Stereo Vision Improves "Fly-By" Data for Offshore Wind Power

October 12, 2018

You are here

New capability enables 3D flight tracking of birds and bats in real time

Photo of a table set up on a beach with two cameras on it.
This photo shows two cameras equipped with ThermalTracker software, which is designed to capture the fight patterns of birds and bats and provide more accurate data about their behavior around offshore wind turbines.
Photo courtesy of PNNL.

When you're watching a 3D movie, you can thank stereo vision for knowing exactly when that dinosaur's head is close enough for you to flinch. Stereo vision gives people the ability to see where objects are located in space and how far away they are.

Researchers from Pacific Northwest National Laboratory (PNNL) have come up with a novel way to integrate that stereo vision feature into software to better "see" the flight patterns of birds and bats. This new, real-time capability will enable scientists to better identify the animal species and their flight patterns around offshore wind turbines.

The energy from wind turbines located in the ocean or other bodies of water is more consistent and abundant than that from land-based wind plants. However, as offshore wind farms are being built, developers and regulators want to better understand how the birds and bats found offshore respond to the presence of turbines. Potential risks include the possibility of animals colliding with the turbines or being forced to detour around them. Understanding animal behavior around offshore turbines will help quantify those risks—especially for protected or sensitive species.

That's where PNNL's ThermalTracker comes in. The software extracts flight tracks of birds and bats from thermal video recordings and quantifies them by time of day or night, direction of travel, and more. This information, combined with other characteristics inferred from the software, can be used to determine which species of animals live offshore and where they're flying. PNNL researchers made an open-source version of ThermalTracker available on GitHub in 2016.

To make the tool even more valuable, the PNNL research team added stereo vision. The new version, called ThermalTracker2, processes the streams from two thermal cameras simultaneously. Going from one camera (two dimensions) to two cameras that have different perspectives (three dimensions) enables researchers to see the exact position of the birds and bats in the air.

ThermalTracker extracts flight tracks of birds and bats from thermal video recordings and quantifies them by time of day or night, direction of travel, and more. This information can be used to determine which species of animals live offshore and where they're flying.

"The resulting tracking data show flight height and depth in the area where the turbine blades would be turning, typically 50 to 250 meters above the water surface," said PNNL Engineer Shari Matzner. "Stereo vision also lets us estimate the body size and wing span of the flying animals, which helps us identify the species."

ThermalTracker2 runs in real time, with onboard processing that dramatically reduces the volume of data to be stored and transmitted.

"Because ThermalTracker2 only saves the images that contain flight tracks, it reduces the amount of data up to 300% or more," Matzner said. "This means users can put the cameras in a remote location and let them record for weeks without worrying about data storage running out."

Soaring Toward Commercialization

The Biodiversity Research Institute, which conducts wildlife research worldwide, successfully tested the prototype system using two thermal cameras and ThermalTracker2 in Portland, Maine, in the summer of 2017.

After streamlining the stereo processing feature, the PNNL team plans to make the system more rugged to withstand a marine environment and conduct a field study at an offshore wind site in 2019. DOE's WETO funds the research.