Distributed Wind

You are here

Screenshot of the How Distributed Wind Works animation.

The Wind Energy Technologies Office’s activities for wind technologies used in distributed applications—or distributed wind—address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing

What Is Distributed Wind?

The Wind Energy Technologies Office defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and power distribution infrastructure, rather than technology or project size. The following wind system attributes are used by the office to characterize them as distributed:

  • Proximity to End-Use: Wind turbines that are installed at or near the point of end-use for the purposes of meeting onsite energy demand or supporting the operation of the existing distribution grid.
  • Point of Interconnection: Wind turbines that are connected on the customer side of the meter (also known as behind-the-meter), directly to the distribution grid, or are off-grid in a remote location.

Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5 kilowatt turbine at a home to multi-megawatt turbines at a manufacturing facility or connected to a local distribution system.

An analysis of behind-the-meter distributed wind potential in the United States found that distributed wind systems are technically feasible for approximately 49.5 million residential, commercial, or industrial sites, or about 44% of all U.S. buildings. This analysis shows that the distributed wind market opportunity is significant, and distributed wind has potential to play an increasing role in the U.S. electricity sector. In order for distributed wind to realize these opportunities, technology cost reduction—including reductions in turbine costs, balance of system costs, and soft costs, as well as performance improvement—is necessary but not sufficient. Increasing access to low-cost capital, and standardizing site assessment, project development and installation processes will also be important drivers.

Small wind turbine technology, which includes turbines that have a rated capacity of less than or equal to 100 kilowatts, is the primary technology type used in distributed wind energy applications and is the focus of the office's technology R&D efforts for distributed applications.

Learn more about distributed wind with OpenEI's Small Wind Guidebook, which includes FAQs, wind resource maps, and lists of financial incentives and contacts.

Goals

The Wind Energy Technologies Office aims to maximize stakeholder confidence in turbine performance and safety and improve project performance while reducing installed cost in order to be competitive with retail electric rates and other forms of distributed generation. The office's goals fall under one or both of the following focus areas:

  • Wind Technology Certification: Increase the number of small and medium wind turbine designs certified to performance and safety standards from a 2010 baseline of zero to 40 by 2020.
  • Cost of Energy: Reduce the Levelized Cost of Energy of wind turbine technology used in distributed applications to be competitive with retail electricity rates and other sources of distributed generation.

Wind technology used in distributed applications is an important element of the U.S. wind and energy industries because:

  • The United States is a world leader in the export of small wind turbines, representing significant opportunity to create jobs through growth of domestic and international markets
  • Distributed wind does not require new transmission infrastructure and can take advantage of available capacity on local distribution grids
  • Wind technology used in distributed applications has great potential to compete in residential and commercial retail electricity markets
  • The social and economic benefits from distributed wind projects stay local
  • Grid connected distributed wind energy systems configured for emergency power can provide electricity to the loads they serve during natural disasters.

Research Project Highlights

Below are some of the key research project highlights from the office's distributed wind research. For a comprehensive interactive listing of distributed wind R&D projects being funded by the Wind Energy Technologies Office, see the Wind Energy Technologies Office Projects Map and select Program Area: Distributed Wind.

Testing for Certification

The growth of the international small wind industry has seen a large number of new products enter the U.S. market without a framework for verifying manufacturers' claims about turbine performance, reliability, noise, and safety. In response, the Wind Energy Technologies Office supported the development of technical standards that can now be used voluntarily to test small wind turbines to performance and safety criteria, and helped establish the Small Wind Certification Council, which provides accredited third party verification of test results in accordance with internationally adopted technical standards for testing. Four small wind turbine regional test centers have also been established with support from the office.

The office views small wind turbine certification as a way to provide manufacturers with the parameters for communicating transparent and credible information to consumers, utilities, lenders, and policymakers about the safety, performance, and durability of small wind turbine. A unified list of certified wind turbines is maintained by the Interstate Renewable Energy Council.

Competitiveness Improvement Project

DOE's National Renewable Energy Laboratory supports a Competitiveness Improvement Project (CIP) as part of its multifaceted wind energy research portfolio to help the U.S. wind industry develop competitive, high-performance technology for domestic and global energy markets. The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving efficiency, as well as work toward certification. Certification for these turbines is important because it demonstrates to consumers that they meet performance and safety requirements.

