Introduction SCADA Security for Managers and Operators

September 28, 29, 2006
Disclaimer

- References made herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government, any agency thereof, or any company affiliated with the Idaho National Laboratory.

- Use the described security tools and techniques at “your own risk” – i.e. carefully evaluate any tool prior to using it in a production SCADA Network.

- The demonstrations and exploits used in the workshop are NOT SCADA vendor specific. The exploits take advantage of TCP/IP network and Operating system vulnerabilities. At no time is the actual PLC or RTU exploited.
Workshop Agenda

• Introductions
• Understanding the Risk
• Attack Trends and Attacker Profile
• Understanding Exposure
• Experiences from Field Visits
• Anatomy of an Attack
• 10 Minute Break
• Energy System Exploitation (DEMO)
• Demo Exploits and Mitigation Strategies
• Vulnerability Testing
• 10 Minute Break
• Network Components and Architecture
• Firewalls and Intrusion Detection
• 10 Minute Break
• NERC Mitigation Activities
• Interactive Exam Discussion
• Q & A
Introductions
The Idaho National Laboratory

A DOE National Laboratory located in Idaho

- Facilities located in Idaho Falls and on the 890 square mile reservation located 40 miles away
- Work force of 3,300 people ~ 7,000 total employees with all contractors
- Historically focused on nuclear reactor research
  - Operated by Battelle
The INL R&D

Mission execution is guided by five laboratory divisions

- Nuclear Energy
- Advanced Test Reactor
- National Security
- Specific Manufacturing Capability
- Science and Technology
SCADA Test Bed

Control Systems

- Multiple Vendor participation
- Fully functional SCADA/EMS systems
- Fully functional DCS and PCS systems
- Inter-systems (ICCP) communication capability
- Real world configuration capability
- Remote testing capability
Cyber Security Test Bed

An integral part of the SCADA/Process Control Test Bed

- Supports control system security
- Industry assessments
- State of the art knowledge
Next Generation Wireless Test Bed

Operational since April 2003

- America’s only “city sized” wireless test facility
- 3 Cell tower system operational; potential to expand
- Testing next generation (3G/4G) wireless communication, wireless LANs and Land Mobile Radio systems
- Access to commercial and government spectrums as NTIA experimental test station
- Physically secure, interference free environment
- Has supported IED jammer testing for USMC/Navy EOD
Power Grid Test Bed

Various power grid test beds available:

- Secure power distribution system
  - 61 mi dual fed, 138kV power loop
  - 7 substations
  - 3 commercial feeds
- Real-time grid monitoring and control through centralized SCADA operations center
- Ability to isolate portions of grid for specialized testing
- Protection & Restoration
- Research
INL Critical Infrastructure Security Programs

National SCADA Test Bed

Control Systems Security Program
DOE OE Mission

To establish a National capability to support industry and government in addressing control system cyber security and vulnerabilities in the energy sector
DHS Primary Objective

Create a national-level capability to coordinate between government and industry to reduce vulnerabilities and respond to the threats associated with the control systems that operate our national critical infrastructure.

All sectors involved in control systems. Multiple National Laboratories.
Working Together to Deliver & Operate Secure Systems

National SCADA Test Bed

Vendor

Providing Updated Systems and Testing Results

Providing Configurations & Training

Asset Owners

Providing Assessment Results

Requesting Field Assessments

Requesting Security Testing

SCADA/EMS Configurations

SCADA/EMS Testing

Field Assessments

Providing Test Results
Understanding the Risk
These Images Demonstrate A Common Theme

1. Halifax Explosion on Dec 6th
2. Pearl Harbor on Dec 7th
3. WTC & Pentagon on September 11th

…An inability to see what was possible
The Risk Equation

\[ \text{Risk} = \text{Threat} \times \text{Vulnerability} \times \text{Consequence} \]

- **Threat**: Any person, circumstance or event with the potential to cause loss or damage.
- **Vulnerability**: Any weakness that can be exploited by an adversary or through accident.
- **Consequence**: The amount of loss or damage that can be expected from a successful attack.
Risk is Elevated in Converged & Interconnected Systems

Technology has blurred the line between the physical machine and the electronic machine driving our infrastructure.
Nine Core Operational Processes

