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| will overview three ways to produce
renewable bio-H, from biomass.

| view this as “indirect” photosynthetic
bio-H,, since the biomass ultimately
came from photosynthesis.
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1 Fermentation

« Sometimes called “dark fermentation”

 Has a very long history

— Technology is mature, at least for fermenting
sugars

— Advantages and disadvantages are well
established
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The need to balance
NADH, among oxidation
and reduction reactions
means that the mix of
products contains mostly
non-H, sinks.

The maximum H, yield is 4
molH,/mol glucose:
CgH,,04 + 2H,0 >
2CH,COOH + 4H, + 2CO,

17% of donor electrons
ending up in H, (2 mol H,/
mol glucose) is accepted as
the practical maximum H,
yield. Actual H,
conversions often are less.
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Clostridium species
usually are the dominant
H,-producers in acetate/
butyrate fermentation,
while Ethanoligenens
species are abundant H,
producers in acetate/
ethanol fermentation.

pH 5-6 generally results in
acetate/butyrate formation
and pH 4.5 in acetate/
ethanol.
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» Advantages of Fermentative BioH.:
— Mature, at least for sugars
— High volumetric rates (up to 8 L H,/L-h)
— Simple bioreactor configuration
— More complex biomass can be fermented

» Disadvantages of Fermentative BioH,:
— Low H, yield
— Not pure H, in the evolved gas
— High BOD liquid effluent
— It needs a follow up step.................
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2 Microbial Electrolysis Cells (MECs)

» Within the platform of Microbial
Electrochemical Cells (MXCs), also
sometimes called BioElectrochemical
Systems (BES).

* The microbial fuel Cell (MFC) is the most
well-known variation and a good place to
begin to understand the platform.
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MFC illustrated

Organic Fuel

Oxidized by 0,
] BacterisLiving on =
The goal is to harvest the = '"An e | |
electrical power: P =1V « 0 +4H'+ o = 2H,0
4o __-//.“. tas
m— \\ —
ealfon
“.’\\ B
« &
210
Electrical
Load

Anode, usually a graphite rod, paper, or mesh
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e donor half reaction: CH;,COO- + 3 H,0 —» CO, + HCO; + 8H*+8e- -0.29V

e- acceptor half reaction: 20, +8H"+8e — 4 H)0 0.81V
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The reaction potential drives all biological, chemical, and electrochemical
processes in MFC => typical recovered potentials are 0.3 - 0.6 V
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Modifying the MFC to Produce Bio-H,
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The Microbial Electrolysis Cell : /1 .

(MEC) opens up the possibility to .
convert all the energy value in biomass Applied Voltage
to H.,.
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The MEC makes biohydrogen
production a respiratory
process!
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Anode Respiration

» Oxidation of an organic fuel, or electron
donor: e.qg.,

— CH,COOH + 2H,0 --> 2CO,, + 8H* + 8e-
* By anode-respiring bacteria (ARB) that
— have the abillity to transfer e to the solid

conductive surface and conserve energy -
anode respiration

— sometimes given other names: e.g.,
electricigens and exo-electricigens
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Processes that can limit current production

N0

Substrate + H,O0 — CO, + 8H* + 8e-

Bulk Liquid Biofilm e

1. Catalyst (ARB) for
substrate oxidation

2. Substrate diffusion

3. e transport (potential
driven)

4. H*transport (pH and
buffering)

< 1

Substrate
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Extracellular Electron Transport (EET)

Three mechanisms are proven.

a

b c
a) Direct transfer from the Q @

membrane-bound cytochromes to
the anode.

b) Soluble electron shuttles. M

c) Conduction through the matrix of
the biofilm.

Anode

With conduction, the biofilm matrix is part of the anode:
hence, the biofilm anode, a living, self-generating anode!
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« Although EET can occur by three mechanisms, only
conduction is fast enough to yield the observed rates
of current density in modern MXCs (~ 10 A/m?).
Other mechanisms are roughly 100X slower, at best.

« Good ARB produce a conductive network, perhaps
using nanowires or pili.

b c
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Anode respiration with cathode reduction to
H, provides benefits:

« Approaching 100% conversion of biomass electron
equivalents to H, — due to respiration.

* Nearly 100% pure H, once water vapor is removed.
« Can produce a low-BOD effluent.

Drawbacks:

« Still "emerging”

* Applied potential creates an energy cost

» Capital costs of electrodes, membranes, controls

* Probably needs pre-fermentation to convert complex
biomass organics to simple substrates that ARB use
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3 Methanogenesis Followed by

Reforming

 Methanogenesis is mature and can get
about the same conversion efficiency as

an MEC

» Reforming CH, is now a mature
technology and relatively inexpensive
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