A Novel Concept for Energy Storage

Grigorii Soloveichik
GE Global Research

Trans-Atlantic Workshop on Storage Technologies for Power Grids
Washington, DC, October 19-20, 2010

This work supported as part of the Center for Electro catalysis, Transport Phenomena, and Materials for Innovative Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001055
Acknowledgements

GE EFRC team
P. Bonitatibus
M. Doherty
H. Lam
L. Lewis
T. Miebach
R. Perry
A. Peters
J. Presley
O. Siclovan
D. Simone
J. Stein
A. Usyatinsky
G. Yeager
G. Zappi
K. Zarnoch

Yale team
V. Batista
R. Crabtree
S. Konezny
O. Luca
T. Wang

Stanford team
C. Chidsey
V. Ziadinov
A. Hosseini

LBL/Berkeley team
J. Kerr
J. Arnold
T. Devine
R. Fish
K. Clark
D. Kellenberger
S. Rozenel

DOE - BES
J. Vetrano
A. Carim
Megatrends ... fuel cost, emission reduction & digitization

Intermittent renewables, smart grid deployment
Opportunities for an advanced energy storage

Grid
Renewable Integration, Power Quality, Smart Grid, T&D Management

Energy Storage
Mechanical, Chemical, Electrical, Electrochemical

Backup Power
Telecom, UPS, Stand Alone Systems

imagination at work

10/19/2010
Application Energy Storage Requirements

<table>
<thead>
<tr>
<th>Application Duration</th>
<th>Application Energy Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 sec</td>
<td>1 kWh</td>
</tr>
<tr>
<td>15 min</td>
<td>10 kWh</td>
</tr>
<tr>
<td>30 min</td>
<td>100 kWh</td>
</tr>
<tr>
<td>1 hour</td>
<td>1 MWh</td>
</tr>
<tr>
<td>5 hrs</td>
<td>10 MWh</td>
</tr>
</tbody>
</table>

- Power Battery
- Dual Battery
- Energy Battery
- Flow Battery

Energy battery: NaMx now...organic flow battery in future
Energy Storage Market

- Global investment in electric power ancillary services systems will reach $6.6 billion by 2019
- Deployment of renewables and smart grid is the strongest driver to push the grid storage market 3 – 5 times by 2016
- The global stationary energy storage business $35 billion by 2020
 - 11 competing technologies
 - Li ion batteries may be ¼ of revenue
 - Compressed air, flywheel and sodium-sulfur batteries follow
- Stationary fuel cells revenue $0.7 – 1.2 billion in 2013
- Stationary energy storage got a boost from transportation energy storage development (market size $19.9 billion in 2012)

Sources: http://www.pikeresearch.com/category/research/energy-storage
Electrochemical Energy Storage Options

Secondary batteries
- Stationary electrode materials
- Mature technology (lead acid, NiCd, NiNH, NaS)
- Emerging technologies (NaMCl₂, Li-ion)
- New chemistries (Li-air, Li-S, Zn-air)

NGK 34 MW NAS alongside 51 MW Wind Farm

Redox flow batteries
- Flowing electrode materials
- Mature technology (zinc-bromine, all-vanadium)
- Emerging technologies (cerium-zinc, iron-chromium)
- New chemistries (vanadium-bromine, soluble lead)

VRB (Prudent Energy) PacifiCorp (Moab, Utah) 2 MWh VRB-ESS

Regenerative fuel cells
- Gaseous electrode materials
- Emerging technologies (H₂–O₂ conventional and unitized)
- New chemistries (H₂–Br₂, H₂–H₂O₂, NaBH₄–H₂O₂)

1kW-prototype Regenerative Fuel Cell System
Source: www.apg.jaxa.jp
Electrochemical Energy Storage Comparison

Secondary batteries
- No power-energy separation
- Moderate energy density (50 – 240 Wh/kg)
- High energy efficiency (65 – 90%)
- Degradation mode – electrode
- Linear scalability (small cells)
- Moderate cost
- Mature technology

Redox flow batteries
- Power and energy separated
- Low energy density (10 – 50 Wh/kg)
- High energy efficiency (65 – 78%)
- Degradation mode – membrane
- Non-linear scalability (cell stacks)
- Low cost
- Emerging technology