- Monitoring and Investigative Processes
  - Monitoring & Logging
  - Forensics & Investigations
  - Threat Analysis & Assessment

- Risk and Vulnerability Management Processes
  - Risk Management
  - Vulnerability Management
  - Secure Development Life Cycle

- Response and Continuity Processes
  - Business Continuity Planning
  - Crisis Management
  - Incident Response

*Risk Management Approach used at AEP*
Attack Trends and the Attacker Profile
Threat Trends

- Threats More Complex as Attackers Proliferate

- Password Guessing
- Self-Replicating Code
- Password Cracking
- Exploiting Known Vulnerabilities
- Disabling Audits
- Hijacking Sessions
- Sweepers
- Sniffers
- Distributed Attack Tools
- Denial of Service
- GUI
- Packet Spoofing
- Network Management Diagnostics
- Automated Probes/Scans
- WWW Attacks
- ”Stealth”/Advanced Scanning Techniques

Intruder Knowledge

- High
- Low

Attack Sophistication

- Era of Legacy Control System Technology
- Era of Modern Information Technology

- Current Control System Zone of Defense

- Back Doors
- Zombies
- BOTS
- Morphing
- Malicious Code

Cyber Threats: The Flattening of the Line

- Strategic Information Warfare
  - Major Economic Gain
  - Cyber Terrorism
  - Asymmetric Warfare

- Directed Cyber Attacks – Structured Hackers
  - Direct & Targeted Monetary Gain
  - Extreme Activist / Groups
  - Disgruntled Employee

- General Cyber Attacks - Less Structured
  - Notoriety and Fame “Just to Do It”
  - Hacking Economy

- System Compromise
  - Mainstream
  - GRP II & III

- System Control

- Worm

- Directed Corruption

- Concentrated DDOS

- Poisoned Data
  - Lose Confidence

- Directed Corruption

- GRP III
  - Nation States
  - Terrorist

- GRP II
  - Organized Crime
  - Competitors
  - Hackers for Hire
  - Activist

- GRP I
  - Mainstream
  - GRP II & III

- Probe

- DOS

- Disruption

- Sophisticated Injection

SANS SCADA Security Summit II
September 28, 29, 2006
Protocol Vulnerabilities

- No authentication amongst ‘isolated’ components
- Modbus/ICCP/DNP3 fully published and open for review
- OLE for Process Control (OPC)
Vulnerability Note VU#190617

LiveData ICCP Server heap buffer overflow vulnerability

Overview

LiveData ICCP Server contains a heap-based buffer overflow. This vulnerability may allow a remote attacker to crash the server.

I. Description

Inter-Control Center Communications Protocol (ICCP)

According to the LiveData ICCP Server white paper:

The Inter-Control Center Communications Protocol (ICCP) is being specified by utility organizations throughout the world to provide data exchange over wide area networks (WANs) between utility control centers, utilities, power pools, regional control centers, and Non-Utility Generators. ICCP is also an international standard: International Electrotechnical Commission (IEC) Telecontrol Application Service Element 2 (TASE.2).

ISO Transport Service over TCP (TPKT, RFC 1005)

RFC 1005 specifies how to run the OSI transport protocol on top of TCP/IP. In the layered protocol model, RFC 1005 is situated between the TCP and OSI transport layers.

LiveData ICCP Server and LiveData Server

LiveData ICCP Server records and transmits data to other control points in process control networks. According to the LiveData ICCP Server white paper:
Effects of Cyber on Critical Infrastructure

- Davis-Besse Nuclear Power
- Australian Sewage Release
- Worcester Airport
Understanding Exposure
Understanding Exposure

Three-Step Process

Components
- Network Comm.
- Operating Systems
- Applications

Vulnerabilities
- Advisories
- Exploit Code
- Advanced Tools

Mitigation
- Block
- Detect
- Workaround
- Fix
Identify Components

- Network Comm.
- Operating Systems
- Applications
Identify Vulnerabilities

- Advisories
- Exploit Code
- Advanced Tools
Identify Mitigations

- Fix
- Block
- Detect
- Work Around
Exposure

System Exposure

Components
- Network Comm.
- Operating Systems
- Applications

Vulnerabilities
- Advisories
- Exploit Code
- Advanced Tools

Mitigation
- Block
- Detect
- Workaround
- Fix

GAP
Experiences from Field Visits
# Evolution of IT Security vs. Control System Security

