
Department of Energy Quality Managers
Software Quality Assurance Subcommittee

Reference Document SQAS20.01.00 - 2000

Software Configuration Management (SCM)
A Practical Guide

April 25, 2000

United States Department of Energy

Albuquerque Operations Office

Abstract

This document provides a practical guide for integrating software configuration management disciplines into the
management of software engineering projects. Software configuration management is the process of identifying and
defining the software configuration items in a system, controlling the release and change of these items throughout
the system lifecycle, recording and reporting the status of configuration items and change requests, and verifying
the completeness and correctness of configuration items.

Software Configuration Management: A Practical Guide

04/25/00 ii

Acknowledgements

This document was prepared for the Department of Energy (DOE) by a Working Group of the DOE Quality
Managers’ Software Quality Assurance Subcommittee (SQAS). At the time this document was prepared, the
Working Group had the following members:

 Y. Faye Brown, Y-12 Carolyn Owens, LLNL

 Kathleen Canal, DOE-HQ Maysa Peterson, LANL

 Al Cowen, PX Gerald Reisz, LANL

 Ray Cullen, SR Larry Rodin, PX

 Gary Echert, DOE-AL Ed Russell, LLNL

 Michael Elliott, UK AWE Don Schilling, KCP

 Jerry Faulkner, KCP Ellis Sykes, DOE-KC

 John Hare, UK AWE Nancy Smith, SR

 Philip Huffman, PX Patricia Tempel, SNL

 Ed Kansa, LLNL Anton Tran, DOE-AL

 Cathy Kuhn, KCP Bill Warren, LLNL

 Michael Lackner, KCP

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or any of their contractors or
subcontractors.

Software Configuration Management: A Practical Guide

04/25/00 iii

Table of Contents

1. What Is Software Configuration Management?... 1

 1.1 Why Is Software Configuration Management Important?.. 1

 1.2 What Are the Benefits of Software Configuration Management?...................................... 2

2. Software Configuration Management Disciplines ... 3

 2.1 Configuration Identification ... 5

 2.2 Configuration Control (Change Control)... 6

 2.2.1 Procedures for Controlling Changes... 7
 2.2.2 Levels of Authority ... 10
 2.2.3 Documentation.. 11

 2.3 Configuration Status Accounting.. 11

 2.4 Audits and Reviews .. 12

 2.5 Release Processing.. 13

3. Tailoring Software Configuration Management to Different Software Environments 14

4. Planning for Software Configuration Management ... 15

5. Automated Tools for Software Configuration Management ... 17

 5.1 Benefits of Using Tools .. 17

 5.2 Types of Automated Tools.. 17

 5.2.1 Basic Tool Set ... 18
 5.2.2 Advanced Tool Set.. 18
 5.2.3 Online Tool Set ... 18
 5.2.4 Integrated Tool Set.. 19

 5.3 Tool Selection ... 19

Appendix A: Diagrammatic Representation of Software Configuration Management and

 Interfacing Processes ... 22

Appendix B: SCM Plan Template .. 28

Appendix C: SCM Checklist .. 31

Appendix D: Glossary and Abbreviations .. 32

Appendix E: Sample Configuration Management Forms... 35

Appendix F: References/Resources .. 37

Software Configuration Management: A Practical Guide

04/25/00 1

1. What Is Software Configuration Management?

Configuration Management (CM) is the process of identifying and defining the configuration
items in a system, controlling the release and change of these items throughout the system
lifecycle, recording and reporting the status of configuration items and change requests, and
verifying the completeness and correctness of configuration items. Configuration Management
is practiced in one form or another as part of any software engineering project where several
individuals or organizations have to coordinate their activities. While the basic disciplines of
Configuration Management are common to both hardware and software engineering projects,
there are some differences in emphasis due to the nature of software products. [3]

Software Configuration Management (SCM) is a system for managing the evolution of software
products, both during the initial stages of development and during all stages of maintenance. A
software product encompasses the complete set of computer programs, procedures, and
associated documentation and data designated for delivery to a user. All supporting software
used in development, even though not part of the software product, should also be controlled by
SCM.

The SCM system is the collection of activities performed during a software engineering project
to:
• determine and identify those entities of the software product that need to be controlled;
• ensure those entities have necessary and accurate definitions and documentation;
• ensure changes are made to the entities in a controlled manner;
• ensure that the correct version of the entities/software product are being used; and
• ascertain, at any point in time, the status of an entity (e.g., whether a specific entity is

completed, being changed, waiting to be tested, or released to the customer).