Regenerative fuel cells
- Power and energy separated
- High energy density (450 – 500 Wh/kg)
- Low energy efficiency (35 – 50%)
- Degradation mode – catalyst
- Non-linear scalability (cell stacks)
- High cost
- New technology

• Combination of high energy density and efficiency, long cycle life, high DOD, low cost, fire and environmental safety desirable
• Main focus on transportation, more efforts on stationary storage needed
• New concepts wanted
Direct organic fuel cell/flow battery concept

- Feed the hydrogenated organic liquid carrier directly into the fuel cell where it will be electrochemically dehydrogenated to a stable, hydrogen depleted organic compound without ever generating gaseous H_2 to produce power.
- The spent organic carrier may be replenished either mechanically or electrochemically from water splitting.
- Minimize the balance of plant by excluding a catalytic reactor and a heat exchanger.

- High theoretical energy density (up to 1350 Wh/kg)
- Low membrane crossover – high efficiency
- Energy conversion and storage separated - low packaging
- Reversibility (fuel cell \leftrightarrow flow battery)
- Excellent safety, zero carbon emission
Electrocatalysis, transport phenomena and membrane materials basic research aimed to three novel components of an entirely new high-density energy storage system combining the best properties of a fuel cell and a flow battery: organic carriers, electro(de)hydrogenation catalysts, and compatible PEM.

Focus areas:
- C-H bond catalysis/
- Electro(de)hydrogenation catalyst
- Organic fuel
- Low humidity proton exchange membrane

Award DE-SC0001055
Task interactions and program vision

Challenges and needs
- Electron level material processes
- Atom- and energy efficient synthesis
- Far from equilibrium processes control
- Electrical energy storage
- Catalysis for energy
- Hydrogen economy
- Solar energy utilization

Fundamental research
- **Focus 1**: Selection and synthesis of organic carriers
- **Focus 2**: Discovery of electrodehydrogenation and electrohydrogenation catalysts
- **Focus 3**: Immobilization and characterization of electrocatalysts
- **Focus 4**: Novel proton exchange membrane development
- **Focus 5**: Modeling of interactions among components

Technology
- High density energy storage
- Organic fuel cell/flow battery

Applications
- Solar energy
- Plug-in hybrids
- Wind energy
- Load leveling

Program management
Fuel (organic carrier) focus

Traditional approach
\[LQH_n \leftrightarrow LQ + n/2 H_2 \]
\(\Delta H \) to be minimized

EFRC approach
\[LQH_n + n/4 O_2 \leftrightarrow LQ + n/2 H_2O \]
\(\Delta(G_{LQHn} - G_{LQ}) \) to be minimized to maximize cell voltage
Theoretical cell voltage 0.95 – 1.1 V (depends on organic hydrogen carrier)

Organic fuel requirements
• Minimal \(\Delta G \) dehydrogenation of organic carriers via molecular modeling guidance
• Scalable synthesis of aromatic precursors and hydrogenation to saturated carriers (high pressure lab)
• Liquid at ambient conditions, low vapor pressure
Comparison of dehydrogenation energies for model and promising fuels in kcal/mol H₂ by DFT calculation (method B3LYp, basis set 6-311++G**)

Electrooxidation of model fuels on Pt electrode

First dehydrogenation step most critical

Single-bond and multiple-bond model and promising fuels selected based on computational modeling
C-H bond catalysis focus

Homogenous C-H bond activation **and** electron transfer

Catalyst requirements

- Catalytic activity in the C-H bond activation and further dehydrogenation of saturated hydrocarbons
- Redox activity in target electrochemical potential windows
- Microscopic reversibility (dehydrogenation/hydrogenation)
- Ability to transfer multiple electrons and protons
- Tunable redox potentials to selected organic fuels

LHₙ - n e⁻ ⇌ L + n H⁺

Utilize defined metal centers for catalysis understanding

Rh-based pincer complex

Organic catalyst for electrodehydrogenation

First electrocatalytic oxidation of cycloalkane on a metal complex
Alkane dehydrogenation mechanism