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>INFORMATION TECHNOLOGY</th>
<th>CONTROL SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-virus/Mobile Code</td>
<td>Common/widely used</td>
<td>Uncommon/impossible to deploy</td>
</tr>
<tr>
<td>Support Technology</td>
<td>3-5 years</td>
<td>Up to 20 years</td>
</tr>
<tr>
<td>Lifetime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outsourcing</td>
<td>Common/widely used</td>
<td>Rarely used</td>
</tr>
<tr>
<td>Application of Patches</td>
<td>Regular/scheduled</td>
<td>Slow (vendor specific)</td>
</tr>
<tr>
<td>Change Management</td>
<td>Regular/scheduled</td>
<td>Rare</td>
</tr>
<tr>
<td>Time Critical Content</td>
<td>Generally delays accepted</td>
<td>Critical due to safety</td>
</tr>
<tr>
<td>Availability</td>
<td>Generally delays accepted</td>
<td>24 x 7 x 365 x forever</td>
</tr>
<tr>
<td>Security Awareness</td>
<td>Good in both private and public sector</td>
<td>Poor except for physical</td>
</tr>
<tr>
<td>Security Testing/Audit</td>
<td>Scheduled and mandated</td>
<td>Occasional testing for outages</td>
</tr>
<tr>
<td>Physical Security</td>
<td>Secure</td>
<td>Remote and unmanned</td>
</tr>
</tbody>
</table>
General Findings

• Vendor default accounts and passwords
• Guest accounts still available
• SCADA use of enterprise services (DNS, etc.)
• No security level agreement with peer site
• No security level agreement with vendor(s)
General Findings

- Dynamic ARP tables with no ARP monitoring
- Unused software still on systems
- Unused services still active
- Writeable shares between hosts
- Direct VPN from off site allowed to SCADA
General Findings: Switches and Routers

- Like most systems, delivered wide open
- Network Administrators have little knowledge how to secure
- In most cases, DEFAULTS are NOT shown in configuration lists
- Enforced port security rare
General Findings: Firewalls

- Rules not commented
- Generic or Simplified rules
- Old/temporary rules not removed
- Rules exist, but nobody knows why
- Logging not turned on
- In some cases, firewall is subverted by direct connection
- Same firewall rules on corporate and internal network
General Findings: 
IDS – Intrusion Detection System

- New to control system environments (lack SCADA, DCS and PLC signatures)
- Not always employed at corporate level
- No budget or support for staffing and training
- Can not analyze encrypted traffic
General Findings: IPS – Intrusion Prevention System

- New to industry (in general)
- Not fully understood in many applications
- Difficult to employ at corporate level
- No budget or support for staffing and training
- Should not be deployed inside critical real-time system networks
Anatomy of an Attack
Typical Attack Steps

• Target Identification / Selection
• Reconnaissance
• System Access
• Keeping Access
• Covering the Tracks
Target Identification / Selection

• Dependent on the attacker

• How ‘accessible’ is your company?
  – Internet, media, etc. presence

• How much information is available through your vendor?

• Is your company/utility desirable as a target?

• How do your defenses compare to your neighbors?
Reconnaissance

• Mapping the target assets and resources
• Open Source Intelligence
  – External Web Site
  – Google (Internet) Searches
  – DNS Lookups
• Dumpster Diving
• Social Engineering
• War Dialing / War Driving
• Scanning
  – Asset/service discovery, network connectivity
• Insider Threat
Reconnaissance Example

• Picking on the U.S. Government
  – SCADA at Pearl Harbor
Shipping and payment details

Shipping and handling: **GBP 15.50** (within United Kingdom)
Buyer pays for all shipping costs

Shipping insurance:  **GBP 4.00** (Optional)

Will ship worldwide.

