FHWA Road Weather Management Program

“Weather and the transport of Hazardous Materials”

Ray Murphy, Office of Technical Services
U.S. DOT – Federal Highway Administration

Breakout Session: Using Technology to Dispatch and Monitor Shipments During Adverse Conditions
U.S. DOE National Transportation Stakeholder Forum
Presentation Contents

• Context
• Clarus Initiative
• Connected Vehicles & Weather
Weather's Wrath

Safety
- 1.57± million weather-related crashes/year
- 7,400 fatalities; 690,000 injuries
- 24% of all crashes occurred on slick pavement or under adverse weather

Mobility: Cost of congestion is $9.45 billion/yr for the 85 major urban areas (weather causes ~25% of non-recurrent delay on freeways)

Productivity: Weather-related delay adds $3.4 billion to freight costs annually

Environment: Chemicals effect watersheds, air quality and infrastructure
1. Stakeholder Coordination

2. Applied Research
 - Observing & Forecasting
 - Weather-responsive Traffic Management
 - Decision Support

3. Technology Transfer, Training & Education

4. Performance Management & Evaluation

Anytime, Anywhere
Road Weather Information

U.S. DOE National Transportation Stakeholder Forum
Getting From Problems to Solutions

Advanced Decision Support

Transportation Resources & System Status

Weather Forecast Models

Observing Systems

Decision Support Systems & Assessments

Management & Policy Decisions

Societal Benefits

Wanting to ultimately save lives, time and money – those are the societal benefits we all work for… So what is needed to do that?

On-going feedback to optimize value and reduce gaps
Maintenance Decision Support System

MDSS is a maintenance decision-support system that combines:

- Advanced weather forecasting
- Advanced road condition prediction
- Rules of practice for anti-icing

The system generates winter treatment recommendations on a route-by-route basis.

U.S. DOE National Transportation Stakeholder Forum
The *Clarus* Initiative

Clarus is an R&D initiative to demonstrate and evaluate the value of “Anytime, Anywhere Road Weather Information” that is provided by both public agencies and the private weather enterprise to transportation users and operators.

To do so, FHWA created a robust

- data assimilation,
- quality checking, and
- data dissemination system

that can provide near real-time atmospheric and pavement observations from the collective states’ investments in environmental sensor stations (ESS).
The *Clarus* Initiative: 4 Objectives

1. **Provide a North American resource to collect, quality check, and disseminate** weather and road condition **observations**

2. **Demonstrate that these observations will support general purpose weather forecasting**

3. **Demonstrate that the observations will support real-time operational responses** to weather

4. **Support the enhancement and creation of models to improve forecasts at and near the earth’s surface**
The **Clarus System**

- A database management system for all surface transportation weather observations in North America
- One database removes borders
- Provides advanced quality checking for both atmospheric & pavement data
- Includes extensive metadata
 - Easy access via web portal & subscription
 - Once development completed, transfer to NOAA for operations

Clarus

A Clear Solution For Road Weather Information
Over 75% of State DOTs Participate in Clarus

www.clarus-system.com

Sensor & Station Count
2,229 Sensor Stations (ESS)
51,722 Individual Sensors
Participation Status for *Clarus* as of April, 2011

Canadian Participation
- Parks Canada

Local Participation
- City of Indianapolis, IN
- McHenry County, IL
- City of Oklahoma City, OK
- Kansas Turnpike Authority
- Parks Canada

Clarus Connection Status
- **Connected**
 - (38 States, 5 Locals, 4 Provinces)
- **Pending**
 - (4 States, 3 Locals, 1 Province)
- **Considering**
 - (3 States, 1 Local)
Clarus Regional Demonstrations - Objectives

- Ensure the *Clarus* System works as designed
 - Demonstrate the ability of the *Clarus* System to process and provide data from large numbers of ESS
 - Promote/educate on metadata collection

- Foster proactive transportation system management

- Encourage improved private sector services for road weather information enabled with data from the *Clarus* System
Clarus Regional Demonstration

