Environmental Sciences Laboratory

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah

April 2005

Prepared for U.S. Environmental Protection Agency Region 8, Denver, Colorado Under Interagency Agreement DW89953767018 By U.S. Department of Energy Grand Junction, Colorado

Work Performed by S.M. Stoller Corporation Under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado Approved for public release; distribution is unlimited.

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah

April 2005

Prepared for U. S. Environmental Protection Agency Region 8, Denver, Colorado Under Interagency Agreement DW89953767018

> By U. S. Department of Energy Grand Junction, Colorado

Work Performed by S.M. Stoller Corporation under DOE Contract No. DE–AC01–02GJ79491 for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

Signature Page

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah

April 2005

Prepared By:

Stan J. Morrison, Manager Environmental Sciences Laboratory*

Reviewed By:

Tim Bartlett, Monticello Project Hydrologist

Approved By:

Art Kleinrath, Site Manager U.S. Department of Energy, Office of Legacy Management

*The Environmental Sciences Laboratory is operated by S.M. Stoller Corporation for the U.S. Department of Energy Office of Legacy Management, Grand Junction, Colorado

Contents

Execu	tive Summary	vii
1.0	Introduction	. 1
2.0	Costs of Mending Alternatives	. 2
2.1	Alternative 1: Ground Water Extraction and Treatment at the PRB	. 2
2.2	Alternative 2: Place ZVI in Borings	. 3
2.3	Alternative 3: Place ZVI in Borings Using Removable Canisters	. 3
2.4	Alternative 4: Jet Grouting	. 3
2.5	Alternative 5: Ferric Iron Injections	. 3
2.6	Alternative 6: Ferrous Iron Injections	. 4
2.7	Alternative 7: Dithionite Injections	. 4
3.0	Bench-Scale Testing of a Mending Methodology Using Injection of Ferrous Iron	. 5
3.1	Batch Tests of Uranium Uptake by Ferrous Iron	. 5
3.2	Column Test 1: Ferrous Iron Emplacement into a Column Containing Calcium	
Carl	bonate and Lime	. 6
3	.2.1 Experimental Methods	. 6
3	.2.2 Results and Discussion	. 7
3.3	Column Test 2: Ferrous Iron Emplacement into a Column Containing Bentonite	
Pret	reated with Sodium Hydroxide	. 9
3	.3.1 Experimental Methods	. 9
3	.3.2 Results and Discussion	11
3.4	Column Test 3: Ferrous Iron Emplacement into a Column Containing Monticello	
Allı	ivial Sediment	12
3	.4.1 Experimental Methods	12
3	.4.2 Results and Discussion	14
4.0	Conclusions	17
5.0	References	17

Tables

Table 1. Summary of Mending Options	2
Table 2. Results of batch tests of uranium uptake by suspensions of ferrous hydroxide	6
Table 3. Composition of ground water sample collected from well PW-17 on April 14, 2004,	and
synthetic PW-17 water used in column test 3 (mg/L)	14

Figures

Figure 1. Column Test 1. Experimental apparatus filled with solid phases	7
Figure 2. Column Test 1: Values of pH and ORP.	8
Figure 3. Column Test 1: Effluent concentrations of Fe and Ca, and inventory of Fe accumulate	d
in the column. Influent concentrations of Fe and Ca are 5,600 and 0.0 mg/L, respectively	9
Figure 4. Column Test 1: Photo of column after reaction with ferrous sulfate solution. Numbers	
in parentheses are (Fe; Ca) solid-phase concentrations in mg/kg1	10

Figure 5. Column Test 2. Values of pH and ORP. The influent index indicates the composition of
the influent solution for that period of the test column $(1 = 1N \text{ NaOH}, 2 = \text{deionized water}, 2$
3 = ferrous sulfate solution)
Figure 6. Column Test 2. Effluent concentrations of Ca and Fe, and Fe inventory for the ferrous
sulfate injection period. Refer to Figure 5 for explanation of influent index
Figure 7. Column Test 2. Column appearance after Fe^{2+} injection. Numbers in parentheses are
(Fe; Ca) solid-phase concentrations in mg/kg
Figure 8. Column Test 3. Experimental apparatus. Tubes in fraction collector contain effluent
from the NaOH injection; note the deep brown color due to humic material
Figure 9. Column Test 3. Effluent Fe concentrations, pH values, and Fe inventory in test column.
The influent index indicates the composition of the influent solution for that period of the
test column ($1 = 1N$ NaOH, $2 =$ synthetic PW-17 without U or Mo, $3 =$ ferric sulfate
solution, and 4 = synthetic PW-17 with U and Mo)
Figure 10. Column Test 3. Effluent concentrations of U in test column and control column.
Refer to Figure 9 for explanation of influent index
Figure 11. Column Test 3. Effluent concentrations of Mo in test column and control column.
Refer to Figure 9 for explanation of influent index

Appendix

Appendix A. Spreadsheet Calculations of Costs for the Seven Mending Alternatives Appendix B. Environmental Sciences Laboratory Notes

Executive Summary

In 1999, the U. S. Department of Energy installed an in-situ permeable reactive barrier (PRB) containing zero-valent iron (ZVI) downgradient of the former uranium milling site near Monticello, Utah. Soil-bentonite slurry walls are used to direct ground water to the PRB. The slurry walls extend south and north of the PRB and were designed to extend from the PRB to the valley walls; thus, directing the entire alluvial ground water system to the PRB. Unfortunately, some contaminated ground water is flowing around the south slurry wall. This project investigated methods that might be used to *mend* the gap on the south end of the slurry wall. Although not required as part of the Record of Decision, DOE is considering these alternatives that might be capable of supplementing the existing ground water remedial actions at the site.

An engineering cost evaluation was completed for seven mending alternative technologies: (1) ground water extraction and treatment at the PRB, (2) placing ZVI in borings, (3) placing ZVI in borings using removable canisters, (4) jet grouting ZVI, (5) ferric iron injections, (6) ferrous iron injections, and (7) dithionite injections. The net present values of the seven alternatives range from \$71,877 to \$137,000. The costs are somewhat similar and we conclude that selecting an alternative should focus on factors such as land use and likelihood of success rather than cost.

All of the technologies evaluated, except ferrous iron injection, had been bench-scale tested prior to this investigation. To fill the data gap, this project conducted batch and column tests of ferrous iron injection. Batch tests confirmed that ferrous iron minerals are capable of sorbing uranium from ground water. Ferrous hydroxide minerals were effective in sorbing uranium with distribution ratios up to 19,528 mL/g.

Three column tests were conducted with ferrous iron. In one column test, ferrous iron minerals precipitated from dissolved ferrous sulfate contacting hydrated lime, but did not precipitate upon contact with calcite. In another column test, ferrous iron minerals precipitated from dissolved ferrous sulfate contacting a commercial bentonite clay that we pretreated with sodium hydroxide. The goal of the pretreatment was to saturate adsorption sites with hydroxyl ions. In a third test, ferrous iron was emplaced in a column containing alluvial sediment collected from the Monticello site that had been pretreated with hydroxyl ions. The column treated with ferrous iron was able to sorb uranium and molybdenum from a solution with ionic composition similar to ground water at the Monticello site. A potential issue with ferrous iron injection is that it is highly soluble and may travel long distances before precipitating.

End of current text

1.0 Introduction

A permeable reactive barrier (PRB) is a zone of chemically-reactive material placed in the flow path of contaminated ground water such that contaminants are stabilized or degraded as ground water moves through the zone. An in-situ PRB containing zero-valent iron (ZVI) was installed downgradient of the Monticello site in 1999; it is a funnel and gate system with a three zone PRB. The furthest upgradient zone (the "pretreatment" zone) has 13 percent ZVI by volume mixed with pea gravel. Just downgradient from the "pretreatment zone" is a zone of 100 percent ZVI followed by the third zone containing 100 percent gravel and an air sparging unit.

Contaminated ground water flows through alluvium in the mid-portion of an erosional valley. The alluvium is underlain by low-permeability bedrock composed of siltstone and shale. The PRB is keyed into the bedrock to prevent ground water from underflowing the reactive material. Soil-bentonite slurry walls are used to direct ground water to the PRB and are also keyed into the bedrock. The slurry walls extend south and north of the PRB, and were designed to extend from the PRB to the valley walls; thus, directing the entire alluvial ground water system to the PRB. Unfortunately, despite the effort to key the slurry wall into the low permeability bedrock at the valley wall, some contaminated ground water is flowing around the south slurry wall. This project investigated methods that might be used to mend the gap on the south end of the slurry wall. Information from the investigation would be applicable to other PRB sites.

Seven alternatives were proposed for consideration in mending the PRB:

- 1. Ground water extraction and treatment at the PRB
- 2. Place ZVI in borings
- 3. Place ZVI in borings using removable canisters
- 4. Jet grouting of ZVI
- 5. Ferric iron injections
- 6. Ferrous iron (Fe^{2+}) injections
- 7. Dithionite injections

The use of ZVI for treating uranium (U) is well documented and requires no additional benchscale testing (Naftz et al. 2002). Jet grouting and bore hole fill methods of emplacement have been implemented at other sites and information is sufficient to establish a reasonable conceptual-scale cost estimate for these emplacements (Rumar and Mitchell 1995). Injection of ferric iron has been tested at bench scale and design parameters can be estimated without additional bench-scale testing (Morrison et al. 1996). Dithionite injection has been used at field scale to stabilize chromium contamination in ground water (Vermeul et al. 2002). Limited bench and field scale experience indicates that ferrous iron (Fe²⁺) will immobilize chromium, but no comparable data are available for U. Therefore, the bench-scale efforts in this study focus on evaluating Fe²⁺ to stabilize U.

2.0 Costs of Mending Alternatives

The following assumptions are made for all alternatives:

- 1. A ground water flux of 1 gpm is bypassing the slurry wall on the south; U concentration is 1 mg/L.
- 2. The mending remedy will need to function for 10 years. Thus, about 5.3 M gal of ground water need to be treated (~ 20 M liters). This corresponds to removal of about 20 M mg of U (equivalent to 20 kg or 44 lbs). Equivalent to 84 mol of U.
- 3. Depth to bedrock is 35 ft, 2 ft of saturation overlies bedrock, and the width of the bypass zone is 40 ft (DOE 2004)
- 4. Dissolved oxygen (DO) concentration of the ground water to be treated is 2.5 mg/L based on analyses from well PW-17.

Alternatives for mending the PRB are summarized in Table 1. The cost basis for the estimates is provided in the following sections. No monitoring wells are included in the cost analysis; it is assumed that the monitoring needs are the same for all alternatives. Costs include only direct subcontractor costs and labor for technical staff; additional costs for permitting, access, health and safety coverage, etc., are not included. Details of the cost estimates are provided in Appendix A.

Alternative	Net Present Value	Alternative Description
1	\$72,393	Ground water extraction and treatment at the PRB
2	\$90,313	Place ZVI in borings
3	\$77,678	Place ZVI in borings using removable canisters
4	\$137,000	Jet grouting of ZVI
5	\$96,764	Ferric iron injections
6	\$71,877	Ferrous iron injections
7	\$84,430	Dithionite injections

Table 1. Summary of Mending Options

This type of analysis involves many assumptions and the actual costs may vary considerably if the assumptions are inaccurate. Other than Alternative 4 (jet grouting), net present values for the alternatives are similar. Thus, the choice of alternative should be based more on a skilled assessment of technical feasibility and likelihood for success, rather than implementation costs.

2.1 Alternative 1: Ground Water Extraction and Treatment at the PRB

This alternative is discussed in the Focused Feasibility Study (DOE 2004). Three extraction wells are placed in the bypass zone and extracted water is pumped into wells of the PRB. The net present value of this option is \$72,393.

2.2 Alternative 2: Place ZVI in Borings

This alternative assumes that an array of 20 borings will be used. ZVI will be added to the borings through auger flights. Thickness of the ZVI is 10 ft. The net present value of this alternative is \$90,313.

2.3 Alternative 3: Place ZVI in Borings Using Removable Canisters

The costs of removable cartridges are based on a simple system involving placement of slotted PVC casings filled with ZVI within an outer casing. No attempt is made to assure continuity of the PRB, as is the case for Alternative 2.

More elaborate design concepts are presented by MSE (1997). At the time of the MSE report, no sites were using replaceable media and to our knowledge this is still the case. The authors of MSE (1997) believe significant issues would have to be overcome prior to commercialization of removable canister PRBs including: (1) fabrication methods, (2) size/weight restrictions, and (3) leaking surface seals.

We assume \$20K for design and fabrication of 10 canisters. We assume that the canisters will be changed out once during the 10 year period. Using these assumptions, the mass of ZVI and longevity are similar to the 20 borings used in Alternative 2. The net present value of this alternative is \$77,678.

2.4 Alternative 4: Jet Grouting

Jet grouting involves a substantial amount of heavy equipment. Mobilization and demobilization costs for a jet grouting demonstration at Cape Canaveral Air Station in 1999 was \$75K (Rust Environmental 1999). Mobilization costs for a jet-grouting demonstration at Travis Air Force Base in 2002 was similar (MACTEC 2002). It is assumed that smaller equipment can be located for the Monticello work because it is shallower in depth than these other projects; thus, mob/demob costs for Monticello are estimated at \$20K.

Based on the Travis AFB project that injected on 5-ft centers, 8 injection points are required to span the 40 ft width at Monticello. It is assumed that ZVI would be grouted in "thin diaphragm" style rather than "columnar" style due to the relatively small amount of ZVI required. For "thin diaphragms", grouting jets are opposed 180 degrees and the jetting pipe is not rotated as it grouts. This method leaves a thin slab of ZVI perpendicular to ground water flow. The net present value of this alternative is \$137,000.

2.5 Alternative 5: Ferric Iron Injections

Morrison et al. (1996) presented data on sorption of U by amorphous ferric oxyhydroxide (AFO). The study reported that about 0.024 kg of U are sorbed to 1 kg of Fe (as AFO). To remove 20 kg of U during the PRB mending period, about 850 kg of Fe (~2,500 kg of FeCl₃; 5,500 lbs; 2.8 tons) are required. The cost of ferric chloride delivered in liquid form is about \$500/ton (\$2.50/lb) of FeCl₃. The net present value of this alternative is \$96,764.

2.6 Alternative 6: Ferrous Iron Injections

Costing for this alternative assumes that Fe^{2+} will precipitate in the formation without the addition of hydroxide. The cost of dissolved ferrous sulfate delivered to Amarillo Texas was \$0.67 per pound of Fe, based on a quote from Kemiron Co., January 2004. Costing for Monticello assumed a delivered price of \$0.90 per lb of Fe.

We need to treat 20 M liters of ground water. Dissolved oxygen concentration in well PW-17 is about 2.5 mg/L; in 20 M liters of ground water, there is 1562 mol of DO (20 M L * 2.5 mg/L * 1/32,000 mol/mg). Each mol of DO oxidizes 4 mol of Fe so the ground water contains enough O₂ to oxidize 6248 mol (1562 *4) of Fe²⁺. This is equivalent to 350 kg (770 lbs of Fe). The amount of Fe²⁺ required to reduce the DO is 350 kg (770 lbs).

To reduce the U we assume a simple reaction:

 $UO_2^{2+} + 2 Fe^{2+}$ (solid) = $UO_{2(solid)} + 2Fe^{3+}$ (solid)

Thus, 2 mols of Fe is required to reduce 1 mol of U. To reduce 84 mols of U requires 168 mols of Fe^{2+} . 168 mols of Fe^{2+} is equivalent to 9.4 kg (21 lbs) of Fe^{2+} . Thus, we need a total of 791 lbs (770 + 21) of Fe^{2+} to treat 20 M gal of ground water. The net present value of this alternative is \$71,877.