**Seller's payment instructions & return policy:**
Please make sure you put the auction #, & your name and address with all payments. Please NOTE. Failing to give the details above will slow the dispatch of your goods. Pay Via cheque Note cheques take up to 10 working days to fully clear. Postal Orders. Cash (via recorded delivery only) and @ senders risk. Payments via PAYPAL is excepted but must include the 20% + 5% surcharge as paypal fees are just costing to much.
System Access

• Use attack vectors discovered in reconnaissance phase

• Develop attack schemas leveraging weaknesses
  – Viruses and Worms
  – Email
  – Hostile Web Pages
  – Direct Attacks

• Repeat reconnaissance once on target network
  – Map internal assets
  – Map peer connections
Keeping Access

• Depending on goals, attacker may/may not care
• Escalation of privileges
• Account creation
  – Becoming a trusted user
• Password cracking
• Backdoors / Trojan Horses
• Rootkits
Covering the Tracks

- Physical damage
- Hiding files
- Log file modification / deletion
- Covert channels (loki, ncovert)
- Hiding activity
  - Altering operators view at HMI
Break
The Demonstration
Demonstration Exploits

• ‘Phishing’

• HTML HELP Local Code Execution Affects Microsoft Internet Explorer 5.5 SP2 - 6.0 SP1; CVE-2004-0380

• DNS spoofing

• Libpng Overflow (Linux) Released in early August 2004 Affects Linux based systems using libpng version 1.2.5 and earlier; CVE CAN-2004-0597

• SCADA Command Injection
Step #1
Web Browser / Email Exploitation
HTML Help Exploit
Step #2
Step #3
Step #4
Domain Name Service (DNS)
Domain Name Service (DNS) Spoof

- Local DNS
- Internet DNS Server

192.168.1.10 → 134.20.32.61

www.linux.org

10.4.4.10 → 134.20.32.61

134.20.32.61

10.4.4.10
Step #5

CONTROL SYSTEM NETWORK

Business Workstation
Database Server
Domain Name Server (DNS)

BUSINESS / CORPORATE NETWORK

Modem Pool
Corporate Firewall
Internet

Vendor Web Server

Attacker

SCADA Firewall

Email Server
Web Server
FEP
Engineering Workstation
Management Console HMI

PLC
RTU
Web Server
Web Browser Exploitation Infected Image Exploit
Step #6
Step #7

Internet
BUSINESS / CORPORATE NETWORK

Corporate Firewall
Domain Name Server (DNS)
Database Server
Web Server

Modem Pool

Internet

Attacker

FEP

CONTROL SYSTEM NETWORK

PLC

RTU

Engineering Workstation
Management Console
HMI

Data Historian
Email Server

Web Server

Modem Pool

Internet
Alternate Step #7
Mitigation Strategies

• Phishing
  – training/policy
• HTML Help exploit
  – updates and IDS
• ARP scanning
  – IDS
• DNS spoofing
  – no browsing from SCADA network
• Libpng buffer overflow
  – Updates and patches
• SCADA Command injection
  – Authentication for SCADA communications
The electronic arms race of cyber security

<table>
<thead>
<tr>
<th>Security</th>
<th>Most Likely</th>
<th>Worst Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>limit physical access</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Managers use a single</td>
<td></td>
<td></td>
</tr>
<tr>
<td>password for all routers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audit and fix bad TCP/IP stacks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Define strong passwords</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement awareness program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement firewalls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implement IDS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TBD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adversary</th>
<th>Trivial</th>
<th>Minimum effort</th>
<th>Moderate attacks</th>
<th>Extreme attacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opportunity</td>
<td>Hackers learn to eavesdrop</td>
<td>Simple packet injection attacks</td>
<td>Crack passwords</td>
<td>Inject “worms”</td>
</tr>
<tr>
<td>Theft</td>
<td>Hackers compromise routers to bypass walls</td>
<td>Man-in-the middle attacks</td>
<td>Use “social engineering”</td>
<td>Coordinated distributed denial-of-service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NextGen Attack</td>
</tr>
</tbody>
</table>

Adversary capability

Security capability

“Window of Vulnerability”
Other Attack Techniques
Other Attack Examples

• Password Cracking
  – Default or Simple Passwords
  – Short or Minimum Significant Characters
• Denial of Service
• Typical Flooding Attacks
  – Man-in-the-Middle (Dropping Packets)
  – Remote Service Crashes
  – Resource Consumption
    > CPU
    > Bandwidth
    > Disk Space
Other Attack Examples

