
H₂ production by anoxygenic purple nonsulfur bacteria

James 'Jake' McKinlay
Assistant Professor, Biology
Indiana University, Bloomington

Purple non-sulfur bacteria produce H₂ via nitrogenase

This is mode of photosynthesis does not produce oxygen

 $8H^+ + 8e^- + 16ATP \rightarrow 4H_2$

Current state of the technology

- H₂ yields
 - Growing: 10 25% of theoretical maximum
 - Non-growing: 40 91% of theoretical maximum
- H₂ production rates
 - $-10-82.5 \text{ ml H}_2 \text{ L}^{-1} \text{ h}^{-1}$
 - $-67 \text{ ml H}_2 \text{ L}^{-1} \text{ h}^{-1} \text{ over } 4000 \text{ h}$
 - Immobilized in 70 μm-thick latex film.

Gosse et al. 2010. Biotechnol. Prog. 26: 907 – 18

- Photosynthetic efficiency: 1 2%
 - **6%** Barbosa et al. 2001. J. Biotechnol. 85: 25-33

Summary of barriers and important developments

- Inhibition of H₂ production by NH₄⁺
 - Bypassed using nifA* and DraT mutations

(Rey et al. 2007 Appl Environ Microbiol 73: 1665-71, Zou et al. 2008 Microbiol 154: 2689-99, McKinlay and Harwood. 2010 PNAS 107: 11669-75, Heiniger et al. 2012 Appl Environ Microbiol 78: 1023-32)

- Other pathways that compete against H₂ production for electrons
 - e.g., Calvin cycle identified and eliminated
 (Wang et al. 2010 Int J H2 Energ 35: 7377-85, McKinlay and Harwood 2011 mBio 2)
- Biosynthesis efficiently competes against H₂ production
 - Understanding of non-growing cells that produce highest H₂
 yields is improving (Huang et al. 2010. Appl. Environ. Microbiol. 76: 7717-22)

Summary of barriers and important developments

- Light penetration into cultures
 - Improved using pigment-defective strains
 (Gosse et al. 2007. Biotechnol. Prog. 23: 124-30)
 - Novel bioreactor designs (Posten 2009 Eng Life Sci 9:165-77)

- Integration with 'waste' feedstock streams
 - Consolidating fermentations with photosynthetic production of H₂

(Odom and Wall 1983 Appl Envrion Microbiol 45:1300-5; Melis and Melnicki 2006 31: 1563-73, Jiao et al. 2012 Int J H2 Energ 37: 11719-26)

Key Research needs

- System-wide approaches to understand genetic and metabolic factors involved in H₂ production, particularly H₂ production rate
- Examination of the physiology of non-exponential phase cells (e.g., starving cells, subpopulations, communities)
- Biological and physical solutions to address light limitation with scale up
 - Design principles of light harvesting units
 - Interactions with groups that offer physical solutions (e.g., light conducting plastics)