Computational simulation of catalytic cycle

Iridium pincer dihydride primary target for e/chem study

No sacrificial olefin

-2e- -2H+

Yale
Electrocatalysis focus

Electrocatalysis for dehydrogenation and hydrogenation

Electrocatalyst requirements

- Fast electron transfer from metal centers through a linker to electrode via study of the transport mechanism and determination of controlling factors
- Fast proton transport to PEM via structured catalyst/support
- Robust catalyst that tolerant to impurities/reaction products
 - design catalyst ligand environment for selectivity
 - use nanosized metal alloys catalysts supported on carbon

\[
\text{LH}_n - n \text{ e}^- \iff L + n \text{ H}^+
\]

1) IN\textsubscript{3} in hexanes

EtOH, CH\textsubscript{3}Cl Rinse

2) \text{Cu(I)}

CH\textsubscript{3}Cl, DMSO, H\textsubscript{2}O Rinse

Chronoamperometry of baseline RVC (blue) and functionalized RVC (red)
Proton exchange membrane focus

Membrane requirements
• Water free PEM (H₂O detrimental to anode chemistry)
• Low fuel and products solubility – mechanical integrity
• Proton conductivity 10^{-3} S/cm @ 120 °C
• High oxidative stability at 120 °C
• Thermal stability (> 150 °C)
Direct organic hydride fuel cell testing

Membrane Electrode Assembly (MEA)

- 5 cm² active area
- Anode: 4mg/cm² 60% PtRu/C
- C-cloth anode GDL
- Cathode: 2 mg/cm² 40% Pt/C
- 115 Nafion® membrane

Cyclohexane/air cell

Membrane dehydration, new membranes needed

Fuel Cell Assembly

Tetralin/air cell

Significant current observed for tetralin

Use of liquid hydrocarbon fuel in fuel cell demonstrated

Liquid fuel cells OCV, V
Fuel Theory Exp.
MeOH 1.21 0.73
Decalin 1.10 0.55
Tetralin 1.08 0.66
Conclusions

• Smart grid development and deployment of intermittent renewables require performance and cost effective energy storage

• New concept of high energy density storage system combining a PEM fuel cell and a flow battery suggested

• Energy Frontier Research Center targets major components of this system: organic fuel, electrocatalyst and low humidity PEM
Backup slides
Secondary batteries

<table>
<thead>
<tr>
<th>Type</th>
<th>Cell voltage, V</th>
<th>Energy density, Wh/kg</th>
<th>Demo scale, MW</th>
<th>Major players</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead acid</td>
<td>2.04</td>
<td>30 - 50</td>
<td>20</td>
<td>C&D Battery, Exide Technologies, Hagen Batterie AG, Storage Battery Systems</td>
</tr>
<tr>
<td>NiCd</td>
<td>1.29</td>
<td>50 - 75</td>
<td>27</td>
<td>Saft Batteries, Storage Battery Systems</td>
</tr>
<tr>
<td>NaS</td>
<td>1.78 – 2.07</td>
<td>150 - 240</td>
<td>34</td>
<td>NGK Insulators Ltd.</td>
</tr>
<tr>
<td>Li-ion</td>
<td>3.3 – 4.2</td>
<td>75 - 200</td>
<td>20</td>
<td>A123, Ener1, Altair Nanotechnologies, Saft Batteries</td>
</tr>
<tr>
<td>NaNiCl₂</td>
<td>2.58</td>
<td>135</td>
<td>-</td>
<td>FZ Sonick SA, GE</td>
</tr>
<tr>
<td>LiS</td>
<td>2.2</td>
<td>350</td>
<td>-</td>
<td>SION Power, PolyPlus</td>
</tr>
</tbody>
</table>

Advantages:
- Mature technology
- High round trip efficiency
- High power or high energy
- Modular design

Major technical challenges:
- High cost for advanced batteries
- Linear scalability (kW to MW)
- No deep cycling
- Electrode degradation, short lifetime
- Corrosion (high temperature batteries)
- Safety
Flow batteries

Advantages:
- Separation of energy and power
- Non-linear scalability (kW to MW)
- High round trip efficiency
- Modular design
- Long lifetime
- Low cost