- Vendor Specific Application Exploitation
  - Binaries with SETID bit
  - Command-line Parameters
  - Simple Reverse Engineering
  - Protocol Overflows
- Fragmentation Attacks
- Core Dumping Attacks
Other Attack Examples

- Remote Service Exploitation
  - Web Services
  - Uncrypted Services (telnet, rshell, rlogin, X11)
  - Database Management Systems (Database Attack)
  - Remote Procedure Calls (RPC)
  - Sendmail
  - Samba
The Myth

Vendor Says:
“Data only flows to the corporate Data Base”

IT Says:
“Traffic is not permitted through the firewall from the Corporate Data Base”
Communication Basics

- TCP is a reliable, stateful communications protocol
- Three-way handshaking
- There are no one-way communications with TCP
Firewall Exception – Database

Request

Response

Master Database

Slave Database

Internal SCADA Database

Replicated SCADA Database (DMZ)

Firewall Exception
TCP Port 3306 (MySQL)
Vulnerability Testing
Why vulnerability testing?

• Provides you with information on weaknesses
• Can detail what patches are needed
• Detects software not authorized by security plan
• Locate systems with auto-answer modems
• Provide a list of hosts and their operating system
Vulnerability Assessment – CIP-007 R6

The Responsible Entity shall perform a cyber vulnerability assessment of the electronic access points to the Electronic Security Perimeter(s) at least annually. The vulnerability assessment shall include, at a minimum, the following:

1. Modem and port discovery
2. Default account management controls
3. Security patch and anti virus
4. Result documentation and action plan
5. Minimal assessment for remote (unmanned) sites prior to upgrades
Security Vulnerability Testing

A security vulnerability scanner is software which will audit a given network of hosts and determine whether someone (or something – like a worm) may break into the hosts, or misuse them in some way.

- Nmap (http://www.insecure.org) - Nmap uses raw IP packets in novel ways to determine what hosts are on a network, what operating systems and versions they are using.
- Nessus (http://www.Nessus.org) – Checks systems and applications for known vulnerabilities.
- CIS benchmark kits (http://www.cisecurity.org) – A set of security configuration benchmarks used to audit a host for security settings.
- Many others available
Vulnerability Testing - Warning

- Only tests vulnerabilities they know
- May need more than one tool for complete test
- Only good for that moment in time
- Most corporations have rules against unauthorized use of these tools
- Should NOT be used on production networks
Training – A MUST!!!

- Your Hardware Vendors

- SANS http://www.sans.org

- Foundstone http://www.foundstone.com

- NIST http://csrc.nist.gov/ATE
Resources

• SANS.org Resources
  http://www.sans.org/resources

• Idaho National Laboratory
  http://www.inl.gov/scada

• Securitywizardry.com
  http://www.securitywizardry.com

• US-CERT
  http://www.uscert.gov
Break
Network Components and Architecture
A Packet in Time
What is the emerging risk to SCADA?

- Evolution of SCADA/PCS protocols is allowing for robust interconnectivity
- What as once isolated comms is now using open systems connectivity (like TCP)
- Future implications for DNP3, DeviceNet, UCA, ControlNet, Profibus etc.
Network Devices
Hubs, Switches and Routers

- Provide network communication
- Provide network routing
- Allow for multiple network paths
- Provide first level of defense
- Create Virtual Private Networks (VPN's)
- Enforce Access Control Lists (ACL's)
Firewall Functions

- Protect the inside from the outside
- Protect the outside from the inside
- Enforce Security Policy
- Track Network Activity
Firewall Rules

• Actions to be taken:
  – **Accept**: Allow the traffic,
  – **Drop**: Stop with no return to source,
  – **Reject**: Stop the packet and tell source

• Monitoring firewalls: Logs, IDS, TESTING

• Writing rules: best practices

• Data collection

• Use ‘whitelist’ connections
Firewall Placement Overview
Key FW ‘components’

- Deployed with the golden rule
  - That which is not explicitly allowed is denied
- Deployed with domain separation
- Monitor system events
- Protected audit trails that have been created
- User authentication before any action
- Self test capability
- Supports a ‘trusted path’ to users and a 'trusted channel’ to other IT devices
Concerns for SCADA and Firewalls