2.7 Alternative 7: Dithionite Injections

Dithionite reacts with indigenous ferric iron to form Fe^{2+} which is then available to reduce U:

 $S_2O_4^{2-}(aq) + 2 Fe^{3+}(s) + 2 H_2O = 2 SO_3^{2-} + 2 Fe^{2+}(s) + 4 H^+$

Thus, 1 mol of dithionite ion produces 2 mol of Fe^{2+} . We require 791 mols of Fe^{2+} (see Section 6.0); thus, about 400 mol of $S_2O_4^{2-}$ are required. assuming 100 % efficiency. This is equivalent to 69 kg (152 lbs) of $Na_2S_2O_4$. Because the reduction process is inefficient, we will assume 300 lbs of $Na_2S_2O_4$ are required.

Sodium dithionite mixed with potassium carbonate is available at \$22,700 for 4300 lbs of $Na_2S_2O_4$ and 10,000 lbs of K_2CO_3 (in a volume of 4250 gal); based on a January 2004 price quote from John Anderson delivered to Amarillo, Texas. Cost per lb of contained $Na_2S_2O_4$ solution is \$5.28. This mixture was used by Pacific Northwest National Laboratory personnel for injections at the Hanford site and at other sites (Isaacs 2004). The purpose of the higher-cost potassium buffer is to ensure that pH remains high without causing significant deleterious impact to the clay minerals in the formation. Chemical in liquid form is delivered to the site in refrigerated trucks. The cost estimate assumes that dithionite is left in the ground and no extraction is needed. The estimate also assumes that there is sufficient reducible iron in the formation at Monticello to be chemically reduced by the injected dithionite.

Process monitoring costs are included, consisting of taking measurements during the injection and within a few days of the injection to help establish the effects of the installation.

Measurements include water levels, pH, oxidation reduction potential (ORP), conductivity, sulfate concentration, and iron concentration. The net present value of this alternative is \$84,430.

3.0 Bench-Scale Testing of a Mending Methodology Using Injection of Ferrous Iron

One alternative for mending the Monticello PRB is to inject Fe^{2+} into the subsurface. The goal of this remediation technology is to emplace immobile ferrous hydroxide minerals that are capable of sorbing or chemically reducing U from the ground water. The objective of the bench-scale testing was to evaluate the feasibility of various methods that might be used to emplace ferrous hydroxide into the subsurface.

Testing was conducted in four steps. First, batch tests were conducted to evaluate whether Fe^{2+} minerals are capable of sorbing U. Second, column tests were used to evaluate whether Fe^{2+} minerals could be emplaced by injection of dissolved Fe^{2+} into sediment containing carbonate or hydroxide minerals. These tests were conducted with "ideal" solid materials such as calcium (Ca) carbonate and Ca(OH)₂. The rationale for using "ideal' solids is to determine if Fe^{2+} emplacement is possible under the best possible conditions before attempting emplacement in the more heterogeneous conditions of the subsurface environment. Third, column tests were conducted to evaluate if a pre-injection of sodium hydroxide into a clay-bearing formation could condition the formation so that an injection of dissolved Fe^{2+} would successfully emplace ferrous hydroxide. Lastly, core samples from the Monticello site were used in a column test to evaluate the emplacement methodology and the efficiency of U and Mo uptake by the treated soil.

3.1 Batch Tests of Uranium Uptake by Ferrous Iron

Batch tests were conducted to determine if minerals, precipitated from dissolved Fe^{2+} are capable of sorbing U from ground water. A 0.1 M ferrous sulfate solution was prepared and 0.5 mL of concentrated sulfuric acid was added to ensure complete dissolution. The pH value and oxidation reduction potential (ORP) of the ferrous sulfate solution were 2.21 and 312 mV, respectively. Sodium hydroxide (NaOH) was added to the ferrous sulfate solution. The pH value increased to 7.58 and the ORP decreased to -624 mV as NaOH was added. A dark green precipitate (probably ferrous hydroxide) formed. The precipitate was concentrated into a suspension containing about 112 mg Fe per mL by centrifuging and decanting. Aliquots of ferrous hydroxide suspension were combined with U carbonate solution (2 mg/L U, 350 mg/L NaHCO₃, bubbled with helium gas to deoxygenate) and agitated end-over-end for 2 hours.

Some of the mixtures, particularly those with small amounts of ferrous hydroxide, turned red orange indicating they had oxidized due to leakage of laboratory air. Results are shown in Table 2. The ferrous hydroxide precipitant was effective in sorbing U with distribution ratios (R_d) up to 19,528 mL/g. A reactive material with an R_d of about 1,000 mL/g is believed to suitable for some PRB applications. Therefore, column testing was initiated.

Sample Number	Suspension Volume (mL)	Final pH	Final ORP (mV)	Final U (µg/L)	Sorbed U (µg U/ mg Fe)	R _d ^a (mL/g)
1	0	8.20	46	1858	na	na
2	0.25	7.00	56	717.6	1.62	1,407
3	0.5	6.72	58	126.6	1.24	6,073
4	1.0	6.20	56	20.9	0.66	19,528
5	1.5	5.51	58	31.4	0.43	8,613
6	2.0	4.80	59	118.4	0.31	1,627
7	2.5	5.81	<20	19.9	0.13	4,100

Table 2. Results of batch tests of uranium uptake by suspensions of ferrous hydroxide

 ${}^{a}R_{d}$ = Distribution ratio. Calculated as the concentration in solid phase [based on Fe(OH)₂] divided by concentration in dissolved phase.

3.2 Column Test 1: Ferrous Iron Emplacement into a Column Containing Calcium Carbonate and Lime

Column test 1 evaluated the feasibility of precipitating ferrous hydroxide minerals from dissolved ferrous sulfate contacting calcite (CaCO₃) or hydrated lime [Ca(OH)₂]. We hypothesized that ferrous hydroxide would precipitate because of an increase in the pH values from contact with CaCO₃ or Ca(OH)₂. Calcite is present in many subsurface sediments, including Monticello, and Ca(OH)₂ could be emplaced by injection.

3.2.1 Experimental Methods

A column (1.5-in. diameter, 18-in. long clear acrylic) was packed with 5 zones of different materials. From bottom to top, the materials are: (1) 4.0 in. of sand, mass 317.0 g, (2) 3.4 in. of sand mixed with 4.7 weight percent powdered calcite, total mass 281.9 g, (3) 4.0 in. of sand, mass 323.1 g, (4) 3.9 in. of sand mixed with 5 weight percent Ca(OH)₂, total mass 285.4 g, and (5) 2.5 in. of sand, mass 145.2 g. The sand is mostly quartz with some feldspar and was obtained from Unimin Corp. (product number 2075). Calcite and Ca(OH)₂ are powdered and were obtained from Aldrich Chemicals; product numbers 23-921-6 and 23-923-2, respectively. The filled column prior to conducting the test is shown in Figure 1.

The column and tubing was purged with nitrogen gas (N_2) to remove residual oxygen. A 0.1 M ferrous sulfate solution was passed through the column at 10 mL/min. About 0.5 mL of concentrated sulfuric acid was added to each liter of ferrous sulfate solution to ensure complete dissolution. The ferrous sulfate solution was continually purged with N₂ gas. Values of pH and ORP were measured with inline probes at the inlet and outlet of the column; these data were recorded every 30 seconds with a datalogger. Effluent samples were collected in glass test tubes on a fraction collector. The collection tubes contained nitric acid as a preservative. The samples were analyzed for Ca and Fe by atomic absorption spectroscopy [ESL Procedures AP(Fe-1) and AP(Ca-1); DOE 2005].

Figure 1. Column Test 1. Experimental apparatus filled with solid phases.

After the test was completed, the solid materials in the column were sampled. A composite sample was collected from each of the layers. The samples were digested in concentrated nitric acid in a microwave oven [ESL Procedure SE(MD-1); DOE 2005]. and analyzed for Ca and Fe by atomic absorption.

3.2.2 Results and Discussion

About 3.3 pore volumes (1.4 L) of ferrous sulfate solution was passed through the column. The acidic ferrous sulfate solution reacted with $CaCO_3$ and $Ca(OH)_2$ as it passed through the column. The influent values of pH and ORP were about 2.3 and 277 mV, respectively (Figure 2). Initial effluent values of pH were about 7.8 and the values decreased gradually to about 6.8 during the test. The effluent solution was strongly reducing as indicated by an ORP of about -400 mV (values may have been lower because -400 mV is the lowest value that could be read with the probes used in this test).

Figure 2. Column Test 1: Values of pH and ORP.

Calcium was dissolved and Fe was precipitated as the ferrous sulfate solution reacted with CaCO₃ and Ca(OH)₂. Effluent concentrations of Fe were less than the influent value (5,600 mg/L) until about 1.5 pore volumes of effluent (Figure 3). Subsequently, the concentrations of Fe were slightly higher than the influent values indicating that some Fe was being removed from the column. Green particles were observed at the column outlet indicating that some Fe was removed in particulate form. Nearly 1,000 mg of Fe had accumulated in the column prior to Fe being released (Figure 3). In a field application, this particulate Fe would probably be available for contaminant uptake.

Analysis of the column solid materials after the Fe^{2+} injection also indicates that Fe accumulated in the column. Dark green bands formed in the Ca(OH)₂ layer indicate the presence of ferrous hydroxide mineralization (Figure 4). The Fe concentration in the Ca(OH)₂/sand layer was 5,540 mg/kg compared to 1,290 mg/kg in the sand alone. The elevated pH caused by the Ca(OH)₂ caused the ferrous hydroxide to precipitate. Apparently, the pH increase in the CaCO₃/sand layer was insufficient to cause ferrous hydroxide precipitation as indicated by the lack of dark green color and low (1,430 mg/kg) Fe concentration (Figure 4).

These results suggest that a pH amendment, such as $Ca(OH)_2$, may be required to cause ferrous hydroxide precipitation in a field application. This result prompted the design of column test 2 (see next section) which used sodium hydroxide to condition clay minerals prior to application of dissolved Fe²⁺.

Figure 3. Column Test 1: Effluent concentrations of Fe and Ca, and inventory of Fe accumulated in the column. Influent concentrations of Fe and Ca are 5,600 and 0.0 mg/L, respectively.

3.3 Column Test 2: Ferrous Iron Emplacement into a Column Containing Bentonite Pretreated with Sodium Hydroxide

Column Test 2 evaluated the feasibility of precipitating ferrous hydroxide minerals from dissolved ferrous sulfate contacting bentonite clay that had been pretreated with sodium hydroxide. The goal of the pretreatment was to saturate adsorption sites with hydroxyl ions. Ferrous hydroxide precipitation is caused by interaction with the hydroxylated sites. In a field application, the subsurface would be saturated with hydroxide prior to injection of dissolved ferrous ions.

3.3.1 Experimental Methods

A column (1.5-in. diameter, 18-in. long, clear acrylic) was packed with 5 zones of different materials. From bottom to top, the materials are: (1) 2.5 in. of sand, mass 211.4 g, (2) 2.4 in. of sand mixed with 5.2 weight percent calcite, total mass 236.6 g, (3) 2.8 in. of sand, mass 212.6 g, (4) 5.0 in. of sand mixed with 9.2 weight percent bentonite, total mass 392.6 g, and (5) 4.8 in. of sand, mass 350.0 g. The sand is mostly quartz with some feldspar and was obtained from Unimin Corp. (product number 2075). The calcite is powdered and was obtained from Aldrich Chemicals; product number 23-921-6. The bentonite is "crumbles # 8" from Colloid Environmental Technologies, Co. (Arlington Heights, Illinois).

The column and tubing was purged with N_2 to remove residual oxygen. Three solutions were passed through the column: (in chronologic order) (1) 1.0 N NaOH, (2) deionized water, and (3) 0.1 M ferrous sulfate. About 0.5 mL of concentrated sulfuric acid was added to each liter of

ferrous sulfate solution to ensure complete dissolution. The ferrous sulfate solution was purged with N_2 to remove DO. Values of pH and ORP were measured with inline probes at the inlet and outlet of the column; these data were recorded every 30 seconds with a datalogger. Effluent samples were collected in glass test tubes on a fraction collector. The samples were analyzed for Ca and Fe by atomic absorption. Porosity of the column (420 mL) was determined by measuring the volume of water during filling.

After the test was completed, the solid materials in the column were sampled. A composite sample was collected from each layer. The samples were digested in concentrated nitric acid in a microwave oven and analyzed for Ca and Fe by atomic absorption spectroscopy.

Figure 4. Column Test 1: Photo of column after reaction with ferrous sulfate solution. Numbers in parentheses are (Fe; Ca) solid-phase concentrations in mg/kg.

3.3.2 Results and Discussion

A 1.0 N NaOH solution was passed through the column from 0.0 to 4.0 pore volumes to condition the sediment at high pH. Effluent pH values reflect the high pH environment (Figure 5). Deionized water was then passed through from 3.8 to 4.2 pore volumes. The purpose of the deionized water was to flush the tubing to prevent ferrous hydroxide from precipitating in the tubing during the ferrous sulfate injection. The inlet pH value decreased slightly due to the deionized water. A 0.1 M ferrous sulfate solution was then passed through from 4.2 pore volumes until termination of the test at 6.5 pore volumes. The effluent pH and ORP values decreased to about 6 and -400 mV, respectively, due to the ferrous sulfate injection (Figure 5).

Figure 5. Column Test 2. Values of pH and ORP. The influent index indicates the composition of the influent solution for that period of the test column (1 = 1N NaOH, 2 = deionized water, 3 = ferrous sulfate solution).

The Fe inventory in the column increased by about 1000 mg because of the injection of Fe^{2+} (Figure 6). Dissolved Ca concentrations increased to about 500 mg/L, probably due to dissolution of calcite. These results indicate that the process of treating with NaOH followed by ferrous sulfate is capable of precipitating ferrous minerals in the sediment.

Following the column test, sediment samples from the column were analyzed for Fe. The highest Fe concentration of 3310 mg/kg was found in the bentonite/sand layer (Figure 7). This result suggests that Fe mineralization occurred in proximity to hydroxylated bentonite. The results prompted us to conduct a column test using sediment collected from the aquifer at Monticello.

Figure 6. Column Test 2. Effluent concentrations of Ca and Fe, and Fe inventory for the ferrous sulfate injection period. Refer to Figure 5 for explanation of influent index.

3.4 Column Test 3: Ferrous Iron Emplacement into a Column Containing Monticello Alluvial Sediment

Column Test 3 evaluated the feasibility of precipitating ferrous hydroxide minerals from dissolved ferrous sulfate contacting Monticello alluvium that had been pretreated with sodium hydroxide. As before, the goal of the pretreatment was to create an alkaline environment by saturating adsorption sites with hydroxyl ions. Ferrous hydroxide precipitation is caused by contact with the hydroxylated sites. In a field application, the subsurface would be saturated with hydroxide prior to injection of dissolved ferrous ions.

3.4.1 Experimental Methods

A column (1.5-in. diameter, 18-in. long, clear acrylic) was packed with 1389 g of a sample of Monticello alluvium (Figure 8). A second column (control column) was packed with 1396 g of the same sample. The alluvium sample is a composite of core samples that were collected at 5 locations near the Monticello PRB. Two of the cores were collected about 20 ft from well PW-17 (south end of south funnel wall) and the other three locations were about 20 ft upgradient of the PRB near its center. The core material was air dried and sieved to less than 2 mm for use in the columns.

