Enabling the SMART Wind Power Plant of the Future Through Science-Based Innovation

You are here

Cover of Enabling the SMART Wind Power Plant of the Future Through Science-Based Innovation.

New energy science and technological breakthroughs could cut the cost of wind energy in half by 2030—making it fully competitive with the fuel cost of natural gas.

This new finding is outlined in a report by the National Renewable Energy Laboratory (NREL) that examines the future of wind power plants—backed by the supercomputing power of the U.S. Department of Energy’s (DOE’s) national laboratories.

According to NREL, the wind plant of the future will use a collection of technologies that allow wind power plants and the turbines within them to not only respond to the atmosphere as an efficient, integrated system, but also to control the airflow within the plant to maximize power production. This approach is made possible by recent advances in supercomputing technology, which turns large sets of atmospheric and wind turbine operation data into a high-fidelity model. Industry can then use these government-driven scientific insights to design new wind turbine components, sensors, and controls.

Meanwhile, the rise of wind energy over the past decade has been driven largely by technological advances that have made wind turbines more efficient at a lower cost. Wind was the third most-installed source of U.S. energy capacity in 2016 behind solar and natural gas. Between 2009 and 2016, installed project costs for new wind farms dropped 33%, while also generating more electricity per turbine.

Learn more about the report in the EERE blog post.