• Still no accepted standard (OS blanket / hard kernel)
• Trade off of speed/throughput vs. security vs. cost
  – How does risk factor into the decision?
• Erroneously deployed as lynch-pin of architecture
• Out of the Box (OOTB) modifications lead to:
  – Transformation of FW into router
  – FW becomes a simple proxy gateway
  – Broken on-stack DNS (Divulge internal naming structure)
• FW often introduce massive architecture rebuilds
The Common Wisdom

“Never mix your office LAN with your industrial-control LAN. They should be separated by a firewall, or at minimum, a bridge or router.”

The Ten Commandments of Industrial Ethernet,
B&B Electronics Manufacturing Company,
March 30, 2004
Misapplication of IT Security Assumptions

• There are important differences between IT networks and SCADA/PC networks
• Problems occur because IT assumptions may not be valid on the plant floor:
  – Valid types of outbound traffic;
  – The importance of web “customers”;
  – The protection from DoS attacks.
Firewall Conclusions

• Firewalls are complex devices that need a lot of careful design, configuration and management if they are to be effective.

• Firewalls are one line of defense, not our only line of defense.

• There is an emerging focus on FW for the SCADA domains
IDS Functions

• Are your firewalls doing their job?
• Are your company policies being followed?
• Are servers affected by malicious traffic?
• Are there mis-configured systems? (Data leakage)

Rule Sets

• Actions taken: notification, alerting
• Writing rules
• Data collection
• Monitoring IDS
IDS Placement Overview
Rule Strategy

Rule Set Should Build Upon Existing Rules

CAUTION: OLE for Process Control (OPC)
- HMIs assume field devices are COM objects
- Use of RPC for DCOM
- Windows XP SP2 can break OPC over DCOM
Adding SCADA Intelligence

- Agnostic Snort IDS rules for SCADA Protocols
  - Phase I – Modbus TCP, DNP3, OPC
- Data Dictionary for SCADA Application Logs
  - Phase I – 19 Events
- Funded by a DHS Research Contract
- Invited proposal for Phase II Research Contract

This work is supported by a contract from the Homeland Security Advanced Research Projects Agency (HSARPA)
NIDS vs. IPS Placement

Network A

Firewall

IDS

Protected Network

Network A

Firewall

IPS

Protected Network
Zones in Control Systems
Firewall Segmented DMZ

SCADA/EMS NETWORK

Historian DMZ

Web DMZ

ICCP DMZ

Historian

Web SERVER

Firewall

External Communications

Functional or Segmented Firewall

Dedicated External ICCP Links with other Entities

Dedicated External WEB Links with other Entities

VPN Tunnel

CORPORATE NETWORK

External Communications

ICCP Server

Firewall

External Communications
Defense in-Depth Security

1. Perimeter Controls – Internet & Corporate Perimeter
2. Access Control, People, Policies

Cyber Control
3. Network Architecture Components
4. Operating Systems
5. Host Security
6. Application Security
7. Core Operational Services
Common Sense for Control Systems

- ICCP links should only move ICCP traffic
- Secure critical clear text traffic
- Use static addressing instead of dynamic (e.g., host tables)
- Reconsider ICMP or other network management protocols on the CS LAN
- Update default parameters (e.g., account names, passwords)
- Remove unused services (disable ports)
- Restrict outbound traffic from Control LAN
- Use separate (secure) log servers for logging
  - Aggregate to a central (secure) location
- Dedicated policies for wireless and remote access (VNC etc.)
Layered Security Model
Break
NERC Mitigation Activities
NERC CIP
Security is a Never Ending Process

Proactive Security Model

CIP-002 R2, R3
CIP-005 R1

CIP-004-1 R2

CIP-008
CIP-009

CIP-003
CIP-006

CIP-007 R4
CIP-007 R8

CIP-002 R3, M3

CIP-002 R1, R2

CIP-005 R4

CIP-005 R8
2005 “Top 10” Vulnerabilities

Identified by the NERC Control System Security Working Group (CSSWG)
NERC Top 10 Vulnerabilities - 2005

1. Policies, procedures & culture governing control system security are inadequate and lead to lack of executive management buy in. In addition, personnel routinely ignore or lack training in policies and procedures to protect the control systems.