Figure 7. Column Test 2. Column appearance after Fe²⁺ injection. Numbers in parentheses are (Fe; Ca) solid-phase concentrations in mg/kg.

The experimental methods used for the test column and the control column were identical except for the solutions used. Four solutions were passed through the test column: (in chronologic order) (1) 1.0 N NaOH, (2) synthetic PW-17 ground water without U or Mo, (3) 0.1 M ferrous sulfate, and (4) synthetic PW-17 ground water with 1 mg/L each of U and Mo. The composition of synthetic PW-17 water is provided in Table 3. The only solution passed through the control column was synthetic PW-17 with 1 mg/L each of U and Mo. The columns and tubing were purged with N₂ to remove residual oxygen. About 0.5 mL of concentrated sulfuric acid was added to each liter of ferrous sulfate solution to ensure complete dissolution. The ferrous sulfate solution was continuously purged with N₂ to remove DO. Values of pH and ORP were measured with inline probes at the inlet and outlet of the column; these data were recorded every 30 seconds with a datalogger. Effluent samples were collected in glass test tubes on a fraction collector. The samples were analyzed for Fe by atomic absorption spectroscopy, for U by kinetic

phosphorescence analysis [ESL Procedure AP(U-2); DOE 2005], and for Mo by the ternary complex method [ESL Procedure AP(Mo-3); DOE 2005]. Porosity of the columns (420 mL and 400 mL for test and control columns, respectively) was determined by measuring the volume of water during filling.

Constituent or Parameter	PW-17	Synthetic PW-17
Sodium	140.00	141.53
Potassium	27.00	26.93
Calcium	300.00	298.66
Magnesium	64.00	29.88
Sulfate	730.00	748.41
Chloride	81.00	87.31
Nitrate	4.00	5.03
Inorganic Carbon	65.00 ^a	72.86
Uranium ^b	0.99	1.00
Molybdenum ^b	0.087	1.00
рН	7.00	7.00 ^c

Table 3. Composition of ground water sample collected from well PW-17 on April 14, 2004, andsynthetic PW-17 water used in column test 3 (mg/L)

^aCalculated from alkalinity using geochemical program PHREEQC (Parkhurst and Appelo 1999).

^bTwo compositions of synthetic PW-17 water were used: one without U or Mo, and one that contained 1 mg/L each of U and Mo (see text).

^cVaried slightly with time, continually adjusted with CO₂.

3.4.2 Results and Discussion

A 1.0 N NaOH solution was passed through the test column initially at a flow rate of 8.8 mL/min. Because of the large amount of fine-grained sediment, the inlet pressure increased and we reduced the flow rate in several steps to a minimum of about 3 mL/min. The NaOH flowed from 0.0 to 1.7 pore volumes to condition the sediment at high pH. Effluent pH values reflect the high pH environment (Figure 9). The effluent from the NaOH injection was dark brown indicating the removal of significant concentrations of humic material from the sediment (Figure 8). Synthetic PW-17 water without U or Mo was then passed through the column from 1.7 to 3.8 pore volumes. The purpose of the PW-17 water was to flush the tubing to prevent ferrous hydroxide from precipitating in the tubing during the ferrous sulfate injection. A 0.1 M ferrous sulfate solution was then passed through from 4.2 to 5.9 pore volumes, during which the effluent pH decreased to about 8 (Figure 9) and the ORP decreased to about –300 mV.

Approximately 4300 mg of Fe was emplaced in the test column during ferrous sulfate injection, but some of this was removed by the flow of synthetic PW-17 (Figure 9). The inventory of Fe appears to have stabilized near 3000 mg after about 15 pore volumes. The solid-phase Fe is likely some form of ferrous hydroxide mineral.

Figure 8. Column Test 3. Experimental apparatus. Tubes in fraction collector contain effluent from the NaOH injection; note the deep brown color due to humic material.

From 5.9 pore volumes through the termination of the test at 27.6 pore volumes, synthetic PW-17 water containing 1 mg/L each of U and Mo was injected into the test column at a rate of 2.3 mL/min. The same solution was passed through the control column at the same flow rate. In Figure 10, the effluent concentrations for the control column are plotted as if the injection of U-bearing water began at 5.9 pore volumes so that results from the two columns can be directly compared. Breakthrough of U occurs almost immediately for the control column indicating that the untreated Monticello alluvium has little sorption capacity. The Fe²⁺ treated column was able to maintain the effluent U concentration at a value less than 50 μ g/L for about 6 pore volumes before the concentrations of Mo remained less than the detection limit of 0.12 mg/L for about 12 pore volumes of Mo-spiked influent; whereas, effluent Mo concentrations for the control column increased soon after injection. Adsorption densitised are approximately 0.8 mg U and 1.6 mg Mo per g of Fe.

Figure 9. Column Test 3. Effluent Fe concentrations, pH values, and Fe inventory in test column. The influent index indicates the composition of the influent solution for that period of the test column (1 = 1N NaOH, 2 = synthetic PW-17 without U or Mo, 3 = ferric sulfate solution, and 4 = synthetic PW-17 with U and Mo).

Figure 10. Column Test 3. Effluent concentrations of U in test column and control column. Refer to Figure 9 for explanation of influent index.

Figure 11. Column Test 3. Effluent concentrations of Mo in test column and control column. Refer to Figure 9 for explanation of influent index.

4.0 Conclusions

Estimates of net present value for implementation of seven PRB *mending* technologies suggest that all seven are reasonably similar. Thus, if a technology is used at Monticello, the selection should be based more on the following issues than implementation cost: (1) likelihood of successful operation of the technology, (2) disruption to land owner and other stakeholder issues, and (3) ability to alter or amend the technology if unanticipated issues arise.

All of the technologies evaluated, except Fe^{2+} injection, have been bench-scale tested. To fill this data gap, this project conducted batch and column tests of Fe^{2+} injection. The tests showed that solid phase Fe^{2+} can be emplaced into sediment that has been pretreated with hydroxyl ion. The addition of Fe^{2+} increased the sorption capacity of Monticello alluvium for both U and Mo. One possible drawback of the method is that the Fe^{2+} remains somewhat soluble and may transport long distances in the subsurface. Thus, controlling the location of the reactive zone may be problematic.

5.0 References

DOE 2004. *Monticello Mill Tailings Site Operational Unit III, Final Remedial Investigation Addendum/Focuses Feasibility Study*, GJO-2003-413-TAC, January 2004.

DOE 2005 (routinely updated). *Environmental Sciences Laboratory Procedures Manual*, Manual STO 210, U. S. Department of Energy, Grand Junction, Colorado.

Isaacs, J., 2004. *ISRM Implementation*. Presentation made to the Hanford Technical Assistance Team March 2, 2004.

MACTEC, 2002. Demonstration of Columnar Wall Jet Grouting of a Permeable Reactive Treatment Wall, Travis Air Force Base Project Report Final, prepared for the Air Force Center for Environmental Excellence by MACTEC, Inc, Golden, Colorado, June 2002.

Morrison, S. J.; Spangler, R. R.; Morris, S. A., 1996. Subsurface Injection of Dissolved Ferric Chloride to Form a Chemical Barrier: Laboratory Investigations, *Ground Water*, v. 34, pp. 75-83.

MSE, 1997. *Methods for Replacement and/or Rejuvenation of Media in Subsurface Reactive Barriers*, Report HMP-28, prepared by MSE Technologies Application, Inc. for the U.S. Department of Energy, Federal Energy Technology Center, Pittsburgh, PA.

Naftz, D. L.; Morrison, S. J.; Fuller, C. C.; Davis, J. A., (eds.) 2002. *Handbook of Groundwater Remediation Using Permeable Reactive Barriers, Application to Radionuclides, Trace Metals, and Nutrients,* Academic Press, Amsterdam, 539 pp.

Parkhurst, D. L.; Appelo, C. A. J., 1999. User's Guide to PHREEQC (Version 2) -- A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, *Water-Resources Investigations Report 99-4259*, U. S. Geological Survey, 312 pp.

Rumar, R. R.; Mitchell, J. K., (eds.)1995. Assessment of Barrier Containment Technologies, A Comprehensive Treatment for Environmental Remediation Applications, prepared under the auspices of U. S. Department of Energy, U. S. Environmental Protection Agency, and DuPont Company, Available from National Technical Information Service (NTIS) Springfield, Virginia, 437 pp.

Rust Environmental, 1999. *Draft Final Report on Cape Canaveral Air Station Permeable Reactive Treatment (PeRT) Wall Pilot Study*, prepared for the Air Force Center for Environmental Excellence by Rust Environmental & Infrastructure, Greenville, South Carolina.

Vermeul, V. R.; Williams, M. D.; Szecsody, J. E.; Fructer, J. S.; Cole, C. R.; Amonette, J. E., 2002. "Creation of a Subsurface Permeable Barrier Using in Situ Redox Manipulation," <u>in</u> Naftz, D. L.; Morrison, S. J.; Fuller, C. C.; Davis, J. A., (eds.), *Handbook of Groundwater Remediation Using Permeable Reactive Barriers, Application to Radionuclides, Trace Metals, and Nutrients,* Academic Press, Amsterdam, p. 163 - 192.

Appendix A

/

Spreadsheet Calculations of Costs for the Seven Mending Alternatives

Mend	ing Option 1							Γ				
Optio	n 1: Ground water extraction and treatmen	nt at PRB										
Qty	Description	Crew	Daily Output	Labor Hour.	Unit	I	Bare Mat.	B	are Labor	Ba	re Equip.	Total
1.00	Mobilization and demobilization of drill rig	A3E	2.50	6.400	Ea.	\$	-					\$ 2,000.00
120.00	Well, domestic water, drilled in normal soil, 4" to 6" dia	B23	120	.333	L.F.	\$	-					\$ 3,000.00
3.00	Wells, pumps, installed in wells to 50' D, 2" submersible, 1/2 h.p	Q1	3.22	4.969	Ea.	\$	828.00	\$	292.80	\$	· _	\$ 1,120.80
120.00	Piping, not including excavation or backfill, class 160, 2" diameter	B20	685	.035	L.F.	\$	115.20	\$	85.20	\$	-	\$ 200.40
30.00	Well, domestic water, screen assembly, slotted PVC, 6" dia	B23A	126	.190	L.F.	\$	162.00	\$	117.30	\$	561.00	\$ 840.30
440.00	Piping, not including excavation or backfill, class 160, 6" diameter	B20	315	.076	L.F.	\$	3,168.00	\$	682.00	\$	-	\$ 3,850.00
100.00	Piping, subdrainage, perforated PVC, 6" dia	B14	300	.160	L.F.	\$	141.00	\$	305.00	\$	73.00	\$ 519.00
3.00	Valves, bronze, relief, 2" size, pressure, water, ASME, threaded	1 Plum	16	.500	Ea.	\$	91,50	\$	4.25	\$	-	\$ 95.75
3.00	Pipe, plastic ftngs, epoxy resin, fbgl reinf, gen svce, elb, 90<, 2"	Q1	33	.483	Ea.	\$	136.50	\$	36.90	\$	-	\$ 173.40
6.00	Pipe, plastic ftngs, epoxy resin, fbgl reinf, gen service, tee, 2"	Q1	20	.800	Ea.	\$	330.00	\$	123.00	\$	-	\$ 453.00
3.00	Fiberglass reinf epoxy, general service, couplings, 6"	Q1	10.10	1.584	Ea.	\$	114.00	\$	121.50	\$	-	\$ 235.50
350.00	Excavate trench, cont ftg, no sht/dewtrg, 1-4'D,3/8 CY tractor lder/backhoe	B11C	150	.107	C.Y.	\$	· _	\$	1,099.00	\$	511.00	\$ 1,610.00
350.00	Excavate trench, backfill trench, FE loader, whl mtd, 1 CY bkt, min haul	B10R	400	.030	C.Y.	\$	-	\$	325.50	\$	178.50	\$ 504.00
350.00	Excavate trench, for tamping backfilled trenches, air tamp, add	Al	100	.080	C.Y.	\$	-	\$	710.50	\$	203.00	\$ 913.50
4.60	Non-metallic sheathed cable, 600V, copper w/ground, #10, 3 conductor	1 Elec	1.80	4.444	C.L.F.	\$	223.10	\$	533.60	\$	-	\$ 756.70
1.00	Grounding, rod, copper clad, 8' long, 1/2" dia	1 Elec	5.50	1.455	Ea.	\$	15.85	\$	38.00	\$	-	\$ 53.85

16,326 6,530 22,857

Subtotal \$ 40% OH&P \$ Total \$

Page 1 of 2

Option 1: Ground Water Extraction and Treatment at PRB

Alternative Components and Basis of Estimate Quantity Capital Costs Construct PRB enhancement direct cost 1 lump sum in year 2005
 20% of total construction cost Construct PRB enhancement contractor oversight Decommission PRB & enhancement direct cost Decommission PRB & enhancement contractor oversight 1 lump sum in year 2015 20% of total decommissioning cost Annual Costs O&M (electricity, pump change-out, maintenance) 1 per year for 10 yrs Annual cost will occur for 10 years beginning 10/04. ltem Cost/Unit Cost per Item Unit Quantity Capital Costs Construct PRB enhancement direct \$22,857 lump sum \$22,857 11 3 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

	Decommission enhancement direct	lump sum	1	\$4,692	\$4,692	
	Construct PRB enhancement indirect	lump sum	20%	\$22,857	\$4,571	· · · · ·
	Decommission enhancement indirect	lump sum	20%	\$4,692	\$938	· · · · · · · · · · · · · · · · · · ·
_	Total direct capital costs					\$27,549
_	Total indirect capital costs					\$5,510
	Total capital costs					\$33,058
	Annual Costs					
	O & M (extraction system maintenance)	lump sum	1	\$4,000	\$4,000	
_						
	Total direct annual cost					\$4,000
	OH&P	lump sum	40%		\$4,000	\$1,600
	Total annual cost					\$5,600
_	Net Present Value					
_	Total annual cost				\$ 5,600	
_	* Present worth mulitplier				7.024	
-	Present value of annual cost					\$39,334
_						
_	Total capital cost					\$33,058
_						
	Net present value of alternative					\$72.393

Subtotal/Total

\$72,393

Place ZV	VI to Destant								
	v1 in Borings								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
<u>1</u> M	fobilization and demobilization of drill rig	A3E	2.50	6.400	Ea.	\$ -			\$ 2,000.00
700 D1	rilling 20 10-in borings to 35 ft.	B23	95	0.42	L.F.	\$ -			\$ 10,500.00
10 Pa	ack wells, ZVI @ 10 L.F. each well				Ton	\$ 7,363.13	\$ 1,800.00	\$ -	\$ 9,163.13
500 Ba	ackfill wells with sand (25 ft each)	B23	95	0.42	L.F.	\$ -	\$ 5,000.00	\$ 747.00	\$ 5,747.00

 Subtotal
 \$
 27,410

 40% OH&P
 \$
 10,964

Total \$ 38,374

			BOE
Assumed number of borings	20		Based on Focused FS
Average borehole depth	35	ft	Based on geologic cross sections
Volume of 1 boring, 10 in diam, 10 ft thick	5.45	cf	Geometry
Mass of 1 boring (180 lbs/cf)	981.75	lbs	Vol * density
Total mass of ZVI	9.82	tons	Mass of 1 boring * number of borings
Cost of ZVI	\$750	\$/ton	Recent communication with Peerless Metals, delivered cost -8 + 20 ZV.
Moh/Demoh	\$2,000,00	¢	Tim Based on resent drilling SOW
Drilling cost	\$2,000.00	Ф ФЛТС	Tim - Dased on recent drilling SOW
Labor to peak wells	\$13.00	3/LF	Thin - Based on recent drilling SOW
Labor to pack wens	\$1,800.00	\$	Dan - From Focused FS
Backfill wells	\$10.00	\$/LF	Tim - Based on recent drilling SOW
Backfill Equip	\$747	\$	Dan - From Focused FS
OH&P	40	%	Mary Jones 6/30/04 for FY05

Page 1 of 2

Option 2: Place ZVI in Borings

Alternative Components and Basis of Estimate Capital Costs Construct PRB enhancement direct cost Quantity 1 lump sum in year 2005 Construct PRB enhancement contractor oversight 20% of total construction cost Decommission PRB & enhancement direct cost *1* lump sum in year 2015 *20%* of total decommissioning cost Decommission PRB & enhancement contractor oversight Annual Costs O&M None 0 per year for 10 yrs Item Unit Quantity Cost/Unit Cost per Item Subtotal/Total . .