DOE has previously awarded CIP funding to 21 subcontracts in five rounds of funding.

  • 2013: Bergey Windpower (Component Improvements and Overall System Optimization) and Pika Energy (Manufacturing Process Upgrades)
  • 2014: Endurance Wind Power (Prototype Testing), Northern Power Systems (Component Improvements and Overall System Optimization), Pika Energy (Component Improvements and Overall System Optimization and Manufacturing Process Upgrades), and Urban Green Energy (Certification Testing)
  • 2015: Intergrid (Component Improvements and Overall System Optimization), Pika Energy (Component Improvements and Overall System Optimization), Primus Wind Power (Certification Testing), Ventera Wind (Certification Testing), and Wetzel Engineering (Component Improvements and Overall System Optimization)
  • 2016: Primus Wind Power (Certification Testing), Bergey Windpower (Certification Testing), Northern Power Systems (Type Certification), and Endurance Wind Power (Type Certification)
  • 2017: Bergey Windpower (Component Improvements and Overall System Optimization), Intergrid (Component Improvements and Overall System Optimization), Northern Power Systems (Component Improvements and Overall System Optimization), Sonsight (Prototype Testing), and Xzeres (Component Improvements and Overall System Optimization)

Distributed Wind News

Top 9 Things You Didn’t Know About Distributed Wind Power
Learn about key facts related to wind turbines used in distributed applications.
Learn More
First-of-Its-Kind Report Benchmarks Costs for U.S. Small Wind Projects
A recent Pacific Northwest National Laboratory report is the first of its kind to benchmark costs for small wind projects installed in the U.S.
Learn More
Competitiveness Improvement Project Hits First Certification Milestone
Primus Wind Power achieved certification in February 2018 of its Primus Air40 wind turbine model.
Learn More
U.S. Department of Energy and Geological Survey Release Online Public Dataset and Viewer of U.S. Wind Turbine Locations and Characteristics
The USGS and DOE released the United States Wind Turbine Database and Viewer to access this new public dataset.
Learn More
Energy Department's Competitiveness Improvement Project Hits First Certification Milestone; Opens Next Round of Applications
The latest request for proposals under the Competitiveness Improvement Project for distributed wind energy was released.
Learn More
Energy Department Awards 6 New Distributed Wind Component Development and Testing Projects
DOE announced six new contracts totaling $1.49 million under the Distributed Wind Competitiveness Improvement Project.
Learn More
EERE Success Story—Distributed Wind Competitiveness Improvement Project (CIP) Partner Delivers Next-Generation Wind Turbine for On-Site...

Distributed wind is used at or near where it is generated, and has gained a strong footing in the marketplace among commercial, industrial, and...

Learn More
New Report Shows Potential Growth of Distributed Wind Energy for On-Site Power

The Energy Department today released a first-of-its-kind assessment of the potential future growth of distributed wind energy in the United States...

Learn More
Energy Department Reports Show Strong Growth of U.S. Wind Power

Continued low wind energy prices highlighted in annual state-of-the-industry market reports

Learn More
VIDEO: How to Build a Wind Turbine in less than 20 Minutes
The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy's Wind and Water Power Technologies Office provides a simple step-...
Learn More

Distributed Wind Photo Gallery

For more information about the case studies highlighted this gallery, see the Distributed Wind Photo Gallery page.

Featured Publications

2017 Distributed Wind Market Report
Provides stakeholders with statistics and analysis of the distributed wind market, along with insight into its trends and characteristics.
Learn More
2017 Distributed Wind Market Report Fact Sheet
Fact sheet that summarizes the key findings of the 2017 Distributed Wind Market Report.
Learn More
Distributed Wind Competitiveness Improvement Project Fact Sheet
The Competitiveness Improvement Project (CIP) is a periodic solicitation through the U.S. Department of Energy and its National Renewable Energy La...
Learn More
Assessment of the Economic Potential of Distributed Wind in Colorado, Minnesota, and New York
This publication identifies current and future economic potential for behind-the-meter distributed wind energy systems.
Learn More
Assessing the Future of Distributed Wind: Opportunities for Behind-the-Meter Projects

This first-of-a-kind exploratory analysis characterizes the future opportunity for behind-the-meter distributed wind. Opportunities for behind-the...

Learn More
Wind R&D Newsletter
To subscribe to the Wind R&D Newsletter, submit your email address below.