Science Highlights

You are here


Each year, scientists with the Office of Science, at our national laboratories, and supported by the Office of Science at the nation’s colleges and universities, publish thousands of research findings in the scientific literature. About 200 of these are selected annually by their respective program areas in the Office of Science as publication highlights of special note.

For the archive of past publication highlights, click here.

November 18, 2019
This composite image shows an illustration of a carbon-rich red giant star (middle) warming an exoplanet (bottom left) and an overlay of a newly found chemical pathway that could enable complex carbons to form near these stars.
Revealing the Reactions Behind How Complex Carbon Molecules Form in Space
Understanding how polycyclic aromatic hydrocarbons form can help scientists better understand the origin and evolution of carbon in our galaxy.
November 5, 2019
Plasmonic artificial cells are formed by self-assembly of Au–Ag nanorods into hollow compartments.
Harvesting Energy from Light using Bio-inspired Artificial Cells
By mimicking biological machinery with non-biological parts, artificial cells work to convert light into chemical energy.
October 29, 2019
This simulation shows two dense neutron stars colliding. They have formed a black hole and a whirlpool of magnetized gas is orbiting around it. Some matter emerges in energetic jets and winds that will make heavy elements and flashes of detectible light.
The Aftermath of Neutron Star Collisions
New computer simulations reveal the explosive scene after ultra-dense stars collide, as well as where heavy elements may have originally formed.
October 29, 2019
(Top) Schematic of a rechargeable battery with magnesium (Mg) anode. (Bottom) Close-up of the Mg anode/electrolyte interface, showing the solid electrolyte interphase and formation of Mg nanocrystals during battery operation.
Nanocrystals Help Magnesium Batteries Go On-the-Move
Magnesium metal anodes display improved cycling and temperature performance capabilities for rechargeable magnesium batteries.
October 29, 2019
Dataflow in the design-to-device study for a panchromatic photovoltaic cell.
Investigating Dyes for Solar Cells from Start to Finish
Finding the right dyes for a new type of solar cell can be challenging, but this study used supercomputers to speed up the process.
October 22, 2019
When nanomaterials are attached to the surface-layer proteins of Caulobacter crescentus, the bacterium is transformed into a platform for creating self-assembling biomaterials.
Engineering Living Scaffolds for Building Materials
Researchers take cues from nature to form living materials with unprecedented control and versatility.
October 22, 2019
Artist's interpretation of “hypersurfaces” embedded in “noise space.” By combining experiments at different noise rates (spheres) and fitting hypersurfaces to the data (surfaces), Argonne scientists are able to recover “noise-free” quantum information.
Excavating Quantum Information Buried in Noise
New methods quiet noise and reduce error in measurements of elusive quantum properties.
October 22, 2019
A high-resolution microscopy image shows the atomic structure of a layered electronic material. The schematic shows electrons moving from the surface of the upper layer (lanthanum strontium manganese (Mn) oxide) to the interface with the substrate.
How Electrons Move in a Catastrophe
Layer-by-layer analysis uncovers microscopic mechanisms that affect thin film magnetism important to electronics.
October 16, 2019
This schematic drawing shows the apparatus, with the cryogenic ion trap shown in the inset, used to predict the behavior of ions more accurately.
When Ions and Molecules Cluster
New approach to studying ions accurately predicts behavior, providing insights for biological systems, environmental processes, materials development.
October 10, 2019
(left) Surface diffusion of lithium ions across battery nanoparticles changes an electrode. (right) A molecular dynamics simulation of liquid-assisted surface diffusion of lithium ions.
End-run Spreads Lithium Throughout Battery Electrodes
A new path is identified to keep lithium in its place during battery discharge, benefitting efforts to design better energy storage options.
October 9, 2019
Poplar cuttings inoculated with M. elongata strain PM193 (far right) grow larger in 30 percent forest soil / 70 percent sand than without PM193 (middle). On the left are controls grown in sterile sand. (Chih-Ming Hsu).
Fungus Fuels Tree Growth
Researchers start pinning down how a fungal symbiont spurs growth of poplar, a potential biofuel feedstock.
October 9, 2019
Model of the combination of factors that increase microbial diversity. Green arrows indicate higher diversity and red arrows indicate lower diversity with arrow thickness representing the strength of the effect.
Cultivating an Understanding of Microbial Diversity
Plant diversity, soil structure, and seasonality all influence microbial diversity in soil.
October 9, 2019
