The U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO) supports innovative research focused on overcoming the current technological and commercial barriers for cadmium telluride (CdTe) solar cells. Below are a list of current projects, summary of the benefits, and discussion of the production and manufacturing techniques used for this solar technology.


CdTe solar cells are the second most common photovoltaic (PV) technology in the world marketplace after crystalline silicon, currently representing 5% of the world market. CdTe thin-film solar cells can be manufactured quickly and inexpensively, providing an alternative to conventional silicon-based technologies. The record efficiency for a laboratory CdTe solar cell is 22.1% by First Solar. First Solar also reported its average commercial module efficiency to be approximately 18% at the end of 2020. 


    The benefits of CdTe thin-film solar cells include:

    • High absorption: Cadmium telluride is a direct-bandgap material with bandgap energy that can be tuned from 1.4 to 1.5 (eV), which is nearly optimal for converting sunlight into electricity using a single junction.
    • Low-cost manufacturing: Cadmium telluride solar cells use high throughput manufacturing methods to produce completed modules from input materials in a matter of hours.


    The most common CdTe solar cells consist of a p-n heterojunction structure containing a p-doped CdTe layer matched with an n-doped cadmium sulfide (CdS) or magnesium zinc oxide (MZO) window layer. Typical CdTe thin-film deposition techniques include vapor-transport deposition and close-spaced sublimation. CdTe absorber layers are generally grown on top of a high-quality transparent conductive oxide (TCO) layer—usually fluorine-doped tin oxide (SnO2:F). Cells are completed using a back electrical contact—typically a layer of zinc telluride (ZnTe) followed by a metal layer or a carbon paste that also introduces copper (Cu) into the rear of the cell.

    Research Directions

    Current projects seek higher cell efficiencies by increasing crystal quality, improving doping control, and increasing the minority carrier lifetime. Manufacturers are also working to improve materials reuse and recycling as a way to mitigate concerns on toxicity and materials scarcity.

    Learn more about the DOE Solar Office awardees and the projects involving CdTe below or by visiting the Solar Energy Research Database.

    Additional Information

    Find out more about the solar office’s photovoltaics research.

    Learn how photovoltaics work.