## **Capacitors for Power Grid Storage**

(Multi-Hour Bulk Energy Storage using Capacitors)

#### John R. Miller

JME, Inc. and Case Western Reserve University <jmecapacitor@att.net>

Trans-Atlantic Workshop on Storage Technologies for Power Grids Washington DC Convention Center, October 19-20, 2010

Storage system cost per unit of delivered energy over application life (\$/kWh/cycle) or (\$/kWh/year) over total life of the application





Storage system cost per unit of delivered energy over application life (\$/kWh/cycle) or (\$/kWh/year) over total life of the application



**5 hours storage** Pb-C capacitor (cube with 6.3 m edge)





Storage system cost per unit of delivered energy over application life (\$/kWh/cycle) or (\$/kWh/year) over total life of the application





50 kWh Li-ion Pb-C capacitor

Pb-C capacitor 50 Wh/liter Li-ion battery 420 Wh/liter



(Not Energy Density of the Storage System)

Storage system cost per unit of delivered energy over application life (\$/kWh/cycle) or (\$/kWh/year) over total life of the application





50 kWh Li-ion Pb-C capacitor

Pb-C capacitor 50 Wh/liter Li-ion battery 420 Wh/liter





























CASE WESTERN RESERVE UNIVERSITY GREAT LAKES ENERGY INSTITUTE

















CASE WESTERN RESERVE UNIVERSITY



CASE WESTERN RESERVE UNIVERSITY GREAT LAKES ENERGY INSTITUTE



CASE WESTERN RESERVE UNIVERSITY









## Minimum Storage Costs achieved when: "Storage System Life" = "Application Need"

















## **Grid Storage**







## **Optimum Grid Storage Will Not Have Highest Energy Density**







## INHERENT ADVANTAGES GAINED USING Storage That Relies on Physical Processes







## INHERENT ADVANTAGES GAINED USING Storage That Relies on Physical Processes







## INHERENT ADVANTAGES GAINED USING Storage That Relies on Physical Processes



- High efficiency
- Long life (highly reversible)
- Good reliability

- Small temperature effects
- End-of-life waste stream
- Generally safe





## INHERENT ADVANTAGES GAINED USING

**Storage That Relies on Physical Processes** 



## No moving parts Essentially no maintenance





## **Capacitors do not Necessarily Discharge Instantly**



~1995 ESMA Bus 30 MJ, 190 V Capacitor Bank 15 km range, 15 minute charge Circle route operation in large Moscow park





## **Capacitors do not Necessarily Discharge Instantly**



~1995 ESMA Bus 30 MJ, 190 V Capacitor Bank 15 km range, 15 minute charge Circle route operation in large Moscow park

## JME

2010 Shanghai Bus

100% capacitor power few km range, 20 s charge Shanghai bus route #11



## CAPACITOR STORAGE APPLICATION TIME SHIFTING—DAY/NIGHT STORAGE



24 hours

#### **NO STORAGE**





## CAPACITOR STORAGE APPLICATION TIME SHIFTING—DAY/NIGHT STORAGE







## CAPACITOR STORAGE APPLICATION TIME SHIFTING—DAY/NIGHT STORAGE



**20 years** at 1 cycle per day, five days per week requires ~5000 cycles





Available today! Breakthrough discovers not needed.





- Available today! Breakthrough discovers not needed.
- Engineering development and implementation underway





- Available today! Breakthrough discovers not needed.
- Engineering development and implementation underway
- Asymmetric electrochemical capacitor design
  - first electrode activated carbon (natural source)-EDLC storage
  - second electrode Faradaic or pseudocapacitive storage
  - aqueous electrolyte
  - polymer package





- Available today! Breakthrough discovers not needed.
- Engineering development and implementation underway
- Asymmetric electrochemical capacitor design
  - first electrode activated carbon (natural source)-EDLC storage
  - second electrode Faradaic or pseudocapacitive storage
  - aqueous electrolyte
  - polymer package
- Optimized for ~C/5 charge/discharge rate
- Cycle life is controlled by electrode capacity asymmetry ratio
- Typically designed for ~5000 cycles (100% DOD)
- Energy storage cost projections < \$0.05/kWh/cycle (Lead acid battery at 80% DOD ~\$0.30/kWh/cycle)





## **Cyclic Voltammogram of Carbon Electrode**

Exceptional Charge Storage at Far Negative Potentials in Aqueous Electrolyte



Figure 19: Series of CVs for the C-electrode in proprietary electrolyte BHW726C, successively scanned from 0.9 V (SHE) to progressively more negative reversal potentials out to -1.1 V (SHE). (Note the reversibility of the CV upon potential reversals.). Sweep-rate 10 mV s<sup>-1</sup>.