A research team from UC Berkeley found that hexokinase could act as a switch between photosynthesis and accumulation of bioproducts including lipids and antioxidants in algae.
Discovering an Internal Metabolic Switch in Algae
Discovering hexokinase as an algal regulator of lipids and high-value antioxidants will enable sustainable sources of biofuels and bioproducts.
September 24, 2019
On the left, a computer model depicts a self-assembled tetrahelix made up of tetrahedral quantum dots. On the right, a skeleton view of the tetrahelix demonstrates the chiral structure of the assembly.
Tune in to Tetrahedral Superstructures
Scientists image complex superstructures self-assembled from tetrahedral quantum dots, expanding our understanding of forming small, complex crystals.
September 24, 2019
Scientists produced this map of tiny glassy grains (blue with green specks) inside a cometary-type interplanetary dust particle using the FEI TitanX microscope at the Molecular Foundry. Carbonaceous material (red) holds these objects together.
Tracing Interstellar Dust Back to the Solar System’s Formation
Interplanetary particles offer insights into the chemistry of the cosmos.
September 18, 2019
Atomic scale views of irradiation-induced defects in titanium diboride after irradiation at ~200 degrees Celsius.
Investigating Materials that Can Go the Distance in Fusion Reactors
A test of titanium diboride opens the door to a potential new class of materials for fusion reactor applications.
September 18, 2019
Seung Joon Lee holds the variable angle slant hole collimator. This device can help a breast molecular imaging system get six times better contrast of cancer lesions, providing the same or better image quality while potentially halving the radiation dose.
Better 3-D Imaging of Tumors in the Breast with Less Radiation
A new device may provide up to six times better contrast of tumors in the breast, while halving the radiation dose to patients.
September 18, 2019
Specialization for inorganic nitrogen metabolism. The outer ring shows a substantial fraction of incomplete pathways were found in genomes from each phylum. For most phyla, the average number of pathways per genome was about 1.9.
Microbes are Metabolic Specialists
Microbial Communities Matter in How Ecosystems Retain or Lose Nitrogen
September 18, 2019
In metallic glasses, atoms are arranged randomly, leading to unique properties. These glasses are brittle. A map of calculated “strength” in the structure shows “hard” and “soft” spots. The team predicts the soft spots are the sites that initiate failure.
Even Hard Materials Have Soft Spots
Scientists find the weak points to facilitate industrial applications of metallic glasses.
September 18, 2019
Waves of heat, called phonons, cause atoms to rotate in a certain direction. Selenium atoms (yellow) collectively go through a clockwise circular atomic motion while the tungsten atoms (blue) don’t move.
2-D Atoms Do the Twist
Scientists discover a completely new atomic motion in a 2-D material.
September 10, 2019
The position of a charged monomer (blue dots) along a polymer chain impacts the final structures (structures 1, 3, and 5 from the sequence library) following assembly into micelles (bottom).
Location, Location, Location… How charge placement can control a self-assembled structure.
Location, Location, Location… How charge placement can control a self-assembled structure.
September 10, 2019
Electron microscopy of crack injection. Corrosion creates a nanoporous layer in the material (left) that propagates almost twice as far into the grain boundary as it does away from the boundary. The right image shows an injected crack.
Cracking in Harsh Environments Needs Stress and Corrosion, But Not at the Same Time
Redefining the mechanisms of stress corrosion cracking for materials in energy generation and industrial systems.
September 10, 2019
In a novel simultaneous clean-and-repair mechanism, flowing oil-in-water droplets move nanoparticle (NP) debris, shown as green spheres, into the cracks. The droplets pick up the NPs, then deposit them in the cracked regions.
Simultaneous Clean and Repair
Simple fluid-driven nanoparticle catch-and-release process directs repair of cracks with debris from the damage.
September 10, 2019
Contrary to previous theories, fungal spores-rather than sea salt-contribute the most to atmospheric sodium salt particles over the pristine Amazon basin, according to recent findings from an international team of scientists.
Where Does Salt in the Amazon Air Come From?
For the first time, an international team of scientists has discovered the true origin of sodium salt in pristine Amazon air.
September 10, 2019
Cells of the Gram-positive bacteria (a) and fungal enrichment culture (b) after cell disruption with an ultra-sonication bath for 10 minutes. With identical treatment, no intact cells were found in the Gram-negative bacterial enrichment culture (c).
Testing the Toughness of Microbial Cell Walls
Some cells stand firm against techniques to extract the biological material inside, while others don’t stand a chance.