You are here

Wind Manufacturing and Supply Chain

The U.S. Department of Energy (DOE) works with wind technology suppliers to promote advanced manufacturing capabilities. Its goals are to increase reliability while lowering production costs, and to promote an industry that can meet all demands domestically while competing in the global market. The DOE Wind Program supports industry partnerships and targeted R&D investments that integrate new designs, materials, and processes into manufacturing facilities, thus making wind turbines a more affordable source of renewable energy for communities around the country. 

Manufacturing Is the First Step in Affordable Wind

The U.S. wind market has grown substantially over the years into an increasingly complex supply chain. Numerous facilities specializing in blades, towers, generators, and turbine assembly exist across the country.

Wind facilities built or announced in 2012.

Source: 2012 Wind Technologies Market Report

Advancements in composite materials, automation, and more efficient manufacturing processes have helped domestic manufacturers dramatically increase productivity throughout the past decade. The wind supply chain that has developed in the United States in recent years has nearly tripled the domestic content of wind turbines installed in the United States between 2006 and 2012.

imported_domestic_wind_projects.jpg

Source: 2012 Wind Technologies Market Report

As the size and complexity of wind turbines grow, so do the manufacturing process requirements and component transportation costs which, in turn, increase the need for local manufacturers who can overcome technical and logistical challenges. Currently, the average utility-scale wind turbine contains roughly 8,000 parts, including blades up to 75 meters (roughly 250 feet) in length and towers roughly the height of the statue of liberty. With the goal of future turbines with 100-meter-long blades atop 140 meter towers, advanced manufacturing and assembly techniques must be developed to meet the demand for advanced wind energy technology.

Breaking Down the Manufacturing Process

Blades

Due to the size and complexity of turbine blades, each blade  must be crafted to the highest quality standards in  order to ensure reliability. This fabrication  process can be very costly and labor intensive. The Advanced Manufacturing Initiative for blades — a partnership between DOE, Sandia National Laboratories, TPI Composites, and Iowa  State University — helped establish advanced techniques that reduce the time it takes to produce a single blade by approximately 37% (from 38 to 24 hours). Turbine blades must be able to maintain their strength and aerodynamic structure during virtually non-stop operations over twenty years.

Advanced Drivetrains

The tower-top components inside the nacelle that convert the force of the wind-driven rotor blades in to electricity are called the drivetrain. Advanced designs and related manufacturing techniques developed in conjunction with the DOE Wind Program's Next Generation Drivetrain projects are expected to produce more efficient, reliable, and affordable drivetrains. These advancements include new single-stage gearboxes, permanent magnet generators, high efficiency power electronics, and superconducting generators. New and innovative approaches to drivetrain manufacturing will continue to be necessary as turbine components continue to increase in size and energy capacity in response to market demand.

Infrastructure and Logistics

As the demand for renewable energy increases and wind turbines are "scaled-up" to ever larger sizes, American manufacturers must find ways to overcome infrastructure and logistics constraints to lower the cost of wind energy. These constraints include highway underpass heights limiting the size of wind towers, availability of cranes able to lift and install nacelles, and the trucking fleet's difficulty in transporting longer wind blades. In a study released by the National Renewable Energy Laboratory, Analysis of Transportation and Logistics Challenges Affecting the Deployment of Large Wind Turbines, it was concluded that the technological innovations enabling development of very large wind turbines have significant potential to reduce the cost of wind energy. However, transportation and logistics challenges are limiting the size and height of towers and turbines that can be deployed throughout the country. Addressing these challenges head-on, in January, 2014, DOE announced a $2 million funding opportunity for innovative designs of taller towers, on-site fabrication and/or assembly methods, and enhanced installation capabilities that avoid these logistical barriers.