integrated grid management framework that will be akin to having an autopilot system for the grid’s interconnected components—from central energy management systems (EMS) for bulk power, to distributed energy resources on distribution management systems (DMS), to local control systems for energy networks, including building-management systems (BMS).

Providing Ramping Service with Wind to Enhance Power System Operational Flexibility

NREL is developing an innovative, integrated, and transformative approach to mitigate the impact of wind ramping and reduce integration costs by designing flexible ramping products that can co-optimize energy, reserve, and ramping.

Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

A dynamic line rating (DLR) system that accurately monitors real time environmental conditions will lead to improved line ampacity rating, better knowledge of operational/reliability issues, and potentially safer operations of the overall system. The project, led by Idaho National Laboratory, intends to refine, validate, and verify the prototype DLR tools, provide analysis and planning tools for capital investment maximization of existing and future transmission lines, and establish a path to promote the utilization of the proven system.

Design and Planning Tools

Sound long-term planning and design yield smart capital investment. Electric power grid modeling and simulation applications are fundamental to the successful design, planning, and secure operation of power systems with billions of dollars in capital investments and operations costs. However, existing planning and modeling tools have not kept pace with the complex technology, policy, economics, and outcomes demanded for the electric grid.

The Midwest Regional Partnership and Interconnection Seams Study

NREL and PNNL are convening industry and academic experts in power systems to evaluate the high-voltage, direct current and alternating current transmission seams between the U.S. interconnections and propose upgrades to existing facilities that reduce the cost of modernizing the nation's power system.

Multi-Scale Production Cost Modeling

DOE’s NREL and Sandia National Laboratories are developing the ability to more accurately estimate the economic impact of renewables, storage, and other technologies through new production cost modeling capabilities that can address growing uncertainty and system complexity. The project is researching scalable methods for deterministic and stochastic probabilistic collocation methods, developing higher-resolution grid models, and applying  uncertainty quantification and high performance computing. New capabilities will be deployed with system planners through workshops.

North American Renewable Integration Study (NARIS)

This study, led by NREL, is a collaboration between the United States, Canada, and Mexico is studying the impacts of renewable integration in North America. The goal is to help inform stakeholders to better understand the implication of integrating large amounts of renewable resources and to better understand the impact of cooperation between nations and between grid operators.

Security and Resilience

There are ever-increasing natural and man-made threats to the electric grid, including high-impact and low-frequency events, severe storms, fuel delivery failures, and more frequent physical and cyber threats. This technical area aims to meet physical and cybersecurity challenges, analyze asset criticality, assess ways to minimize risk, address supply chain risks (specifically for transformers), and provide situational awareness and incident support during energy-related emergencies.

Operational and Strategic Implementation of Dynamic Line Rating for Optimized Wind Energy Generation Integration

Part of this project is developing a dynamic line rating system that will be operationalized in a partnering utilities control center. This system is being tested against potential cyber threats and hardened to avoid potential attacks in order to ensure reliable utilization of the system.

Institutional Support

Technical assistance to key decision makers is important so that they can address the high-priority grid modernization challenges and needs identified by electric power industry stakeholders. It gives particular emphasis to working with state policymakers and regional planning organizations, with support for both analysis of issues and creation of information for stakeholders.

Market and Reliability Opportunities for Wind on the Bulk Power System

This project, led by NREL and Argonne National Laboratory, is one of the first to link together wholesale electricity market and generation expansion models with production cost simulation and reliability analysis. The goal is to create a multi-timescale market and reliability modeling framework to better understand the impacts of wind on the electric power system as it is operated today and in the transition to a modern, clean, and flexible power system in the future.

Power System Reliable Integration Support to Achieve Large Amounts of Wind Power

This project is bringing the tremendous research, data, methods, and results from wind integration work by national laboratories to utilities, international power system industry, and other stakeholders. It also aims to educate decision-makers on operational and market impacts of wind energy and dispel common misconceptions.

Past Research Project Highlights

Some highlights of past DOE-funded grid R&D include large-scale studies of future scenarios with high penetrations of variable renewable generation, such as a grid expansion and wind curtailment study (35% wind), Western Wind and Solar Integration Study (30% wind and 5% solar), Eastern Renewable Generation Integration Study (30% wind and solar), and National Offshore Wind Energy Grid Interconnection Study (54 GW offshore wind). Some DOE-funded grid operation R&D highlights include studying how wind technology can assist the power system through active power controls, and studying how wind can cool transmission lines thereby increasing transmission line capacity.

View past renewable systems integration project highlights here.

Grid Integration News

Wind's Near-Zero Cost of Generation Impacting Wholesale Electricity Markets
Wind generation can create exciting opportunities and interesting challenges when integrating large quantities of energy into the electric grid.
Learn More
New Software Tool Boosts Utility Transmission Capacity
A wind power plant study by INL explored how transmission lines, when cooled by the wind, are capable of handling more electricity.
Learn More
EERE Success Story—Unique Software Offers Tool for Securing Transmission Grid at Maximum Efficiency
INL researchers are working with partners in industry and academia to use concurrent cooling from wind to make the electrical grid more efficient.
Learn More
Milestones on the Road to the Wind Vision

The Department of Energy’s Wind Vision report assesses the potential economic and social benefits of a study scenario where U.S. wind power...

Learn More
Report Shows New Transmission Can Help Wind Energy Supply a Third of U.S. Electricity

The Energy Department today released a report which confirms that adding even limited electricity transmission can significantly reduce the costs...

Learn More
New Report Shows Potential Growth of Distributed Wind Energy for On-Site Power

The Energy Department today released a first-of-its-kind assessment of the potential future growth of distributed wind energy in the United States...

Learn More
Supercomputing Model Provides Insights from Higher Wind and Solar Generation in the Eastern Power Grid
A new study from the Energy Department's National Renewable Energy Laboratory (NREL) used high-performance computing capabilities and innovative...
Learn More
Using Weather Data to Improve Capacity of Existing Power Lines

When it comes to increasing the efficiency of 160,000 miles of U.S. high-voltage transmission lines, the answer might be blowing in the wind....

Learn More
DOE Explores Potential of Wind Power to Stabilize Electric Grids

A team at DOE's National Renewable Energy Laboratory is exploring the capability of wind energy to stabilize the nation's electrical grid when...

Learn More
Argonne National Laboratory Develops New Model to Quantify the Impacts of Variable Energy Resources on Generation Expansion and System Re...

The penetration level of variable energy resources, such as wind and solar, has been steadily increasing in many modern power systems, presenting...

Learn More

Grid Integration Featured Publications

Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective
This report shows that improvements made across a diverse group of modeling teams led to more robust representation of variable renewable energy tech.
Learn More
National Offshore Wind Energy Grid Interconnection Study (NOWEGIS)

The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large...

Learn More
Wind Integration, Transmission, and Resource Assessment and Characterization Projects
This report covers the Wind and Water Power Technologies Office’s Wind integration, transmission, and resource assessment and characterization pr...
Learn More
Active Power Controls from Wind Power: Bridging the Gaps

This report evaluates how wind power can support power system reliability, and do so economically. The study includes a number of different power...

Learn More
Wind R&D Newsletter
To subscribe to the Wind R&D Newsletter, submit your email address below.