2. Poorly designed control system networks that fail to employ sufficient defense-in-depth mechanisms.

3. Remote access to the control system through means which do not provide identity control.

4. Prescribed system administration mechanisms are not part of control system implementation.

5. Use of wireless communication

These are not in any order of importance
NERC Top 10 Vulnerabilities - 2005

6. Lack of a dedicated communications channel for command and control in applications such as Internet based SCADA, and inappropriate use of control system network bandwidth for non control purposes.

7. Lack of quick and easy tools to detect and report on anomalous or inappropriate activity. Non existent forensic and audit methods.

8. Installation of inappropriate applications on critical systems.

9. Software used in control systems is not adequately scrutinized, and newer systems include extraneous vulnerable software.

10. Control systems data sent in clear text.

These are not in any order of importance
Preface

• The following mitigation strategies may be applicable to some electricity sector organizations and not applicable to others.

• Each organization must determine the risk it can accept and the practices it deems appropriate to mitigate vulnerabilities.

• If an organization cannot apply some of the technology suggested here, then other strategies should be applied to mitigate the associated vulnerability.
Three (3) levels of mitigation

- **Foundational**
  - Policy driven functions that are programmatic and leverage traditional non-IT activities

- **Intermediate**
  - Initial tactical programs that provide for the implementation of management direction using IT-based activities

- **Advanced**
  - Granular IT security activities that are supportive of foundational and intermediate goals, and may require expertise for deployment of specific technologies
Vulnerability 1 Mitigations

Inadequate policies and procedures governing control system security

- **Foundational**
  - Implement policies and procedures governing control system security. (ref: NERC CIP Standards)

- **Intermediate**
  - Share industry best practices in security policy structure and topics.
  - Enforce policies and procedures governing control system security.

- **Advanced**
  - Adopt a process for continuous improvement for implementation and enforcement of policies and procedures governing control system security.
Security Policy

- Corner stone of your network security!
- Empowered by technology
- Enforceable with management oversight
- Users need to know the whys
- Reviewed annually or sooner
- Recursive testing to validate policy
Effective Tools – How to Start?

There Is An Entire Set of Tools to Improve Industry’s Resilience and Security Posture
Policy Components

- Organizational Security
- Asset Classification
  - Documentation
  - Communications
- Personnel Security
- Physical Security
  - Doors, locks, guards, CATV
- Communications Management
- Access Control
  - LDAP, MS AD
- Systems Development
  - Applications
  - After-market technology
- Business Continuity
  - COOP
  - Resiliency
  - Business Continuity
- Compliance
  - SOX
  - NERC
Vulnerability 2 Mitigations

Poorly designed Control System Networks

• **Foundational**
  – Implement electronic perimeters. Disconnect all unnecessary network connections. (ref: Control System - Business Network Electronic Connectivity Guideline)

• **Intermediate**
  – Implement concentric electronic perimeters. Use autonomous networks with minimal shared resources between control system and non-control system networks.
  – Training: supply company’s best practices and guidelines to new employees, vendors, integrators.

• **Advanced**
  – Implement virtual LANs, private VLANS, intrusion prevention, anomaly detection, smart switches, etc.
Vulnerability 3 Mitigations

Misconfigured operating systems and embedded devices

• **Foundational**
  – Conduct inventory. Ensure sufficient training of personnel responsible for component configuration and maintenance.

• **Intermediate**
  – Evaluate and characterize applications. Remove or disconnect unnecessary functions.
  – Patch management process: Hardware, firmware, software. Maintain full system backups and have procedures in place for rapid deployment and recovery. Maintain a working test platform and procedures for evaluation of updates prior to system deployment. (ref: Patch Management Guideline)

• **Advanced**
  – Active vulnerability scans. (Caution: recommend use of development system so that on-line control systems are not compromised during the scan.) Disable, remove, or protect unneeded or unused services/features that are vulnerable.
Vulnerability 4 Mitigations

Use of inappropriate wireless communication

• **Foundational**
  – Establish a policy on where wireless may be used in the system.
  – Implement WEP.