1	Capital Costs					
2	Construct PRB enhancement direct	lump sum	1	\$38,374	\$38,374	
3	Decommission enhancement direct	lump sum	1	\$36,887	\$36,887	
4						
5	Construct PRB enhancement indirect	lump sum	20%	\$38,374	\$7,675	
6	Decommission enhancement indirect	lump sum	20%	\$36,887	\$7,377	
7	Total direct capital costs					\$75,261
8	Total indirect capital costs					\$15.052
9	Total capital costs					\$90,313
10	Annual Costs					
11	O & M (extraction system maintenance)	lump sum	0	\$0	\$0	
12						
13						
14	Total direct annual cost					\$0
15	OH&P	lump sum	40%		\$0	\$0
16	Total annual cost					\$0
17	Net Present Value				· · · · · · · · · · · · · · · · · · ·	
18						
19	Total annual cost			1	\$ -	
20	* Present worth mulitplier				7.024	
21	Present value of annual cost					\$0
22						
23	Total capital cost					\$90,313
24						
25	Net present value of alternative					\$90.313

Optio	n 3 Mending		1							Γ		Γ	
Place	ZVI in Borings in Removable Cannisters									1		†	
		ļ	!										
Initia	Construction	L											
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare M	at.	B	are Labor	Ba	tre Equip.		Total
1	Mobilization and demobilization of drilling rig	A3E	2.50	6.400	Ea.	\$	-					\$	2,000.00
350	Drilling of boreholes	B23	95	0.42	L.F.	\$	-	\$	2,135.00	\$	7,175.00	\$	9,310.00
1	Design and fabricate cannisters				job								\$20,000.00
5	ZVI	1			Ton	\$ 3,681	.56						\$3,681.56
2	Mobilization or demobilization, truck-mounted crane over 75 ton. For ZVI changeout	A3E	2.50	6.400	Ea.	\$	-	\$	431.20	\$	64.90	\$	496.10

Subtotal \$ 35,488

 40% OH&P
 \$
 14,195

 Total
 \$
 49,683

INITIAL CONSTRUCTION			BOE
Assumed number of borings	10		Based on 50 % of the numbe
Average borehole depth	35	ft	Based on geologic cross sec
Volume of 1 boring, 10 in diam, 10 ft thick	5.45	cf	Geometry
Mass of 1 boring (180 lbs/cf)	981.75	lbs	Density * vol
Total mass of ZVI	4.91	tons	Number of borings * mass/b
Cost of ZVI	\$750	\$/ton	Recent communication with
Mob/Demob Drill Rig	\$2,000.00	\$	Based on recent drilling SOV
Drilling cost	\$15.00	\$/LF	Based on recent drilling SOV
Labor to pack wells	\$1,800.00	\$	From Focused FS
Backfill wells	\$10.00	\$/LF	Based on recent drilling SOV
Backfill Equip	\$747	\$	From Focused FS
OH&P	40	%	Mary Jones 6/30/04 for FY0
Cannister design and fabrication	\$20,000.00	\$	Stan WAG, Based somewha

	505
	Based on 50 % of the number of borings in Option 2
ft	Based on geologic cross sections
cf	Geometry
bs	Density * vol
ons	Number of borings * mass/boring
ton	Recent communication with Peerless Metals, delivered cost -8 + 20 mesh ZVI
\$	Based on recent drilling SOW
'LF	Based on recent drilling SOW
\$	From Focused FS
'LF	Based on recent drilling SOW
\$	From Focused FS
%	Mary Jones 6/30/04 for FY05
\$	Stan WAG, Based somewhat on MSE report

Repla	cement (Year 2010)								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
2	Mobilization or demobilization, truck-mounted crane over 75 ton. For ZVI changeout	A3E	2.50	6.400	Ea.	\$ -	\$ 431.20	\$ 64.90	\$ 496.10
1	New cannisters				job				\$3,000.00
5	ZVI				Ton	\$ 3,681.56			\$3,681.56

Subtotal	\$ 7,178
40% OH&P	\$ 2,871
Total	\$ 10,049

REPLACEMENT BOEs New cannisters

\$3,000.00

\$

Stan's WAG

Option 3: Place ZVI in Borings in Removable Cannisters

Alte	rnative Components and Basis of Estimate			Quantity		
Cap	ital Costs					
Con	struct PRB enhancement direct cost			1	lump sum in vear 2	005
Con	struct PRB enhancement contractor oversight			20%	of total construction	cost
Dec	ommission PRB & enhancement direct cost			1	lump sum in year 2	015
Dec	ommission PRB & enhancement contractor over	sight		20%	of total decommissi	oning cost
Ann	ual Costs			2070		ching cost
0&1	(ZVI change-out)			01	per year for 10 yrs	
Ann	ual cost will occur for 10 years beginning 2005			0.1	per year for to yis	
,	an oost mil ooda for to yours beginning 2000.					
Item		Unit	Quantity	Cost/Unit	Cost per Item	Subtotal/Total
1	Capital Costs					
2	Construct PRB enhancement direct	lump sum	1	\$49,683	\$49,683	
3	Decommission enhancement direct	lump sum	1	\$5,000	\$5,000	
4	Replacement in Year 2010	lump sum	1	\$10,049	\$10,049	
5						
6	Construct PRB enhancement indirect	lump sum	20%	\$49,683	\$9,937	

				+-,	++,+++	
4	Replacement in Year 2010	lump sum	1	\$10,049	\$10,049	
5						
6	Construct PRB enhancement indirect	lump sum	20%	\$49,683	\$9,937	
7	Decommission enhancement indirect	lump sum	20%	\$5,000	\$1,000	
8	Replacement in Year 2010 indirect	lump sum	20%	\$10,049	\$2,010	
9	Total direct capital costs					\$64,731
10	Total indirect capital costs					\$12,946
11	Total capital costs					\$77,678
12	Annual Costs					
13 (O & M (none)	lump sum	1.0		\$0	
14						
15						
16	Total direct annual cost					\$0
17 (DH&P	lump sum	40%		\$0	\$0
18	Total annual cost					\$0
19	Net Present Value	•				
20						
21	Total annual cost				\$ -	
22	* Present worth mulitplier				7.024	
23	Present value of annual cost					\$0
24						
25 7	Fotal capital cost					\$77,678
26						
27	Net present value of alternative					\$77,678
1 ² ' [ter present value of alternative			ļ		\$77,

Optio	n 4 Mending								
Jet G	routing of ZVI								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
1	Mobilization and demobilization jet grouting equipment				Ea.	\$-	-		\$20,000.00
80	ZVI injections				L.F.	\$-		3	\$ 28,000.00
8	ZVI cost				Ton	\$ 7,200.00		\$ -	\$ 7,200.00
0	Backfill wells	B23	95	0.42	L.F.	\$ -	\$ -		\$ -
								0.14.4.1	¢ 55.000

Subtotal	3	55,200
40% OH&P	\$	22,080

Total	s	77.280

	 ~ I			

Assumed number of injections	8	
Average borehole depth	35	ft
Mass of ZVI injected into each boring	1	tons
Total mass of ZVI	8,00	tons
Cost of ZVI	\$900	\$/ton
Mob Demob	\$20,000.00	\$
ZVI injections	\$350.00	\$/LF

BOE

Based on 2002 jet grouting project at Travis AFB Based on geologic cross section Based on scaled down version of that used at Travis AFB

Recent communication with Peerless Metals -30 + 70 mesh ZVI Based on 2002 jet grouting project at Travis AFB Based on Travis AFB

Option 4: Jet Grouting

 Alternative Components and Basis of Estimate
 Quantity

 Capital Costs
 1
 lump sum in year 2005

 Construct PRB enhancement direct cost
 20% of total construction cost

 Decommission PRB & enhancement contractor oversight
 20% of total construction cost

 Decommission PRB & enhancement contractor oversight
 20% of total decommissioning cost

 Annual Costs
 0

 O&M (none)
 0

Item		Unit	Quantity	Cost/Unit	Cost per Item	Subtotal/Total
1	Capital Costs					
2	Construct PRB enhancement direct	lump sum	1	\$77,280	\$77,280	
3	Decommission PRB enhancement direct	lump sum	1	\$36,887	\$36,887	
4						
5						
6	Construct PRB enhancement indirect	lump sum	20%	\$77,280	\$15,456	
7	Decommission PRB indirect	lump sum	20%	\$36,887	\$7,377	
8	Decommission enhancement indirect	lump sum	20%	\$0	\$0	
9	Total direct capital costs					\$114,167
10	Total indirect capital costs					\$22,833
11	Total capital costs					\$137,000
12	Annual Costs					
13	O & M (none)	lump sum	0	\$0	\$0	
14						
15			[
16	Total direct annual cost		(†			\$0
17	OH&P	lump sum	40%		\$0	\$0
18	Total annual cost	-1	i			\$0
19	Net Present Value		······		,	
20						
21	Total annual cost				\$ -	······
22	* Present worth mulitplier	1	· · · · · · · · · · · · · · · · · · ·		7.024	
23	Present value of annual cost					\$0
24		-	t	-		
25	Total capital cost					\$137,000
26						
27	Net present value of alternative		·			\$137,000

Optio	n 5 Mending								
Ferric	: Iron Injections								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
1	Mobilization and demobilization, drill rig	A3E	2.50	6.400	Ea.	\$-			\$2,000.00
140	Well, domestic water, drilled in normal soil, 8" to 10" dia	B23	95	0.42	L.F.	\$-			\$ 3,500.00
1	Process monitoring								\$ 2,000.00
5,500	Ferric iron (as FeCl3) injection				lbs	\$ 13,750.00	\$ 10,000.00	\$ 2,000.00	\$ 23,750.00
0	Backfill wells	B23	95	0.42	L.F.	\$ -	\$ -	\$ -	\$-

400/ OILSD 6 12 500	Subtotal	\$ 31,250
40% OH&P \$ 12,500	40% OH&P	\$ 12,500

	· · · · · · · · · · · · · · · · · · ·
Total	\$ 43,750

Number of wells	4	ea
Average borehole depth	35	ft
Mass of ferric chloride required	5,500.00	lbs
Cost of FeCl3	\$2.50	\$/lb
Mob/Demob	\$2,000.00	\$
Drilling costs	\$25.00	\$/LF

BOE Based on 40 ft of coverage Based on geologic cross sections Based on bench-scale testing Based vendor estimate Based on recent contracts Based on actual costs for LM

Assumes no extraction of sodium chloride water

Option 5: Ferric Iron Injections

Alternative Components and Basis of Estimate	Quantity
Capital Costs	
Construct PRB enhancement direct cost	1 lump sum in year 2005
Construct PRB enhancement contractor oversight	20% of total construction cost
Decommission PRB & enhancement direct cost	1 lump sum in year 2015
Decommission PRB & enhancement contractor oversight	20% of total decommissioning cost
Annual Costs	5
O&M (none)	<i>0</i> per year for 10 yrs

Item	n	Unit	Quantity	Cost/Unit	Cost per Item	Subtotal/Total			
1	Capital Costs								
2	Construct PRB enhancement direct	lump sum	1	\$43,750	\$43,750				
3	Decommission PRB enhancement direct	lump sum	1	\$36,887	\$36,887				
4									
5									
6	Construct PRB enhancement indirect	lump sum	20%	\$43,750	\$8,750				
7	Decommission PRB indirect	lump sum	20%	\$36,887	\$7,377				
8	Decommission enhancement indirect	lump sum	20%	\$0	\$0				
9	Total direct capital costs					\$80,637			
10	Total indirect capital costs					\$16,127			
11	Total capital costs					\$96,764			
12	Annual Costs								
13	O & M (none)	lump sum	0	\$0	\$0				
14									
15									
16	Total direct annual cost					\$0			
17	OH&P	lump sum	40%		\$0	\$0			
18	Total annual cost					\$0			
19	Net Present Value	·····							
20									
21	Total annual cost				\$ -				
22	* Present worth mulitplier				7.024				
23	Present value of annual cost					\$0			
24									
25	Total capital cost					\$96,764			
26									
27	Net present value of alternative					\$96,764			
Optio	n 6 Mending								
-------	--	------	--------------	-------------	-------	-----------	--------------	-------------	-----------------
Ferro	us Iron Injections								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
1	Mobilization and demobilization of drill rig	A3E	2.50	6.400	Ea.	\$-			\$ 2,000.00
140	Well, domestic water, drilled in normal soil, 8" to 10" dia	B23	95	0.42	L.F.	\$-	\$ 854.00	\$ 2,870.00	\$ 3,724.00
791	Injection of FeSO4				lb Fe	\$ 711.90	\$ 10,000.00	\$ 2,000.00	\$ 10,711.90
0	Backfill wells	B23	95	0.42	L.F.	\$ -	\$ -	\$ -	\$ -
								Subtotal	\$ 16,436

BOE

40% OH&P \$ 6,574

Total \$ 23,010

Mob and Demob of drill rig	\$ 2,000	\$	Based on recent actuals
Number of injection wells	4	ea	Based on 40 ft linear width
Average borehole depth	35	ft	Based on geologic cross sections
Mass of Fe required	791.00	16	Calculation based of DO and U content of PW-17
Cost of ferrous sulfate	\$0.90	\$/lb of Fe	Vendor data, delivered to Monticello

Assumes: Ferrous sulfate left in ground.

