Bacterial Fermentative Hydrogen Production

Melanie R. Mormile Department of Biological Sciences

MISSOURI

SET

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Lignocellulosic Pretreatment

- Pretreatment separates & degrades soluble lignin/ hemicellulose from insoluble cellulose
- Steam blasting (steam explosion)
 - Fossil fuel dependent step.
 - Releases furans (phenols, carboxylic acids, salts -inhibit fermentation).
 - Detoxification best with alkaline treatment; (Ca(OH)₂ "over-liming").
- 2. Acidic treatment (H₂SO₄, SO₂)
 - Phenols, phenol aldehydes released.
- Alkaline treatment ("ammonia freeze explosion/wet oxidation"; NaOH, NH₃, Na₂CO₃)
 - Shown to result in highest ethanol yield with yeast from straw.
 - Phenols, but lower than with acid.
 - Issue with traditional microorganisms; Neutralization needed.

Halanaerobium hydrogeniformans

Matthew Begemann, Dylan Courtney, Dwayne Elias, Daniel Roush, Oliver Sitton, Judy Wall

Current Status of Bacterial Fermentation Hydrogen Production

Limitation of metabolic conversion is 4 moles H₂/1 mole glucose

This theoretical yield is not achieved

Inoculum	Substrate	Reactor Type	Maximum H ₂ yield
Clostridium acetobutylicum	Glucose	Batch	2 mol/mol of glucose
<i>Clostridium pasteurianum</i> CH ₄	Sucrose	Batch	2.07 mol/mol hexose
Clostridium thermolaticum	Lactose	Continuous	3.0 mol/mol lactose
<i>Enterobacter aerogens</i> E 82005	Molasses	Continuous	3.5 mol/mol sugar
Thermoanaerobacterium thermosaccharolyticum	Glucose	Batch	2.4 mol/mol glucose
Enterobacter cloacae DM11	Glucose	Batch	3.31 mol/mol glucose

Sinha, P., and Pandey, A. 2011. An evaluative report and challenges for fermentative biohydrogen production. International Journal of Hydrogen Energy, 36:7460-7478.

Major Issues, Barriers and Challenges

Increased substrate conversion

Need to reach metabolic level and beyond Is it possible for a biological system to extract all 12 hydrogen atoms from glucose?

Bioreactor designs

Continuous stirred-tank reactor – commonly used Better reactor systems?

Cost of raw materials

Not only cost of raw materials but pre-treatment options What steps are required to provide optimal conditions for fermentations?

Important Developments in Progress Key Research Needs

Easiest to hardest?

Improve reactor configurations

Optimization of bioprocess parameters

Decrease H₂ partial pressure

Microbial consortia

Pure culture or mixed culture?

Use of extremophiles?

Genetic modification of bacteria to channel metabolism towards towards enhanced H₂ production

Enhance activity of hydrogenases

What is needed to achieve 12 mole H₂/1 mole glucose?

Metabolic engineering of new metabolic pathways?

Use of hybrid two-stage systems