• **Intermediate**
  – Implement 802.1x device registration.

• **Advanced**
  – Implement WPA encryption and 802.1x device registration along with unregistered device detection.
  – Use PKI and certificate servers
  – Use non-broadcasting SSIDs
  – Utilize MAC address restrictions
  – Implement 802.11i
Vulnerability 5 Mitigations

Use of non-deterministic communication for command and control

• **Foundational**
  – Implement defense in depth architecture (e.g., multiple firewalls between control network and other networks).

• **Intermediate**
  – Implement technologies to enforce legitimate traffic.

• **Advanced**
  – Authenticate and validate control system communication.
Vulnerability 6 Mitigations

Lack of mechanisms to detect and restrict administrative or maintenance access to control system components

- **Foundational**
  - Perform background personnel checks on employees with access to sensitive systems. Ensure vendors and contractors have implemented similar procedures.
  - Establish a policy for system access including password authentication. Change all default passwords. Do not allow unsecured modems.
  - Use VPN technology when the Internet is used for sensitive communications.
  - Ref: Securing Remote Access to Electronic Control and Protection Systems Guideline
Vulnerability 6 Mitigations – Cont.

Lack of mechanisms to detect and restrict administrative or maintenance access to control system components

• **Intermediate**
  – Define levels of access based on need. Assign access level and unique identifiers for each operator. Log system access at all levels. Implement network IDS to identify malicious network traffic, scan systems for weak passwords, separate networks physically.

• **Advanced**
  – Design access levels into the system restricting access to configuration tools and operating screens as applicable. Segregate development platforms from run-time platforms. Use multi-factor authentication (e.g., two-factor, non-replayable credentials). Implement protocol anomaly detection technology.
Vulnerability 7 Mitigations

Lack of quick and easy tools to detect and report on anomalous or inappropriate activity

• **Foundational**
  – Install monitoring technology, e.g., Intrusion Detection System (IDS) to log all existing and potential points of entry into the system. Preserve logs for subsequent analysis.

• **Intermediate**
  – Install anomaly detection, actively monitor logs.

• **Advanced**
  – Work with vendors to develop appropriate tools to identify inappropriate control systems traffic.
Vulnerability 8 Mitigations

Dual use of critical control system low bandwidth network paths for non-critical traffic or unauthorized traffic

• **Foundational**
  – Define critical network paths.
  – Restrict or eliminate non-critical traffic on the control network.
  – Segregate functionality onto separate networks (e.g., do not combine email with control system networks).

• **Intermediate**
  – Implement IDS to monitor traffic. Evaluate network traffic and control system point counts and polling rates. Reconfigure for optimal use of existing resources.

• **Advanced**
  – Update system technology to allow for higher bandwidth traffic. Separate critical and non-critical systems. Implement protocol anomaly and active response systems to enforce legitimate traffic.
Vulnerability 9 Mitigations

Lack of appropriate boundary checks in control systems that could lead to “buffer overflow” failures in the control system software itself

- **Foundational**
  - Actively monitor server status.

- **Intermediate**
  - Implement processes to automatically stop and restart services.

- **Advanced**
  - Enforce vendors' software development standards that incorporate secure software development techniques.
Vulnerability 10 Mitigations

Lack of appropriate change management/change control on control system software and patches

- **Foundational**
  - Maintain a maintenance agreement with software vendors for update notification and distribution. Define change management process.

- **Intermediate**
  - Establish a schedule of checks for system updates for all applicable software, operating systems, and component firmware. Implement version control system and enforce change management process.

- **Advanced**
  - Utilize a dual redundant or clustered system architecture that allows for rebootable updates without requiring system downtime. Actively scan resources to ensure security patches are installed. (Caution: procedures should be developed that will ensure online control systems are not compromised as a result of the scan.)
Interactive Exam Discussion
Open Discussion

Legacy Systems?

Questions?

NERC CIP?
For Information - Contact:

Email: scadasummit@inl.gov
Phone: 866-495-7440
Gary J. Finco: gary.finco@inl.gov
Off: 208 526-7048
Ethan Huffman: ethan.huffman@inl.gov
Off: 208 526-0660