Option 6: Ferrous Iron Injection

 Alternative Components and Basis of Estimate
 Quantity

 Capital Costs
 1
 lump sum in year 2005

 Construct PRB enhancement direct cost
 20% of total construction cost

 Decommission PRB & enhancement direct cost
 1
 lump sum in year 2015

 Decommission PRB & enhancement contractor oversight
 20% of total decommissioning cost

 Annual Costs
 0
 per year for 10 yrs

Item	1	Unit	Quantity	Cost/Unit	Cost per Item	Subtotal/Total
1	Capital Costs					
2	Construct PRB enhancement direct	lump sum	1	\$23,010	\$23,010	
3	Decommission PRB enhancement direct	lump sum	1	\$36,887	\$36,887	
4						
5						
6	Construct PRB enhancement indirect	lump sum	20%	\$23,010	\$4,602	
7	Decommission PRB indirect	lump sum	20%	\$36,887	\$7,377	
8	Decommission enhancement indirect	lump sum	20%	\$0	\$0	
9	Total direct capital costs					\$59,897
10	Total indirect capital costs					\$11,979
11	Total capital costs					\$71,877
12	Annual Costs					
13	O & M (none)	lump sum	0	\$0	\$0	
14						
15						
16	Total direct annual cost					\$0
17	OH&P	lump sum	40%		\$0	\$0
18	Total annual cost					\$0
19	Net Present Value					
20						
21	Total annual cost				\$ -	·····
22	* Present worth mulitplier				7.024	
23	Present value of annual cost					\$0
24						ψ¢
25	Total capital cost					\$71.877
26						ф/ 1,0/ /
27	Net present value of alternative					\$71,877

Optio	n 7 Mending								
Dithic	nite Injections								
Qty	Description	Crew	Daily Output	Labor Hours	Unit	Bare Mat.	Bare Labor	Bare Equip.	Total
1	Mobilization and demobilization of drill rig	A3E	2.50	6.400	Ea.	\$ -			\$ 2,000.00
140	Well, domestic water, drilled in normal soil, 8" to 10" dia	B23	95	0.42	L.F.	\$-	\$ 854.00	\$ 2,870.00	\$ 3,724.00
1	Process monitoring				Ea.				\$ 10,000.00
300	Dithionite injection				Ib	\$ 1,584.00	\$ 600.00	\$6,000.00	\$ 8,184.00
· 0	Backfill wells	B23	95	0.42	L.F.	\$-	\$ -	\$ -	\$ -
								Subtotal	\$ 23,908

40% OH&P \$ 9,563

Total \$ 33,471

¢ 2,000	¢
\$ 2,000	Э
4	Ea.
35	ft
300.00	lb
\$5.28	\$/lb
\$2.00	\$/Ib
\$6,000.00	Ea.
	\$ 2,000 4 35 300.00 \$5.28 \$2.00 \$6,000.00

BOE

Base on actual costs Calculations for Pantex proposal (and data from the Handford site)

Tim's estimate

Calculations for Pantex proposal (and data from the Handford site)

Calculations for Pantex proposal (and data from the Handford site)

Assumes: Dithionite left in ground.

Option 7: Dithionite Injection

Alternative Components and Basis of Estimate Capital Costs Construct PRB enhancement direct cost Quantity 1 lump sum in year 2005 Construct PRB enhancement contractor oversight 20% of total construction cost Decommission PRB & enhancement direct cost *1* lump sum in year 2015 *20%* of total decommissioning cost Decommission PRB & enhancement contractor oversight Annual Costs O&M (none) 0 per year for 10 yrs

Item		Unit	Quantity	Cost/Unit	Cost per Item	Subtotal/Total
1	Capital Costs					
2	Construct PRB enhancement direct	lump sum	1	\$33,471	\$33,471	
3	Decommission PRB enhancement direct	lump sum	1	\$36,887	\$36,887	
4						
5						
6	Construct PRB enhancement indirect	lump sum	20%	\$33,471	\$6,694	
7	Decommission PRB indirect	lump sum	20%	\$36,887	\$7,377	
8	Decommission enhancement indirect	lump sum	20%	\$0	\$0	
9	Total direct capital costs					\$70,358
10	Total indirect capital costs					\$14,072
11	Total capital costs					\$84,430
12	Annual Costs					
13	O & M (none)	lump sum	0	\$0	\$0	
14						
15						
16	Total direct annual cost					\$0
17	OH&P	lump sum	40%		\$0	\$0
18	Total annual cost					\$0
19	Net Present Value	l	- <i></i>		l	· · · · · · · · · · · · · · · · · · ·
20			1			
21	Total annual cost				\$ -	· · · · · · · · · · · · · · · · · · ·
22	* Present worth mulitplier				7.024	· · · · · · · · · · · · · · · · · · ·
23	Present value of annual cost					\$0
24						φ0
25	Total capital cost					\$84 430
26						¢01,100
27	Net present value of alternative					\$84,430

Appendix B

Environmental Sciences Laboratory Notes

Batch Tests

EFFICIENCY LINE® 22-210

Ì

BATCH MPERT-02-05-01

}

	1		2	3	4	5	6	7	8	9	10	11	10	1.0
7/28/04	1 5	iartin	5 bance	-scale -	ests al	" Man	dine "	0 50	Die	1/11/	10 1			13
1030	2 Ber	nch - S	cal te	sts will	be une	A to d	aternia	er i p	- 12cgi	en VIII	Haul	Musho	vic) pra	ect
	3 H	20,	an in.	action of	dissol	word For	t and	40 12	a to	De cese	0 40	Stably	e U.	
	* the	30	ut an	of of the	shing	usall of	the Ma	A) alla		pop the	flow	qua	round	
	5			0,0	J	0	1.4	ner and	Pro,					
	6							GIÀ						
	7 Fin	st, L	ve will	detern	rine if	freshi	DOT	F. S.	15 Cook	hip of J		~ //		
	* Pri	pare	0.1	M Fetz	solution	from	Fr SOM a	THOLE	The II	46-500	yms u	$\rho \alpha$,		
	9	F4	=278.4	23 Thu	0 21.80	20/2	made	12,	DO. 1/2 FO	thus 27	802 1 in	5/00Fe	9.0 E	(a.)
	.0	Solu	ction is,	pale yello	w, Does	not de	ssolve 1	eadily	OH=3	46	Dal MAG	S. Ogie	1 1912	0H)2
	1								. ,					
	2			Fe	+2H20	= Felo	H) + 2	λH ^T	Thus it	should y	AKO 21	Mal has	L Dea.	
					ŗ				mol of	Fe Fo	r 100 m	40.	INEX	L.
1714	15 A.1				. .				should	use o	02 mo	base		
11.4	τ <i>ΗΟ</i> 4	xen o	-Smh q	CONC. F	12504 to	2			Using 1	ON Na	OH 10	mol L		
17.	1217 <	The	0.1 m	resoy.	BACK on	MAg. STil	R.;					L × 1000	r = 0.01	morph
(),	18	OIN I	5 2010	nger clo	udy. HA	sa ta	ent		Should	take 2	mL to pr	stall th	FEPT.	
	19	gu	een cae	r- Hippea	15 40 4	re in 3	olution.	°₽#=2,2(-		
	20	د مک	nc rss	by has r	1 2 36	(MNI2	8) ,							
	21	ú	2 agae	a 0.5m	× 1000	L X 30/	= 0.0	018 m.H	(will new	another	1.8 ml th	IONNO	OH	
	22	TUA AA	1 41 0	the all the	Cla .			-L	-	o neut	ruline	the stars	da)	
,,	23	word	<i>c</i> 660 2	erplace.	61000 S	opple in	Flask.			.1 . 15				
9129104	4 010C	53	alm E	SA Salat		SH	<u> </u>		TOTAL	NaOH =	2 + 1.8	= 3,8	mh	
	25	sli	sht and	ing sour	Allia	in clear	with							
	26	51.	$\mathcal{D}H = 2$	21 ARP	= 312		,							
. :	OT	26	aded In	L of ID	AL ALOA	H To	mad la	4	DI Is -					
:	18 070	28 A	lopeans -	to have	odissolo	1 Yoll	12 50/00	ARD-	Flakes,	Taced or	STIL pla	ve to sti	R.	
:	07:	34 1	aded In	L of 10	N Nad	4. For	red lat	and I	laber 3	PT = 2 =	Calden	All Co	- 1- 17	า
:	07	36 A	lppears.	to have	some (ox	diged?)	not.	7H= 5.	28 04	2P-54	Goldon u	jecow ()	KIUITEU:	
-	³¹ D74	5 A	dded Im	LION	NaOH.	GRAY	Opt. S.F.	cred.	SUSAM NI	57 0	all and	ucreasin.		
	074	6 8	ork green	n suspa	nsion.	ORP=-9	of of	+= 7.5B	no por nella	4. 0PD-	Kay les	n. Vl		
						dropp	ing		- 50	· / •/~~ -	ALOOPIN	(lest)		
				•	l l	-+0	un l	1			ې ۱۱	0		

-i

AMPAD - EFFICIENCY LINE® 22-210

BATCH MPERT-02-05-02 12 13 note: It appears that the very first ppt is oxidized, probably dece to Op dissolved in the DI. Appears to se only a very small emount of the Fe (OH)2 so will ignor it for now. 0805 Turned off STIR to settle. " 0850 make a manium solv w/ bicarborate. Use 50 mb/c C 12gC 14.3%6 Use Ort Jug 14 U. 10,000 mg/2 57D STADE HCO 13 50 mg le x 845 Ne ACB = 350 mg Na HCO3/2 $\frac{\partial m_{S} \mathcal{U}}{\mathcal{L}_{S} \mathcal{U}} + \frac{1000 \text{ mL}_{STD}}{10,000 \text{ mg}} = 0.20 \text{ mL} \text{ g} \mathcal{U} \text{ 5TD}$ 15 0914 18 Purging a solv w/ He to removed Do. 1124 20 B/c He purge CAPPEd Clask pH of a solw = 7.72 ORP = 54 mV 133522 Poured Felet)2 suspension into 4-250nc nalze. Centrifuged 1500 ppm for 30m. 142024 Decanted (pipetred) and transferred to 4-50mL Cent. Tubes. Centri Auged 3500 rpm for 20 min 150027 Decented and transferred to a 50 mL volumn About 12 lost (guess). This 28 SUSPENSion should have 5.6/50 = 0.112 gop Fe per mL. Added appropriate volumes of U-ACO3 solv and Feler), suspension in 50mL Cent. tubes (sec table).

AMPAD ' EFFICIENCY LINE® 22-210

1

BATCH

MPERT-02-05-03

	1	2	3	4	5	6	7	8	9	10	11	12	13
1 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7	vol e Fe 3452(m) 0,25 0,5 1.0 1.5 3.0 5.0	Vol. 64 Solucion 40 40 40 40 40 40 40	Total Yol (ni) 40 40:25 40:5 41 41.5 412 45	Final PH 8,20 7.00 6.72 6.20 5.51 4.80 5.81	Find (1) 46 58 58 58 58 58 59 40	Final 185B 717.6 126.6 20.9 31.4 118.4 19.9	SoczBed (4 (142) 45.44 69.19 73,46 73,02 69,35 73,42	Hugu (mg Fe 302BEO Density 1.62 1.24 0.66 0.43 0.31 0.13	× mocu/mate son sud <u>Jansay</u> 3.82 × 10 ⁻¹ 2.91 × 10 ⁻¹ 1.54 × 10 ⁻¹ 1.02×10 ⁻¹ 7.28 × 10 ⁻¹ 3.09 × 10 ⁻¹	44455	¥	Bosid or Loss of Lun til	l mo Fe Lely)
015:10 ¹² 13 14 15:43 ¹⁵ 16	Placed MEA-2 ALL Tube Lea	on end and M s MEN.	-0011- FN-3 (2-6,	end st very orc except	tin lenge (C the SmL	fidized (MEN-7)). ME are c	w-4 pa skidized	tialy c . The	cent. T	. Othe 45es m	rs moste	, Black
16:35 17:18 19 20	ALL Fe Removed D	OHZ tub MEN-1 e canted	e shou through 7 into fa) Disti 7 from bes. m	vit or stir. (reasured	Clation Centri Fug PH an	d 3500 O ORP	RAM for	20 min	1. M ea	ciored		
7/46 ⁻²² 22 9/30/04 ³³ 24 25	Preserv 0818 Tc	ed each Di <i>luted</i> , check	effleren 0.5 ml Fe centi	t w/ 0 of Fe & ent.	,30 mL H), 5 K MEN-	of conc pension 8	HNO3 to 20 Fe = :	0 m.L. 23.4 mg/	Added L	HnL H. 0.5→2	NO3 cone 00 DF=	 400	
26 27 28 29 30 31	Measune L	l Fe in	MEN-8	' = 23,4 23,7	mg/L mg/L off Acid	ter + fi cestar	Total Fe	in Su≡ in 200mL 9.365 x, 1€02	Pensiin = 22- 1.87g	= 9360 9.36 0.00 Should Jost	24-62 24-62 be 0.11 24-62	(23.47 9.36 mg. Imr. 23.11 2 G 0.	(400) 056g/mi 12 5/mc
											N2.	91-66 1030	

}

MPERT-02-05-04 BAtch - Calculations MEN-1 through MEN-7 Recovery from MEN-1. 1358 = 92.9% 40.25 ml × 1858 mg = 74.32 in 40 ml of a solution in 40 ml of a solution MASS OF UL in MEN-2 = (1988-717.6)46 + 40.25mL = 28.88 mg of U left in 30/12 74.32 - 28.88 = 45.44 ug sorbed $\frac{12 \text{ ug U}}{\text{mg Fe}} \times \frac{\text{mol U}}{238 \times 10^6 \text{ ug U}} \times \frac{56000 \text{ mg Fe}}{\text{mol Fe}} = (2.3529 \text{ e}^{-4}) 1.62 =$ 1.62 mg U In excel. monding - Batch Tests

Column Test 1

Mending Column 1

MPERT-02-05-05

9/30/04 Setting up column apparatus. Calibrate proces for data collection (Vernier data logger)

CH IpH(w)Probe = F9107, 2ht = 13.7812, 5lope = -3.7867CH 2pH(out)Probe = G9107, 2ht = 13.8631, 3lope = -3.8220cH 3ORP(iw)Probe = C3540, Iwt = -389.76, 5lope = 222.67cH 4ORP(iw)Probe = A05990-55, "cH 4ORP(out)Probe = A05990-55, "

10/1/04 Set up column 2" Accylic. Empty. Leak test and cleaning w/ 2% HNC3 (2 hiters). Running at 10 mc/min. Measureing pit and ORP of influent and effluent.

Time File Time Red tollect Pressure pH Time File Time Red Tube psi 12 ORP DATE 1 2 3 4 Comments 10/1/04 0800 00101-01 0 10 mL/nim Ø \mathcal{O} 1.82 - 350 -0802 1st influent to column. Stop Eff. collect. 0919 80.134 0,5 Column 75% Loud 10924 Added I L of milli-a (should chanse pH) (20530 - 35.1) Took PHOTOS of Setup. 0945 0937 0.8 1.86 449 432 - 15t out flow. Started Eff. frac. collector. 97-934 105.800 1 1 0953 113.101 1.9 1.94 1.76 430 445 1st free collected. 22 1004 125 3 ml/m Leaks. Decreased Flow 22 D/C System to stop leaks and determine why pressure is building ~1400 DIC Bystem QTZ/Felds ABP 14:17 Dissassembled column. Dried. Packed for test.

FROM Bottom: Lenste Wetly MATERIAl 4" 317.09 SAND. UNIMIN. Prod 2075. 75% retained on 20 nech (mediand) 33/8" 281.99 SAND. UNIMIN. Prod 2075. 75% retained on 20 nech (weight) 4" 323.19 SAND As Above w/ 4.790 W/W powdered calcite * (13.30, g calcule) 4" 323.19 SAND (as above) 37/8" 285.49 SAND W/ 5.090 W/W CalOHD2*. 2Y2" 145.29 SAND

Column1 MPERT-02-05-06

14:5) Finished packing column. TOOK photo of dry column. Punged column w/ N2 (2LPM for 30 min)

DO OB milli-Q miked w/ Fe 50y = 0.5mg/L

10/4/04 06 30 Started No pulge of source tank H20 (milli-Q to be used to make FeSO4 301N), and column + Tubing. 2 Lpm through each Data file is Octo4-01 (Logen Pro). Collecting inlet and outlet pH and opp at 30s intervals. Collecting samples 25m to drain, men 25 min collect. Placed 55.0049 Freder, 7420 (Fishers in 22 glass flower (0.1 m) Added Imc conc 45.504 and 2 L of Deory. water to Freder, Strated when Nr. Purged restor lines. Fe Purgens an space in source tank throughout test. Placed 300 all of cone. HNO3 in each tabe.