> Specific Ion Effects on Double-Layer Capacitance of a C-Cloth Electrode Showing Extended Charge Acceptance B.E. Conway, H. A. Andreas and W. G. Pell Double Layer Capacitor Seminar, Deerfield Beach, FL, Dec. 6-8, 2004







Jay Whitacre <jwhitacre@aquionenergy.com>

Aqueous Sodium Ion Asymmetric Energy Storage Device



1.8 V sealed cell
High efficiency
Optimized for >4 hr charge/discharge rate
~30 Wh/liter



Early stage start-up company DOE and VC support Cost goal <\$250/kWh Storage costs @ 5000 cycles <\$0.05/kWh





# HegaJoule Storage, Inc.

Herbert Crowther, <hcrowther@megajouleinc.com>

## PbO<sub>2</sub>-H<sub>2</sub>SO<sub>4</sub>-C

2 V sealed cells >70% energy efficiency Optimized for C/5 operation ~50 Wh/liter 5000 cycle design Recyclable materials Natural cell voltage balance claimed



7 Cell Module (35"L x 7" W x 11"H)



Early stage start-up company Cost projections <\$200/kWh Storage costs @ 5000 cycles <\$0.05/kWh





## **Decommissioned Power Plant**







#### **Decommissioned Power Plants could be filled with Capacitors**



- Store significant quantities of energy
- Transmission switchyards often intact
- Extends life of capital investment
- Promotes removal of inefficient plants
- Permitting should not be difficult





#### **Decommissioned Power Plants could be filled with Capacitors**



- Store significant quantities of energy
- Transmission switchyards often intact
- Extends life of capital investment
- Promotes removal of inefficient plants
- Permitting should not be difficult



50m x 100m x 20m = 100,000 m<sup>3</sup>





### **Decommissioned Power Plants could be filled with Capacitors**



#### Note:

- Significant quantities of energy stored
- Transmission switchyards often intact
- Extends life of capital investment
- Promotes removal of inefficient plants
- Permitting should not be difficult



50m x 100m x 20m = **100,000 m<sup>3</sup>** Pb-C capacitor: **50 Wh/I** = 50 kWh/m<sup>3</sup>

⇒ 100,000 m<sup>3</sup> storage volume could deliver 5,000 MWh of electricity *i.e. 1000 MW for 5 hours* 





## Raccoon Mountain Pumped Hydro Storage Reservoir 305 m height, 528 acres surface, ~30 GWh of stored Energy







## Raccoon Mountain Pumped Hydro Storage Reservoir 305 m height, 528 acres surface, ~30 GWh of stored Energy

A capacitor system storing the same quantity of energy would have a volume ~20-times smaller than the water in the reservoir

(and need no mountain)





- (\$/kWh/cycle) or (\$/kWh/year) are the important metrics (not energy density)
- Lowest cost achieved when "Storage System Life" = "Application Need"
- Optimum grid storage will generally not have the highest energy density
- Storage that relies on physical processes offers notable advantages





- (\$/kWh/cycle) or (\$/kWh/year) are the important metrics (not energy density)
- Lowest cost achieved when "Storage System Life" = "Application Need"
- Optimum grid storage will generally not have the highest energy density
- Storage that relies on physical processes offers notable advantages
- Asymmetric capacitor cycle life is determined by its design (tune precisely)
- Capacitors can be readily scaled to create small or large grid storage systems
- Two early-stage US companies mentioned--developing capacitor bulk-storage





- (\$/kWh/cycle) or (\$/kWh/year) are the important metrics (not energy density)
- Lowest cost achieved when "Storage System Life" = "Application Need"
- Optimum grid storage will generally not have the highest energy density
- Storage that relies on physical processes offers notable advantages
- Asymmetric capacitor cycle life is determined by its design (tune precisely)
- Capacitors can be readily scaled to create small or large grid storage systems
- Two early-stage US companies mentioned--developing capacitor bulk-storage
- Capacitor technology has potential storage costs of < \$0.05/kWh (5000 cycles)
- Decommissioned generating plants are candidate locations for capacitor storage





- (\$/kWh/cycle) or (\$/kWh/year) are the important metrics (not energy density)
- Lowest cost achieved when "Storage System Life" = "Application Need"
- Optimum grid storage will generally not have the highest energy density
- Storage that relies on physical processes offers notable advantages
- Asymmetric capacitor cycle life is determined by its design (tune precisely)
- Capacitors can be readily scaled to create small or large grid storage systems
- Two early-stage US companies mentioned--developing capacitor bulk-storage
- Capacitor technology has potential storage costs of < \$0.05/kWh (5000 cycles)
- Decommissioned generating plants are candidate locations for capacitor storage

GREAT LAKES

NSTITUTE

Capacitors can also satisfy other shorter-duration power grid needs
 Case
 Wester
 Reserv
 Case
 Cas