<table>
<thead>
<tr>
<th>Type</th>
<th>Cell voltage, V</th>
<th>Membrane</th>
<th>Energy efficiency, %</th>
<th>Major players</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-vanadium</td>
<td>1.26</td>
<td>PEM</td>
<td>78</td>
<td>Prudent Energy, Sumitomo, VFuel Pt</td>
</tr>
<tr>
<td>Polysulfide-bromine</td>
<td>1.36</td>
<td>Ion-selective</td>
<td>77</td>
<td>Prudent Energy (IP holder)</td>
</tr>
<tr>
<td>Zinc-bromine</td>
<td>1.85</td>
<td>Porous diaphragm</td>
<td>73</td>
<td>ZBB Energy, Premium Power, Primus Power</td>
</tr>
<tr>
<td>Cerium-zinc</td>
<td>2.48</td>
<td>PEM</td>
<td></td>
<td>Plurion</td>
</tr>
<tr>
<td>Iron-chromium</td>
<td>1.18</td>
<td>Ion-selective</td>
<td>66</td>
<td>Deeya Energy</td>
</tr>
<tr>
<td>Soluble lead acid</td>
<td>2.04</td>
<td>No membrane</td>
<td>65</td>
<td>General Atomics</td>
</tr>
</tbody>
</table>

Major technical challenges:
- Low energy density (25 – 70 Wh/kg)
- Corrosion, expensive plumbing
- Environmental issues
Regenerative H_2/O_2 fuel cells

Major players:
- Giner, Proton Energy Systems

Advantages:
- High energy density (500 Wh/kg)
- Separation of energy and power
- Long lifetime
- No environmental issues

Major technical challenges:
- Dual function oxygen electrode (unitized FC)
- Low roundtrip energy efficiency
- Low energy density storage system
- Cost

Conventional design

- **Electrolyzer**
 - H_2 tank
 - H_2 to H_2O
- **Fuel cell**
 - H_2O to DC power
 - DC load
- **O_2 tank**

Charge

Discharge

Unitized design

- **Unitized regenerative fuel cell**
 - H_2O to DC power
 - DC load
 - O_2 tank
- **H_2 tank**

Charge

Discharge

D. Bents et al., NASA Glenn Research Center, 2008
http://gltrs.grc.nasa.gov

F. Mitlitsky et al., LLNL https://www.llnl.gov/str/Mitlit.html

F. Barbir et al., IEEE A&E Systems Magazine, 2005
500 Wh/kg with roundtrip efficiency of 34%.
Electrochemical energy storage systems

<table>
<thead>
<tr>
<th>System</th>
<th>Energy density, Wh/kg</th>
<th>Round trip efficiency, %</th>
<th>Cost, $/kWh</th>
<th>Cycle life</th>
<th>Deep cycling</th>
<th>Scale</th>
<th>Response time</th>
<th>EHS issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead acid</td>
<td>41</td>
<td>78</td>
<td>150</td>
<td>short</td>
<td>no</td>
<td>kWh</td>
<td>+</td>
<td>Toxic, corrosive</td>
</tr>
<tr>
<td>Na/S</td>
<td>120</td>
<td>72</td>
<td>450</td>
<td>long</td>
<td>no</td>
<td>MWh</td>
<td></td>
<td>Thermal runaway</td>
</tr>
<tr>
<td>Na/MCl2</td>
<td>135</td>
<td>75</td>
<td>400</td>
<td>moderate</td>
<td>no</td>
<td>kWh</td>
<td></td>
<td>Molten Na</td>
</tr>
<tr>
<td>Li-ion</td>
<td>130</td>
<td>60 - 80</td>
<td>1300</td>
<td>moderate</td>
<td>no</td>
<td>kWh</td>
<td>+</td>
<td>Thermal runaway</td>
</tr>
<tr>
<td>VRB</td>
<td>35</td>
<td>78</td>
<td>800</td>
<td>long</td>
<td>yes</td>
<td>MWh</td>
<td>+</td>
<td>Corrosive, toxic</td>
</tr>
<tr>
<td>ZBB</td>
<td>70</td>
<td>73</td>
<td>500</td>
<td>long</td>
<td>yes</td>
<td>MWh</td>
<td></td>
<td>Toxic, corrosive</td>
</tr>
<tr>
<td>RFC</td>
<td>450</td>
<td>35 - 50</td>
<td>?</td>
<td>long</td>
<td>yes</td>
<td>kWh</td>
<td>+</td>
<td>Flammable</td>
</tr>
</tbody>
</table>

- Solid electrodes – degradation, liquid electrodes – low energy density