Dala TADLE	Land FR Pm		<i>a</i>		755	ъ.И	60.0	
DATE Time	file	Lobber	RATE	Lollect tube	(at milet)	1 2	2 4	Common on the
10/4/04 8:04	0004-01	0	230 milm	-			÷ -	Stort flow at 230-12 Start date addent
\$:06	(3.866	10m/h	-	1.0			Slows to 10 ml/m: Green S (abt) low
8:13		8.832	t i	سيس	1.0	2.29 -	278 -	the offer and them to the the case in the case is the case of the
··· 8:4		12.132	۴L	-	6.1	2.30		1st outflow form column
8:19		17.699	۰.	br Drain	1.0	2.30 7.68	279.259	Stant from collectur
8:20				Dran				First drive to free callector
8:22				ĩ		-		First tube collection
** 8:37		33.597	V	Ц	1.2	2.30 7.73	278 -389	Grappin on young Pillin disk of calling
∞े भ ः10	1	66.594	14 <u>.</u>	П	1.2	2.31 7.44	278 -389	Ravdom tubes and dark onen leben.
23 Upper :	sand is g	peen. Cli	early Fel	othe is ,	nosile to	some e	xtent.	the second se
9.58	i 14	113.922	10 million	20	1.2	2.31 7.14	277 - 389	
··· 10:32		148.083	i K	27	1.2	2.31 6.93	276-389	
™ <i>10:40</i>	D/ζ	System	- and a	oh Fesd	4			
14.7	• •	4			()			
18:35 SA	mpled.	Solids	(phote			- 		
τeρ /γ	MEN-C	1-55	Sand	laye	\sim			
5 es 5	MEXI-C	1-54	Lime .	layer			r 1.	T
	MEN-C	1-53	Sand	layer	the second	ome ove	nap b	eliveen laigers
	MEN-4	ci -52	calcite	e layer		SAMA	she som	L of each -tried to get
Bottom	MEN-	cl-sl	SAND 1	ayer	J		repres	entative sample from carl loyer

MPERT-02-05-07 Column 1 17:01 Cleaned out column. Running Milli-Q through system. File = Oct 04-02 Followed by 2 L of 5% HNOZ Sarah is deluting the affluents by DF=10. Separate notes. 19/5/04 Durged column and Tubes w/ 5% HNO3 followed by millio

Mending Experiments Column 1 MPERT-02-05-08 Ture 1 as Caller, c · Conogening A. 13 pale yellow, no largering tube pule yellow 1 2 345 as about med. yellow med igelow, dark hand 14 way iten toward top. ak geon as ak kelow 6 7 as4 de geen " pale yellow, no obvoious las pale exclore 8 · as 7 9 Very pale yellow, almost clear 9 Very mle sellow " Very pale @ listtom, dark hand 1/4 way up, faling to pale yellow 10 dark green Alcows 11 as 18 11 12 12 0010 13 13 2010 14 as10 14 15 15 as 10 16 16 as 10 17 17 as 10 18 18 as 10 19 19 as 10 20 00 10 20 21 21 as 10 22 22 as 10 23 23 00 10 24 24 as 10 25 25 as 10 26 26 as10 27 27 as 10 28 28 as 10 Subes had Holos added prior to collection Twee observed lie his after homogenization. no largning, se lighter in color, no alwrous 30 Julies had 10/5/04 31

Mendeng Experiments, Col 1 10/04/04 MPERT-02-05-09 Kecord appearance of legued in tilles. Cork and homogense. Sa mix easier and remain mixed. No apparent largening. 0/04/04 uples After homogeneration, take 3 ml split and place in 30 ml centripuge take that has 29 d conc. HNO3 - (0.6 ml). File to 30 ml vol. with nullag. Sumples are clear with 270 HNOS 10/05/04 Analyze samples for Fe, Ca, No matrix interference Sample Spike 11 Remaining undiluted paugles in test tubes allowed to pit out overright no layering. St. lightening of poln. No obvers orange exclation 12 29 30 31

Column Test 2

				Mendu	ns Col	iuma 2	MPERI-02-05-10
10 5 04	MATerials used (1) SAND - (2) Benton (3) Calcide	in columno Ci Unimine Produc nute - Colloid E (granular bent - powdered A	11 27 2075 4vironmonte onite) Harich 23-	75% retained 4 Technologie -821-6	1 m 20 5 CO., C	mesh. (Mell gr Liembles#8(Arl)	ained well sand) Ington Heights, SU).
	Fill MAI	121 AL <u>Thickwess (in.)</u> 434 5" 23/4 23/5 in 2.5 in,	Weight 1 357.0 34 392.6g 34 212.6g 3 236.6g 0 211.4 g 2	1247enial Toy WD WO/Bentonialo 3ANO ALCITE/SAND SAND BE	D Mt. Mi HTOm	otune 356.39 SANO Ntune 12.29 Calci	+ 36.35 bentonik (9.2% Benut) + 224.6g SANA (5.2% Concin
18 18 20 21 22 20 20 20 20 20 20 20 20 20 20 20 20	17:09 Cali Br pH++++ PH pt 94 Start colum 0630 Prime 0633 Start n	entre probes 4 4 4 4 4 4 1 2 3.98 1 1 1 1 2 1 1 1 1 1 1 1 1	7 12 7.00 10.1 7.06 10.1 Na OH Dolut TOG-01, olumn. 2	0 08 (10 (10 (10 (10 (10 (10 (10 (10	XPH3 XPH4 tch). collect	ORP20bell 179 184	

)

MPERT-02-05-10

Column 2 (mending) MPERT-02-05-	()
The line labor form of the labor former of the labor of	frec. coll.* Doce younded 20.5 mg/2 02 Dance, 5 ml 1-44j, 6 are mn 27,

10/7/04 1420 Sample C2 Solids (Photos) SAND, no clay red stain, top of column more Bentonite SAND (100K3 1ike some green clay) Calcite Jone 3 Clean (white) sand at Sase of column TOP MEN C2-55 MEN C2-54 MENC2-53 MENC2-52 MENC2-SI Bottom 23

)

.

Mending Column 2 mPERT-02-05-13													3
Files	Ī	· Vol	2 appear	ance m	Tabe	5	6	7	8		10 Monpalan , d	1.2	13
12	1	25 25	Cle	ai						and the south france of the second	ilear		
3 4	3	25 25											
56	5	25 25					-						
7 8	7	25 25							un a fai de la companya de la compa				
9	9 1.0	25 25								a de la constante de			
 2-	11	25 25							Angewant the work was have an				
13 14	13	25 25							- Caracteria de la compansión de	a - re minute state de la constance de la const			
15 16	15 16	25 25							- madom management				
17 18	17	25 25								an ite bandi ja ma kan			
19 20	19 20	25 25			2				rearrange and the second of the second				
21 22	21	25 25						ing and a second and		de salati demandada e ci i men			
23 24	23 24	25 25					- An and a second s			Con the Community and a Contract of the Contra			
25 26	25 26	25 25					rank a second to be a		nontawa kuto a kawa namoto ta	CONTRACTOR OF TRACTO		L P F B F F L	
27 28	27 28	25				н - -	na povorieli da se na		Construction of the second secon	ne anterine and a little of the			
29 30	29 30	16 4							All television protections	To compare the second se			
31	31	25		¥									
•							ı .	1	1	1	: ł	1	I

-

)

MPERT-02-05-15 Mending Columns - Fe extraction 10/8/2004 Twe pamples each from Cal's 12 Were obtained at the end of polition flow when columns were desassembled. Each was obtained to be a representative sample of each column segment. Supples chosen by S. Marison. Samples placed in Jans to an duy Autain 5g Aplit of lach of the following. Samples were sieved to 22mm (10 mesh) to disacquerate clump. Where was no residual >2mm for any sample. ¹⁰ Place 55 split in 200 ml Vol plask. Add a 50 ml of 2000 Huloz poln (VN). Alesewe ¹¹ expenseence. Once expensescence subsided file to Volume with 2003 Huloz sola. ¹² add magnetic star bar. Place on stir plate. Check pH of each with pH paper ¹³ all < 1. Start Atir bars at med-low greed. 1530 15 Place fas stopper in each voe pease. Theed on sticplate set so sticlians dont (day down - plainest each an maintain rotation 0830. Samples have stured over weekend. D/C stuliar 10/11 Decant a 100 ml from 200 vol flask into 125 ml malge. Filter = 30 ml pplit from pelse bottle 10/12 for analysis Fe, Ca 30

22-210 Mending - læach Collige Sample 1 - Gpenvercence MPERT-02-05-16 John Color 10/8 20 Solu Color Tol II Lette C1-513 Clear clean 52 53 54 55 At. cloudy Clear aggressive, frædiguicker, aggressive, fræded guicker, med. Cloudy yellow pale cloudy explored Sl orange pale clear fellows med. Cloudy Grange pale cloudy prance 11 Pule cloudy yellow 11 lf C2-51. Cloudy clearbulite med cloudy white clean Plight Very slight Very slight med. cloudy exclow pale cloudy exclow V. pale, pl. cloudy ingllow SZ20 med cloudy white V pile orange V pile orange 534 milky white Vpile orange V. pule upliite Clean ontiolis (Unimin Oce on Send) Clear V. Sl. cloudy 21 23 25 26 27 29 30 31

.

· · · ·

)

Compt	n Mian	denia	- 6	+	· .	<i>D</i>	1	1		MPERT-	02-05	-18	
		2 mgl	13 Co(mg)	lylla.	chim	erque.	d Nem	lls	Contract Parameters Allower And America and an and and and and and an		na na mili. Na na mili na mili na na mili na na na na na mili n Na na mili na mili na mili na na mili n		
$\frac{1}{2}$ $\frac{7}{1} - SI = 1$ $SZ = 2$ $SJ = 4$ $SS = 5$ $SZ = 7$ $SZ = 7$ $SZ = 7$ $SZ = 8$ $SY = 8$ $SY = 8$ $SY = 8$ $SY = 12$ $SZ = 13$ $SY = 15$ $SY = $	M	2 Control 19/11/1 119/11/1 42.8 150 0.27 144.5 0.04 144.5 0.04 0.00 0.46 131 628 0.20 634 0.31 0.31	12,14,17,14 5,1,2,14,56,47,165,02 1,2,3,1,65,02 1,2,3,1,65,02 1,3,2,4,56,47,1,65,02 1,3,2,4,56,47,1,65,02 1,3,2,4,56,47,1,65,02 1,3,2,5,9 1,3,2,4,56,47,1,65,02 1,3,2,5,9 1,3,2,5,9 1,3,2,4,56,47,1,65,02 1,3,2,5,9 1,5,5,9 1,5,5,5,9 1,5,	2	5	6	7	8	5	10	1.1	12	23
5 4 20 5 5 21 22 UM 38 UM 34 25 26 27 28 29 30 31	ML	0.58 0.27 <0.01 0.12	70.5 33.0 0.85 0.76										
	tr-frameworkshild						ta di la constanza da constanza d					strain and a second	

) •

_)

Column Test 3

66-6	10	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $)	2	22-210)	#1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Colt Col3	Novis-01	5 Corterts			MPERT-02-06-01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17 Time	Vloy time	» pH « OPP]	⁵ psi	Fluid	E 3 Event 10 11 12 13
1125 3.072 1314-219.3 2.5 restait flow, fraccollector drain prointo 52	11/15/04/ 1545 1557 1557 1557 1557 1557 1557 1557 1557 1557 1557 1557 1604 1557 1626 1604 1626 1626 1604 1626 1604 1626 1626 1604 1626 1651 1702 1838 1051 1838 1857 1857 1857 1857 1857 1857 1857 1857 1857 1857 1857 1857 1902 1902 1905 1857 1907 2019 1905 1857 1907 2019 1905 1905 1905 1907 2019 1052 1055 1055 2007 2	0.000 5.000 7.700 12,600 17.733 40.00 43.100 43.100 43.100 145.701 17.935 0.000 8.660 13,600 8.665 18.665 18.665 21.031 0.517 1.022 1.353 1.686 2.522 3.072	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14 192152519 14.15.19 122222222222222222 2022222222222 20222222	PW-17 Syn, NW-17 Syn, NOU, MO	KT outflow Awitch to INNaOH pource Date fire exclector Date fire exclector Date fire exclector Date fire exclector Date fire of the for flow cale. 23m/2.5min I flow to 2.5 ml/min INKKOH Atel these 1-3 for flow cale. 23ml/2.5min I flow to 2.5 ml/min INKKOH Atel these 1-20 End tube 1-12 End tube 1-28 posted hering hansferring NaOH topmelogin lestert data called. miss v2 min date note oraglows now pale cleauselow for post 5" end tube 1-36 Rote of a called to the flow of forter I and 1-38. Atel 1-39. Atel 1-39. Atel 1-40 D/c flow Ptart of a called to. Use PW17 pource. Ptart 1-43 Date 1-46 end 1-46. Start 1-48. Start 1-48. Start fulle 51- topping column. D/c flow tocel (atern p51) Nemore top Network flow, faccore drain pointo 52-

)

)]	
MPERT-02-06-02		#>

Coll		2 1							m	PERT-0	2-06-0	02	#Z
attelea	1ª Tune	flec, time	3 pH	* ORP	5 ρS1	Fluid	1 Que	IT	g	10	1.1	112	1-3
10446_01	1135	3.239	13.14	-219.66	2.8	PW-17	start	1-52- A	iete; oushi	ngair ni	NJ, refue	in colier	1.1.1
2	1155	15.572	13.14	-222.92	9.1		Plant	1-53 p	shingais	- moontfl	owe prot	es	
4	1255	4.577	13.18	- 200, 19	18.5	-	start	1-55 . G	upport he	presumed	, tier prol	e holder	sto resultine
5	1335	5.236	13.18	-196.29	120		ptart 1	456° P	nois ture	fuel			
6	1410	5.831	13.17	-194.66	1.2	589	Antes	to leni	refetop.		0.	6	
7	1420	5,994	13.16	-193.84	1.2		Start	1059.	e autor	" huidde	y Kotso	fines .	
8	1520	6.997	13.04	-194.39	1.4		start	1-62	u	ĸ	((L.	
9	15.50	7.500	12.96	-185.42	+ 1.4		end	1-63	u	11	u	UI UI	
11	1640	8.333	12.89	- 19.44	1.5		start	1-66	"	ι(.	ւ	м	
NOVIG_072	1745	0.167	12.80	-178/2	1:5	V.	ma t	nte	-68 4				
305 45 13	1805	0.500	12.77	-178.9	1.5	10.1 M	Atit	1-69		Istoffe	fter star	t ZFELOY	solu
(ollice 14	1912	1.608	12.62	-173.90	1.5		Filmel	+73	2			C .	
15	2138	4.050	10.45	-179,44	1.5		Thainah	ter 1-80					
15	2256	5.342	10.03	-189.77	1.6		END 1-	84					
17	-2357	5.874	9.79	-201.45	1.6		START /	- 86	();		20	hir elut	LIGUN UN
19	2357	6.307 SUÓN	4.58	1-217.21 Dug 17	1.6	V	END 1-8	77, Swite	hed to SUN	PW-17 + U	+Mo. SW	itched ti	ipeto source
11/17/04 20	0026	6.850	934	231 34	590 +	RATINA		0.01					
21	0636	13.017	8.09	-314-22	1.5	10-11-0/1	START	1-84	7.				
22	0736	14.183	8.08	-317.48	1:5		ILNO 10		F				
23	0916	15.683	8.06	-319.38	1.5		end 1-	115	10				
24	1026	16. 358	8.04	-319.65	[1.4		Slart 1	-119 .					
25	10 10	19.092	7.99	318,57	1.4		end l	-127	change to	30" diain	10" colle	et	
11/18/04 27	0829	28 892	7.80	- 311,21	1.4		and 1	- 13/					
28	1108	41.558	1.77	-310,42	1.2		Start 1	-156 ~					
29	1349	44.225	7.74	-311.55	1.0		START 1	164			***ergingen		
30	1748	48.233	1.10	-314.76	1.0		START 1	-170			- Problem (Martine Trans		
11/14/04 31	0919	63.733	7.70	-295.47	1.1		END 1-	193				- manufacture and the second se	
	1640	71.092	7.71	-282.16		Y	ENDI	204	STOPPO	0 tes	4		
	-	Survey 2 and						*					
											۱ <u>.</u>	3	1

