Concentrating Solar Power

You are here

Lowering the Costs of Concentrating Solar Power
A solar project with Sandia National Laboratories is perfecting new technology that allows heat to be stored at higher temperatures, improving the efficiency of concentrating solar power plants.

The Solar Energy Technologies Office (SETO) supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP systems can supply solar power on-demand through the use of thermal storage, helping to address grid integration challenges related to the variability of solar energy and enabling solar-generated heat to be stored until electricity is needed, even after the sun sets. Reflecting this increased value of dispatchable solar, the 2030 target for CSP peaker plants with less than six hours of energy storage is $0.10 per kilowatt-hour, and the target for CSP baseload plants with a minimum of 12 hours of energy storage is $0.05 per kilowatt-hour. Learn more about our goals.

Approximately 1.8 gigawatts of CSP are connected to the grid, including more than 767 megawatts from Ivanpah, Genesis Solar’s second phase, and Abengoa’s Mojave Solar, all of which came online in 2014. SolarReserve’s 110 MW Crescent Dunes came online in late 2015 and is the largest molten-salt power tower CSP plant in commercial operation in the world.

View the concentrating solar-thermal power fact sheet (PDF).

2030 Concentrating Solar Power Goals

Research and Development

SETO supports the development of novel CSP technologies that will lower cost, increase efficiency, and improve reliability compared to current state-of-the-art technologies. These projects explore new concepts explore new operation system designs and innovative concepts in the collector, receiver, thermal storage, heat transfer fluids, and power cycle subsystems, advancing the state-of-the-art. The CSP subprogram is most interested in transformative concepts with the potential to break through existing performance barriers, such as efficiency and temperature limitations.

The National Renewable Energy Laboratory developed the Concentrating Solar Power Gen3 Demonstration Roadmap to address and prioritize research and development gaps for CSP technology. This laid the groundwork for the Gen3 CSP funding opportunity. See the Gen3 CSP selections


DOE provides funding through competitive awards to industry, national laboratories, and universities with the shared goal of making large-scale dispatchable solar energy systems cost competitive without subsidies by 2020. 

Concentrating Solar Power 101

Energy 101: Concentrating Solar Power

CSP technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. Thermal energy can then be used to produce electricity via a turbine or heat engine driving a generator. Because CSP technologies collect solar energy and convert it to thermal energy that can be stored before powering a generator, they can be used either as a flexible provider of electricity, such as a natural gas “peaker” plant, or as a baseload source of electricity similar to a traditional nuclear or coal plant. CSP can also be deployed as fossil-fuel backup/hybridization that allows existing fossil fuel projects to run cleaner while operating at the same or lower cost. In the United States alone, between 11 and 21 gigawatts of CSP could be built and integrated into existing fossil fuel plants in the United States to reduce their carbon emissions – that’s enough electricity to power to between 3 million and 6 million homes.

CSP Success Stories

EERE Success Story—Concentrating Solar Power Transforms Food Processing with Solar Steam
Sunvapor designed a solar collector to cut costs and optimize the supply chain by using less energy to manufacture the structural components.
Learn More
EERE Success Story—Mirage to Reality: Energy Department Investment Brings Crescent Dunes to Life

The same visionary scientists responsible for pioneering space exploration are also behind a national effort to commercialize concentrating solar...

Learn More
EERE Success Story—Supercharging Concentrating Solar Power Plant Performance

Supercritical carbon dioxide (sCO2) power cycles have the potential to reduce the cost of concentrating solar power (CSP) by substantially...

Learn More
EERE Success Story—Solar Receiver Redesign Enables CSP to Beam Ahead

Next generation concentrating solar power (CSP) system designs use supercritical carbon dioxide (sCO2) turbine power cycles to more efficiently...

Learn More
EERE Success Story—Reaching New Limits with Solar Storage

One of the biggest challenges of large-scale deployment of solar energy is figuring out how to use it after the sun sets. SunShot Initiative...

Learn More
EERE Success Story—Terrafore: Thermal Storage gets a "Hole in One"

Sometimes great things come in small packages. In the case of developing ways to more efficiently store solar energy, they come in tiny capsules....

Learn More

Workshops & Events

Industry workshops help SETO obtain a wide range of stakeholder feedback to guide its mission. Click below to learn more about past workshops and events.

Subscribe to the Solar Energy Technologies Office Newsletter