5 Use Case Scenarios

1. Enhanced Road Weather Forecasting Enabled by *Clarus*
2. Seasonal Weight Restriction Decision Support Tool
3. Non-winter Maintenance & Operations Decision Support Tool
4. Multi-state Control Strategy Tool
5. Enhanced Road Weather Content for Traveler Advisories

State Transportation Agency Partners

Meridian Team
Scenarios 1, 2, 5

Mixon Hill Team
Scenarios 1, 3, 4

U.S. DOE National Transportation Stakeholder Forum
Enhanced Road Weather Content for Traveler Advisories

Goal:
Use Clarus’ data to develop enhanced road weather information for travelers.

Methods:
• by leveraging the multi-state nature of Clarus to create a multi-state traveler information platform
• by applying Clarus’ data to develop enhanced road/weather forecasts that can alert drivers of conditions before they occur
Use Case #5
Web Portal
Enhanced Road Weather Content for Traveler Advisories

U.S. DOE National Transportation Stakeholder Forum
Integrated **traveler information** - *Clarus*
System data provides decision support to track approaching weather systems.

Data delivery to trucking dispatch centers and transportation agency centers

Integration of vehicle detectors and radio frequency identification with ESS to provide value-added services to CVO services
Hazmat transport & weather decision support

Clarus Data...

pavement temperatures, which when combined with radar could provide an indication of potentially slippery or hazardous winter conditions for transporting HAZMAT. *This could result in decisions to either reduce speed, deviation of course or to delay departure, pending better weather conditions;*

precipitation amount, which could provide an indication of excessive precipitation and the potential of flash flooding; *this could result in decisions to a deviation of course or to delay departure, pending better weather conditions;*

wind direction, which could provide an estimate of the trajectory for toxic plumes in the event of a release. If the winds are blowing toward a populated area, *this could result in decisions to change the route* so that the vehicle travels on the downwind side of a populated area;

wind speed, which could be used to determine if there will be excessive buffeting (high profile vehicles) which might lead to loss of control.
Next Steps… Connected Vehicles & Weather – Vision

Obtain a thorough picture of current weather and road conditions by including mobile sources
- Higher resolution observations that spatially augment fixed sensors
- Take advantage of existing standards and on-board sensors

Improve weather-related decision support tools to mitigate safety and mobility impacts of weather
- Based on ability to better detect and forecast road weather and pavement conditions
Connected Vehicles & Weather – Vision

Drivers/Operators

Infrastructure

Vehicles and Fleets

Wireless Devices

U.S. DOE National Transportation Stakeholder Forum
Vehicle data in Connected Vehicle

OEM sensors (e.g., air temp, wiper status, braking status)

U.S. DOE National Transportation Stakeholder Forum
Ancillary Data: Radar, Satellite, RWIS, etc. Clarus is one of the “ancillary” data source feeding into Stage II of the process; Clarus and other data are used to perform quality checks on the mobile data used to make the inferences/roadway hazard assessments in Stage III.
VDT Objectives

✓ Develop the Connected Vehicles’ role in “Anytime, Anywhere Road Weather Information”

✓ Exploit any and all vehicle-based data
 ✓ OEM sensors (e.g., air temp, wiper status, braking status)
 ✓ After market sensors (e.g., pavement temp, plow status)

✓ Combine data from vehicles with fixed sources (Clarus)

✓ Output basic and inferred segment-based weather & road conditions to support all weather-related applications
Solutions to helping save lives, time & money

Road Weather Decision Support

Transportation Resources & System Status

Weather Forecast Models

Observing Systems

Decision Support Systems & Assessments

Management & Policy Decisions

Societal Benefits

On-going feedback to optimize value and reduce gaps
Contact Information

Paul Pisano
Team Leader, Road Weather Management
FHWA, Office of Operations
paul.pisano@dot.gov, 202-366-1301

Ray Murphy
ITS Specialist, FHWA Operations
Office of Technical Services
ray.murphy@dot.gov, 708-215-1301

FHWA Road Weather Management
www.ops.fhwa.dot.gov/weather