)

#1 Col MPERT-02-06-03 11/10/2004 Prepare 20 L PW 17. No U added 11/12/04 Filled column w/ send from monticeles 11/15/2004 Quitial pH = 7.42 Quital DO = 7.52mg/L Donieters Calibrated. (See page 2) 13899 6,52 Start UHP Helium C 2 15 ml/nin 1100 = 1210, pH=7.42, Do - & 7.66 6.41 1 He to Kome/min 1225 pH=7.41 Do= 5.82mg/L 12401 pH 7.47 Do= 5, 86mg 12 7 He to 60 mc/min 132513 pH=7.51 DO=5.38 mg/L The to Sone/min 1340 pH 7.52 DO= 5,15mg/ A He to logme/min 1355 Change flowmeter to LPM Quittain ~ 1 Lpm 1423. pH=7.82 DQ= 1.33mg/L 14252 putrain Co, to porce tank @ 25 ml/min pH=7.74 1449 pH prince tunk=7.46 DO=0.56 mg/L + 15m//min 1455 pH Doulce tank=7.16

Col mpert-02-06-06 11/10/04/1237 Column appears to be running or. P=14psi Prove holder tilted to resultimente proves. No pulpow to tubes, but rate is ~2. Surfain 1300 restart Cor to pource tanke 10ml/min pH= 7.18 DO= 0.76 mg/L He still hubbling Fe SO4 Doln. alk of Pull7 pource tank 170, 175, 180 = 175 mgh as Calos 1B35 leakset to pressure gauge D/c flow-. Open calymon. Nemere ~ 3 opeons polids Use pinglag wire to prove, Itir remaining solids / liquid Replace col. top 1410 restant flow 1st tube will be 1-59 1420 DC Co, to Source pH=6.58 DO= 1.03 mg/L He still bubbling Fe Soy poln pump is pushing plug of air infront of soluinto Column. Probes well soon he out of cutflow. Rack Filted Dogaiclitate Dilemension when outflow restarts 518 Oulflowhas resumed - se nuclay, lots of fines Asurce tank pH still low 6.56 DO=1.04 mg/L He still bubbling FESO4 poln 1650 Keset frac collector @ and of 1-66 Dall 10" drain 10" collect. D/c flow of PW17 to Column. Reset grac collector (10° drain, 10° collect) New data file = Nov16_0. 100 hours, data point every 30 seconds 1735 Start Fesoy flow to column - 1st tile will be 1-69

Col MPERT-02-06-05 11/16 0840 Reprogram frae collector for 10" drain, 10" collect. Start with drain F tube 44, before 45 Bource tank 1.18 mg/CDO ptt= 6.85 V Conflow to ~10 m1/min note that outflow from column is dark amber. When restarting flow and changing back to fwit source tank, a small split was poured into beaker to prevent contamination of pource tank with Nach. arts the tube place in heaker, solve became cloudy white and ppt. gormed. Used solve in weaker x 15" to clear NaCH grom tubing. "Wipe tubing and place in large Total Vol I.DN NaOH through Column = 700ml-750ml Cale PV fill time 45", note set c 10 m1/min actual = 9.2 m1/min 1PV=414m/ 0940 DC cor to source tank pt = 6.77 DO = 0.82 mg/L DC He to source tank to mouto DI cube. ned Deexygenated the for FeSOx solu. 1035 Restart He to Anacetank. pH = 6.88 101.02 Prepare FeSOy pole add In/ concitegoy to deoxygenated water prior to FeSQ addition 1045 Top Column to let soil face back to bottom to fill gap. p>20psi Start felt soln (end of tube 57) 1107 DIC flow - Column plugged C 2.792 13.14 -24-51 Remove top to ck filter dear Remove ~ 75-100 mL soil = 3 spans.

.

Coll	MPERT-02-06-07 5 # 5	
1/10/04 19:05 4	pt of FeSOy source tank = 2.15 Tube 1-76 is the first to be relatively seek. She 1-76 there 1-80 an relatively of struct	. J. I
21:44 Co 21:46 Sr 22:19 A	all particulates of greenish material (Felet)?) flow through sampley live - being collected. Added 2mL of 10 000 malls Il to Pill 7 (540) Source tonk Stampler, live - being collected.	e enoucry
23:31 A 23:46 P	Initial pH = 6.50. Bubbled He. 22:41 pH = 6.82 22:50 dt = 6.95 U = 1055 m/L Added 20 mL of 1,000 m/L Mo to PULIT (SUN) Source TANK. Should give roughy Img/L mo	
23:57 23:57 11/1-104 pa.05	TUBE 1-37 Will be first to collect after switching to PW-17 + U + 740 Source TANK Switched tube to PW-17 SW + U + MO	
00:27 506:38	$\begin{array}{cccc} & & & & \\ & & & & \\ & & & & \\ & & & & $	
15 07:55 16 09:50 U	reset par collector e and of 1-111 measure vol of all tubes collected overnight. Acidipy + 1070 (200 me) = Haloz tubes 8	7-115
15 18 3:16 A	(tube 11) fibered & Gelman) (tube 11) fibered & Gelman) leset frac callector a end of 1-127 start 30" drain 10" callect. According lach	be107
22 22 1559 11/12/197 01270	pH source tank = 0:68 pH source tank = 6:68	
11/10/04-08:50 11/06 48/11:53	$pH source tank = 6.70$ $= 6.70 D/c CO_2$ $= 7.08 started co_2 r 2mc/rmi$	
12.74 14:45 14:50 14:50	ph source = 6.39 (Before adding new batch) Sampled Source ST 11-18 -14:45 Added 4L of SIN PW17+M0+11 to source tenth. pH (Acter)=2.00. he. He bubbling	
15:16 18:07 11/19/04 09:20	Source pH= 7.10. Do = 1.63 mg/L. Still bubbling visor ously. SAmpled ST-11-18-15-16 " PH=6.88 " pH=7.90 start CO2	
10:02 16:24 16:40	" pH=6.84 cut BACK COL ; Sampled ST ST-11-19-10:02 " PH= 7.28 Stopped TEST	

Col 1

Coll			MPERT-02-06-08
1 Vol	2 Cum Vol 3 Tinie	Reto PMI-MINE	(Cush)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.8 7.2 5.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7	Flow set 10 mL/min pop connection, loose voe ute column + Tlow to 2.5 me/min - 7 pressure Nolu clear

)

O

22-210 $(\cdot \cdot \cdot)$

Col 1

Vet lumble Hete $H(t=1) + N(t=1)$ Chamments m	lol 1			Time	Rate		r			m	PERT-02	-06-04	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n fer en	Vol	LumVol	3 Rate	1ª AV/1=) = PV (1=4+14) e	- Coum	4.4.10	19	110	1.2.1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-17 1	7	338	2.5	2.8		1	John	Clear	<u> </u>				123
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	7	345						COCC					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-18 3		352											-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-19 5	7	3/1											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	7	373											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-20 "	7	380				Adda Tana and							
$ \begin{array}{c} 1-21 & a & 7 & 394 \\ 1-22 & a & 7 & 401 \\ 1-23 & a & 7 & 422 \\ 1-23 & a & 7 & 422 \\ 1-24 & a & 7 & 424 \\ 1-24 & a & 7 & 426 \\ 1-26 & a & 7 & 443 \\ 1-26 & a & 7 & 443 \\ 1-26 & a & 7 & 468 \\ 1-28 & 7 & 497 \\ 1-29 & a & 7 & 506 \\ 1-30 & a & 7 & 513 \\ 1-31 & a & 7 & 534 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 555 \\ 1-30 & a & 7 & 548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 555 \\ 1-30 & a & 7 & 548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 555 \\ 1-30 & a & 7 & 555 \\ 1-30 & a & 7 & 548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 555 \\ 1-30 & a & 7 & 555 \\ 1-30 & a & 7 & 5548 \\ 1-32 & a & 7 & 548 \\ 1-32 & a & 7 & 555 \\ 1-30 & a & 7 & 555 \\ 1-30$	8	7	387								Armen environment			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-21 9	7	394											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	7	401											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-12 II	7	408											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-1 7 13	7	415											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	7	429											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-24 15	7	436											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	7	443											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-25 17	7	450											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-210	7	457				The second s							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	7	404											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1-2.7 22	7	478							a na a com		21 21. 14. 20. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	7	4-85											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-2-8 23	7	492				ur y Britanijova za sa							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	-	499											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- 19 25	1	500											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-30 27	7	510			-		tore for the second				2.00 million		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	7	527											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1-31 28	7	534					The second s		under an and a second se				
1-32 31 7 548 drain 7 555 1 1.32	30	7	541						weighted allowed		,	MC/W V Audio	er "li a breanne	
drain 7 555 J. J.	1-32 31	7	548			1.32		• Temperadulatility water	ni () Vi Vi V					
	drain	7	555		V								+	
					and the second	NCT NEWWORK				C. The second action			Weak T- Child	

)

C)

)

22 210

Col1	
------	--

·)

3

	1.Vol	CumVol	time	1ª Rate	5PV(1=414)	6	Comm	ents	l a	110		1	
1-33 1	7	562	2.5	2.8			Adam.	cleard				1	13
2	7	569	2.5					Caro					
1-34 3	7	576	2.5				4	Ч					
4	1	583	2.5										
1 23 5	7	570	2.5				ઘ	4		a management of the second			
1-36 1	7	591	2.5				. (
5	7	607	25				V. pale i	fellow	outflow	5		Concession of the Indexes	
1-37 9	7	618	2.5					ω	-	and a sub-			
10	7	625	25				V. pale	yelon					
1-38 11	7	632	25				Vale						
12	7	639	2.5				, pale	gellow					
1-39 13	7	646	2.5				V. DADO	100001)		ni v reducerent de			-
14	7	653	25				1	- Success					
1-40 15	7	660	2.5	\vee			V. pile	vellow	F /DC,	low to l	olumn.	Sitover	idelit
1	1	661	2.5	0.4				0	, -l			1, , , , , , , , , , , , , , , , , , ,	- Joe
/~ + /		662	2.5	0.4			Restart	E AWIT	Sourcet	ank d	ack am	ber out	Flow
1-42 19		660	2.5	0,4			4	(
20		665	2.5	0.4			dkam	per					
1-43 21	2	667	25	0.4			du	1.					
22	3	670	2.3	1.2			ar an	per					an sea an
1-44 23	4	674	2.5	1.6			de an	he					
24	14	1088	10	1.4			un um						
1-45 25	24	712	10	2.4		7	dr. ann	here	10-10	1100100	£	1.	
26	24	136	10	2.4				, we		Coule			
1-46 27	24	160	10	2.4			Vaark	ampe					
28	24	184	10	2.4			, , , , , , , , , , , , , , , , , , ,					Rode - State	and a fund
/- 4 / 29	17 12	807	10	2.3			coffee	- colore	d				
1-42 31	23	80	10	2.3	200		vu	. /					
			10	1 , 9	2.06		<u> </u>	и					
and the second se				Phana									

}
))
Vol Cum Vol T diain 23 876 1-49 23 899 23 922 1-50 23 945 20 965	ine Rate PV(1=4,14) 0 2.3 2.3 2.3 2.3 2.3 2.0	MPERT-02-06-11 Comments:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.5\\ 1.3\\ 1.2\\ 0.9\\ 0.6\\ 1.5\\ 2.2\\ 1.5\\ 0.6\\ 0.8\\ 0.9\\ 1.0\\ 1.5\\ 1.0\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	Dk. flow to column (between 51; 52 colle ct) then les pushing air pushing on ant air nate ok - air outflows to resultmenge probes column pressure 7 column pressure 7 Dk flow restarted, flow hesting flow pushing air, dk coppee color dk cappee color, pushing air
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 2.3 1.8 1.8 2.3 2.3 2.3 3.17	1/2 coppee colored, 1/2 fines Auspended fines throughout, air out, resubm """"

MPERT-02-06-12 Comments Te (mg/L) 1.

15

	Vol	Cumvel	Time	Rate	PV (414)		Conn	onto				Sala 1
1-64	23	1337	10	2.3			Auspe	nded	fines	no sett	tleng	re (mgil
1-65	23	1383		23			١(4	ų į		
1-66	23	1406		2.3			t y	- - -				
1-67	23 23	1452		2.3						Ŷ		•
1-68	23 73	1498		2.3			11		• 1 1 1 1 1			•
1 - 69	23	1544					Atart	flowog	FESOY Sa	In to cou	umn	; ; ;
	23	1590					IST tu	be offa	fter pta	it of Fe	JOY Sols	Ų
1-70 M	23	1613 1636			And the second sec		and a second s	- Linear		- - 		
1-71 ==	23	1659							a a constante de la constante d	-		
1-72	23	1705							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•	
1-73 18	23	1751			i i companya i i kata kata		n e contra de la					
1-74 ax	23	1797									• • •	
1-75 ==	23 23	1820						- 	•			
1-76 ==	23 23	1866 1889						- 	*			
1-77 .	23 23	1912 1935						2 2 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2	•		2 !	11-9
1-78	23	1958 1981					Part	n fulia	Tolui			4-1
1 79	23	2004					ear 1	b'anes	conce	ous gines		56.4
1-11	- 13	10-21	\mathbf{V}	\mathbf{V}		ta an ta						216

MPERT-02-06-13 Vol Comments CumVel Time Rate PV(1=414+) 2.3 Fe (my12) ((ugh) mo (my12) 1-80 1-81 23 1-82 1-83 1-84 1-85 1-86 1st tube powitch to puked ST 1405 1-87 20.12 1-88 1-89 1-90 2556 =0.12 1-91 2160-2020 1-92 1710 2020 21 1-93 1-94 20.12

- -

)

(6)

)

MPERI-02-06-14

1-95	Vol 23	Cum Vol 2763	Time 10	Rate	PV(1=414	\rightarrow					Fe(ing li)	u (ug/2)	Mo(mg/L)
	23	2786	1								1065		1
1-96	23	1809		-			-				920	26.6	
1-97	23	28.55					:				815		· · ·
1-98	23	2901						-			680		40.12
1-99	23	2924			2 4 4			i .t					
· / /	23	2970		1	a commente de la comm						617.5		
1-100	23	2993									522,5	27.5	
1-101 24	23	3039						:	1. 		101	· · · ·	
1 1 4 2	23	3062									504		
1-102	23	3085			and a second	and a more than the second			•		434) •	40.12
1-103	23	3131							4		399		100 M
1-104 10	23 23	0154 3177							1		365	70 2	
	23	3200						-			Jes	00,1	the sources
1-105 21	19 23	3223									338		
1-10625	23	3269	_		2 2 2						295		20.12
1-10720	23	3315			- - - - -						292		
1-108	23	3361									268	28.5	• •
1-109-20	23	3384							-				
1 10 1	23	3430									254		
1-110	23	3453	\bigvee	\downarrow						:	2:38		40.12

