Project Profile: A Small-Particle Solar Receiver for High-Temperature Brayton Power Cycles

--This project is inactive --

San Diego State University (SDSU), under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a new receiver design that uses air as the heat-transfer fluid. The university's innovative small-particle heat-exchange receiver (SPHER) uses carbon particles to enhance performance and achieve higher thermal efficiency.

Approach

The SDSU research team is working to design, construct, and test a revolutionary, high-temperature solar receiver in the multi-megawatt range that can drive a gas turbine to generate low-cost electricity. The goals of this project are to:

  • Validate the SPHER concept by demonstrating for the first time a pressurized solar receiver with a window greater than 1 meter in diameter
  • Produce a reliable, low-cost, high-efficiency, high-temperature receiver approaching the 5-megawatt scale capable of powering a gas turbine for electricity production
  • Prove the capability of the receiver to generate pressurized, high-temperature air at high efficiencies via prototype testing at the National Solar Thermal Test Facility at Sandia National Laboratories.
Image is for illustrative purposes only.

Concentrated radiation from the heliostat field is absorbed directly in a gas-particle suspension rather than on the receiver walls. The carbon nanoparticles oxidize as they transit the receiver, resulting in clear gas stream exiting toward the turbine.

Innovation

The concept of a volumetric, selective, and continually replenishable absorber is entirely unique. SPHER uses a dilute suspension of carbon nanoparticles dispersed in air to absorb highly concentrated solar flux volumetrically inside a windowed pressure vessel—rather than on a solid surface as in most other receivers. The small-sized particles rapidly transfer heat to the surrounding air and then oxidize as temperatures increase. A hot, pressurized, clear gas stream consisting almost entirely of air with a small amount of CO2 is then available to drive a gas turbine or be used for a process. This system can readily be hybridized with natural-gas plants.

Project Fact Sheet

The SunShot CSP R&D program seeks to accelerate progress toward the cost target of $0.06 per kilowatt-hour through novel and revolutionary research into CSP technologies. Learn about other concentrating solar power research.