Ŧ

MPERT-02-06-15 Vol CumVol Time Rate Comments Fe (mg/4) (1 (ug/2) Mo (mg/2) 3499 2.3 1-111 3545 1-112 30.0 1-113 1-114 40.12 1-115 U= 33. Lug /2 1.336 after start of ST 33.2 164 1-116 1-117 1-118 20.12 1-11900 1-1200 130.5 34.2 1-12/22 126.5 1-122 122.5 20.12 1-12-320 118.5 23 1-12-420 U= 37.6 mg/L 1.7 L after Start of Apriled ST316 4120 4143 1-125 23 4166

(8)

	-16	2T-02-06	MPE		· · · · ·				ć	
Mo (041 20.12	U(ugpe)	Fe (mg 14) 106.5		Comments	PV (1=41++)	Rate 2.3 n.4/n	Time 10	CumVol 4189 4212	Vol 23 23	1-12-6
		103.5					10	4235	23	1-127
	40.1	iains 99.5	lector for 30"d	Abset frac col			20 10	4327	23	-12-8
	10.1	93					30 10	4396 4419	69 23	29 2
							30	4488 4611	69	е О я
40.12		88'7	•				30	4580	69	30
		82					10 30	4603 4672	69	5) 13 12
	50.9	79					10	4695	23	32 20
		76					30 10	4787	23	′33 15
1 to		7-					30 10	4856 4879	69 23	18 34 17
20.12		17					30	4948	69	18
		69.5					10 30	4471 5040	20 69	31 C. 20
n	89.7	68					10	5063	23	136 22
		65	2 2				30 10	5155	23	137 23
							30	5224 5747	69	24 138 25
20.12		61.6					30	5316	69	20
		59,6					10 30	5339 5408	20	139 27 28
	148.7	58.2					10	5431	23	140 20
		528					30 10	5500 5523	23	~[4] =x
		90.0			tana sa		30	5592	69	

	17	ERT-02-06-	MPE				Coll
> Mo(my/) (l (org/L)	(englis)		Comments	e Rate PV(1=414+ 2.3 n4/m	Cum Vol Time 5615 10	-142 23
						5687 30 5707 ID	-143 23
		54,6		• · ·		5776 30	69
• •	197.3	53				5+41 10	69
		50.6		•		5991 10	1-145 23
			•			5960 <u>30</u> 5983 10	1-146 23
20.12		48.4				6052 30	69
		46.4				6075 10 6144 30)-197 23
	243.4	45.2				6167 10	1-148 = 23
		141.				6236 30 6259 10	1-149 23
		$\varphi_{II}\varphi$				6328 30	69
20.12		43.6			2	6351 10 6420 30	-150 17 25
í ·		42				6443 10	1-151 23
•		101				6512 30 6535 IN	1-152 23
	291.0	40.6				6604 30	69
		38.2				6627 10	-155 33 2 3 26 69
0.14		37.8	-			6719 10	1-154 23 23
		711				67 38 30	1-155 23
	•	56.6		х — - -		6980 30	69
	337.5	35.2				6403 10 6972 30	-136 20 2J
• •	4	34				6995 10	-157 33 23
······································				en politika (* 1997) – politika (* 1997) – politika (* 1997) 1. julija – Januar Maria, kaj se	\downarrow	7067 30	69

MPERT-02-06-18

e i mula	Vol	CumVol	Time	RATE	ΡV	Comments				Fe(mg/L)	Ulugh)	Malmaka
1-15.8	23	7087	10	2.3 ml/m	Þýn	a di a Antonio				33.2		C.17.
1-159	67	7179	0							-7	-	
	69	7248	30							32.2		- - -
1-160 -	23	7271	10			-				2 - 7	2011	
ء ب ب ا	69	7340	30		: :		· ·			20.1	084.1	
1-161 -	23	7363	10		: :					30.3		
1-160	64	7432	30			:						
1 162	α	7455	10							29.2		0.14
1-163	.23	4527	>0			:						
1 10 2	69	7616	30		•					28.3		
1-164	23	7639	10		•			-	y	772	1100 1	
2.4	69	7708	30				÷			21.2	422.1	1
1-165 18	23	7731	10			1				265		:
1.17	69	7800	30								•	
1-166 2	23	7823	10			1				26.8		0.18
1-167 10	.13	1015	10			- - -		ŧ.			- -	
20	69	7984	30							22.6	- - -	
1-168 24	23	8007	10							2.1-7	1100 00	-
22	69	8076	30			e al c	:			24.1	756.5	· .
1-169 23	23	8099	10							239		
1-170	69	8168	30							- 517		
/ / / / / 25	x) 60	8141	10				- -			23.4		0.20
1-171 27	23	8283	50						2			-
28	69	8352	30				:			22.6		-
1-172=	23	3375	10							12.2	100 7	7
30	69	3444	30							00.6	490.4	
1-173**	23	8467	10				and the second se			21.2		4
	69	8536	30	V			i kan na Shariba Bir mi kaza da yazar I)	 A state of the sta
		agis dela si da g				na na serie de la companya de la com	an construction	- And an and a local			1	2 - -
												i.

n

)

(n)

MPERT-02-06-19

(12)

)

1 1-1-1	Vol	CumVol	Time	RATE	Pr	Com	ments				(mgl)Fe	U(Hglz)	Ma (mg/L)
1-114	23	8557	30	2.3 milmi							20.8		0.22
1-175	22	-3020 QL 51	-0		2 2 -		1		*		:		•
	69	\$720	30			•					20.2		•
1-176	23	3743	10					1		ł	100	and an	
	69	9812	30		2 					•	1918	510.5	
1-177	23	8835	10								19.7-		
	69	8904	30								1/1-		
1-178	23	5927	10					1000 C 1		and and a second s	18.8		0.38
1170	69	9196	30		2 1 2 7								0. 5
1-179	23	9019	10						1		18.2		
1-1871	07 .) 3	9080	20		4								1
	69	9180	30							and the second	17.7	528.7	
1-181	23	9203	10		20 1		rent de la companya de			1	1.0		
2.8	69	9272	30		1 1						16.9		
1-182 ==	23	9295	10					1.1 University of the second second			16.8		0 26
10	69	9364	30										City
1-183 10	23	9387	10								15.8		
20	69	9456	30		4 9 9								
1-139 21	23	94 19	10								15.4	563.8	
1-185	67	9540	30							•			
100	-69	9640	30						2	; ; ;	14.0		•
1-186 ==	23	9663	10			1					11/ 2		
2.8	69	9732	30			i	8. 				14.6		0.48
1-187	23	9755	10				÷.			1	12.8		
23	69	9824	30						1		1510		
/~188 ==	23	9847	10			1		2 3	:		13.7	559.8	
1-106	64	9416	30			í P				• •	;		
1187	22	9434	10		and the second second	ta Sangaran sa sa sa					13.0		2
	69	10008	30	₩¥									
11													

) .

MPERT-02-06-20

	Vol	Cum Vol	Time	RATE	PV	Co.	mment	ŝ		Feling (L)	U (augle)	Mo(mall)
1-140	23	10031	10	2.3 ml/min						12.7		0,44
1-101	07	10100	<i>26</i> 10									,
	69	10192	30							12.2		, ,
1-192	23	10215	10						-	119	EE2 1	
	69	10284	30							11.7	229.1	
1-193	23	10 307	10				-		5 	11.7		•
0	69	10376	30						-			-
1-144	23	10399	10			ran along		1	1	10.9		0.62
1-105	67	10468	20									
1 175	69	10441	30							10.8		
1-196	23	10583	-0 10							10 7	mand	
24	69	10652	30						1	10.7	530.4	1 1 1 1
1-197 =	23	10675	10					-		10.5		2 1 1
100	69	10744	30					1		10		
1~148	23 60	10767	10						•	10.2		0.46
1 - 100	69 12	10836	30							0		U .
1 199 12	75 69	10857	10			and the second se				9.9		
1-200 ==	23	10920	10	and the second sec						Q -	1-1-1	
22	69	11020	30					4 3 1	i. j	7.5	041.1	2 1 2
1-201 20	23	11043	10							95		2
a.) }	69	11/12	30					; ;	-		- - -	:
1-202	23	11 135	10					2 - -		9.2		0.62
1-202-	69	11204	30					: ; ;			2 	
1-205	60	11221	10							8.8	•	•
1-204	23	11290	20	\mathbf{V}				÷		υD		
Source	TANKS	11 317	10	T						۵.8	689,0	-
11/18/04	14:45								х.			1 011
11/18/04	15:16	ht alt official			e status		a tang da			-0.1	0027	1.04
11/19/04	10:02			2011						<0.1 <0.1	972.8	1.18

the Depart

)

Control Column

MPERT-02-07-01 (Control) LAB NOTES Column 11/18/04 10:57 Placed probes on live to CALIBRATE. pH2 and ORP2 -> File Nov 16-02 (Col 1 is also running). Los time = 41.358 hrs Source tANK is SAN PW-17 w/ il and Mos (SAME Source tANK as for Coll) UN 1055 sigle 200 ~ 0. 30 mg/L CALIBRATION. pH 4 5TD = 4.00 pH 15TD = 6.99 ORP20BUL = 198.8 mV START FLOW. 2.5 mLIMM. Collection not on. See Notes on Feson (COI I) column for 11:18 1st wetting of column bottom. 11:40 weights of sed, etc. 11:53 pH source tank =7.08, started CO2 ~ 2mL/min START FRAC. coll. - no flind yet. 13.42 pit source = 6.79, Place 200, ul of conc. HNO, in each of tubes 2-1 thru 2-44 13:44 FIRST OUTFION from Col., not to probes yet. I PV= 435mL CALL it HOOML due to losses to 14:34 P pipe ele pH source = 6.89 (Bibere adding new bodien), SAmpled ST. = ST 11-18-14:45 14:45 Added 4L of SUN PUBIT + MO + U to Source tank. pH (after) = 7.00. Inc. He bubbling 14:50 15:16 Source pit= 7.10. DO = 1.65 mg/c Still Sublicing Vigorousy SAmpled ST ST - 11-18-15:16 18:07 ii. " = 6.88 11/19/04 09:20 " = 7.90 Start CO2 ٤. ¥. " = 6.84 Cut Back CO2 ST-11-19 - 10:02 10:02 SAmpled ST " = 7.28. Stopped test 16:24 15 19 Col #2 1396 Og Monticello Sedement < DMM (10mesh) 21 23 24 25 2.6 27 29 30

·)))
Cot 2 Control C	olumi	mp	PERT-02-07-02	Drain 30 min # collect 10 mins @ 2.5 mL/min	
113/04 Kog7	fine pH ORP	pS2 (PSi at INTET)	Event.		
11:18 41.7 11:50 42. 13:42 44.	708 NA NA 250 NA NA 117 NA NA	NA 0.0 2.5	SHART Flow (SHN F 1ST Wetting of ban SHART FRAC. Coll -	Pio-17) 40 column, Fla Le at 11:40 no Flow to outlet yet.	sw = 2.5 ml Imin First 30min drain
14:01 44. 14:12 44. 14:34 44	442 NA NA .617 NA NA .992 NA NA	2.9 3.0 3.4	Still no outflow, Start 2-1 (no First outflow Fr	but close out-flow yet), Entine co com col	is wet
15:02 45 17:32 47 19[04 - 09:194364	.442 6,98 -15.32 942 7.32 -38.23 .108 7.71 -38.21	3.8 3.8 3.3	Ewish 2-2 Start 2-6 END 2-30		
い。 16:アン 70、 14	, 800 1.29 - 	3.2	END 2-40,	Hopped test,	
18 22 12					
28 77 - 24					
22 15 26					
20					
28 28 30 31					

·))	1
Col2 Control C	olume	• •	mpert-02-07-03		
sample Vol Cum Vol	Time Recention) PV (1=40)	commonts		Ulugye)	Mo (mg/2)
2 - 1 230 0 69 69	10 2.3 30			37:15-3	
2-2 2320 89 69 158	10 30			10.0	0.12
2-3 23 181 69 250	10 30			7771	0
2-4 23 273 69 342	10 30			<i>ατ</i> η.ι	
2-5 23 36569 434	10 30				0.30
2-6 23 457 69 526	10 30				0.50
2-7 = 23 549	10 30			-02/	
2-8 = 23 641 = 69 710	10 30			543.6	
2-9 - 2-3 733 18 69 802	10 30				
2-10 10 23 825 10 69 894	10 30				0.16
2-11 = 23 917 = 69 956	10 30				
$2-12 = 23 = 100^{\circ}$	7 10 7 30			687.7	
2 - 13 = 23 1101	10 30				
2-14 23 1193 69 1262	10				0.44
2-15 23 1285	70 H 30				
2-16 23 137	7 10			632.3	
69 1446					

C	01-2 (outrol (Colum	v					MPERT-	02-07-0	×4	
	VOL	Cem Vol -	Tim(Rate	PV		Comments				alleger)	Mo (mg/2).
2-17	23	1469	10	2.3	to oppose to an according				- 			-
2-18	23	1561	10									0.40
2-19	69 23	1630 1653	20 10		A STATE OF A STAT			- Andrew State		5 3 4		
2-20:	69	1722 1745	30 10								561.5	
2.21	69	1814	30 10								3 2 2	
0.00	69	1906	30					-		1 5 5 5		056
J-16	23 69	1929 1999	30					and the second				0.20
2-23	23 69	2021 2090	10 30		a tra ann ann ann ann				-			
2-24	23	2113									500.1	
2-25	23	2205	10				And the second sec					
2-26	23	2297	10									0.44
2-27	23	2366 2389	30 10									
2-28	69	2458 2481	30 10							- 	475	4
3-76	69	2550	30		a can de la cana							
5 27	69	2642	30									n 57
7-30	20 23 25 69	2665 2734	10 30		1994 - 19) 1 1	and the second sec					
2-31	23 23 34 69	2757 28 26	10 30		Loop of the second s						: : :	
2-32	= <u>ž</u> ž	2849	10								456.2	- - - -
	69	2918	-0	Y								

) (2)

111-2013

)

Col 2

MPERT-07-02-05

	Voc	ComUnL	Time	Pate	PU		Commo	15			C tak	U(ugp)	Mo (mg/2)
2-33	23	2941	10	2.3									
2-34	69 23 69	3010 3033 202	30 10 30			•						· · · · · · · · · · · · · · · · · · ·	0.61
2-35	23	3125	10									÷ * * *	
2-36	69 23	3217 3217 3286	20 10 30			a a su						530.9	
2-37 -	67 23 69	3309	10		7	- Heady - 1999 - 1999	i			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
2-38	23	3401	10					8 6 6 7 7 7 7 7 7 7 7 7 7		ange de la companya d			0.84
2-39 **	23	3193	10							No College and Mills	an a	-	
2-40 ×	64 23	3585 3585	10	\checkmark						and a second		658.6	
1	7									n na hanna an ann an an an an an an an an an a			
3.	8										T T T		
	10					-		NAMES OF A DESCRIPTION			- Parallel - Para		
:	22						en e			a second a s			
	24										2011 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
	20					and the second se			•		алан алан алан алан алан алан алан алан		
	38				,								
	30							- -					
ана — мара 1997 — се стала се 1997 — се стала се ст		$r = \frac{1}{2} + $			na kare sutati ni ta s					in son y s € t			
							4					:	

)

) (3)