SCM is performed within the context of several basic configuration management disciplines,
including:
• Configuration Identification
• Configuration Control (change control)
• Configuration Status Accounting
• Audits and Reviews
• Release Processing

Explanations of the basic configuration management disciplines are provided in chapter 2.

1.1 Why Is Software Configuration Management Important?

The primary reason for implementing an SCM system is to keep the changing and iterative
entities/software product(s) in a non-degrading state throughout the software lifecycle. This is a
challenge that must be met in order to develop and maintain quality software products. The
quality of the software products is fundamental to the level of quality of the complete system.

Software Configuration Management: A Practical Guide

04/25/00 2

SCM provides a common point of integration for all planning, oversight, and implementation
activities for a software project or product line. It provides the framework (labeling and
identification) for interfacing different activities and defining the mechanisms (change controls)
necessary for coordinating parallel activities of different groups. SCM also provides a
framework for controlling computer program interfaces with their underlying support hardware,
and coordinating software changes when both hardware and software may be evolving during
development or maintenance activities. SCM provides management with the visibility (through
status accounting and audits) of the evolving software products that make technical and
managerial activities more effective. [3]

1.2 What Are the Benefits of Software Configuration Management?

SCM provides significant benefits to all projects regardless of size, scope, and complexity.
Some of the most common benefits experienced by project teams applying the SCM disciplines
described in this guide are possible because the SCM system:

• Provides a snapshot of dynamically changing software to help:

- Make decisions based on an instantaneous view
- Determine status at module and system levels
- Make better decisions about the future of a software project.

• Tracks concurrent development of modules or components of the overall system to:

- Prevent different developers from making changes to the same module at the same time
- Allow for the overall system progress to be faster
- Provide visibility of the entire software project to all developers.

• Organizes all concurrently developing code and associated documentation to:

- Save overall project time
- Focus each phase of the software product development to be organized and executed in a

documented, prescribed manner.

The effective use of an SCM system also:

• Permits the orderly development of software configuration items.
• Ensures the orderly release and implementation of new or revised software products.
• Ensures that only approved changes to both new and existing software products are

implemented.
• Ensures that the software changes that are implemented are in accordance with approved

specifications.
• Ensures that the documentation accurately reflects updates.
• Evaluates and communicates the impact of changes.
• Prevents unauthorized changes from being made.

Software Configuration Management: A Practical Guide

2. Software Configuration Management Disciplines

SCM disciplines are used to simultaneously coordinate configurations of many different
representations of the software product (e.g., source code, relocatable code, executable code, and
documentation). In practice, the ways in which SCM disciplines are performed will be different for
the various kinds of software being developed (e.g., commercial, embedded, original equipment
manufacturer). The degree of formal documentation required within and across different lifecycle
management phases (e.g., research, product development, operations, and maintenance) will also
vary. The use of interactive software development environments extends the concepts of SCM to
managing evolutionary changes that occur during the routine generation of specifications, designs,
and implementation of code, as well as to the more rigidly documented and controlled baselines
defined during development and system maintenance. The effectiveness of the SCM system
increases in proportion to the degree that its disciplines are an explicit part of the normal day-to-day
activities of those involved in the software development and maintenance efforts. [3]

Figure 2-1 presents a diagram showing how the SCM disciplines interact at the highest level.
Sections 2.1 through 2.5 provide additional information on each of the SCM disciplines.

Figure 2-1. High-Level View of Software Configuration Management

SOFTWARE CONFIGURATION
MANAGEMENT PLAN

A
U
D
I
T
S

&

R
E
V
I
E
W
S

S
T
A
T
U
S

A
C
C
O
U
N
T
I
N
G

Configuration
Identification

Baseline
Definition

Configuration
Control

New
Release?

Yes

No

Identification of software items
to be controlled

Configuration record at a point
in time

Control of change and libraries

Criteria and authority as defined in
Configuration Management Plan

Specifies configuration items

04/25/00 3

Software Configuration Management: A Practical Guide

04/25/00 4

The Software Configuration Management Plan (SCM Plan) provides information on the
requirements and procedures necessary for the configuration management activities of the
software engineering project. It specifies who will be responsible for accomplishing the planned
activities, what activities will be performed, when the activities will be performed in
coordination with the project schedule, and what tools and human resources will be required to
perform the activities. Consideration should also be given to the overall system configuration.

The first step in the SCM system is to identify the Configuration Items to be controlled and, as
the project progresses, to identify the structure of the intermediate or complete software
products. Elements to be controlled will normally include the software code and associated
documentation. Documents could include requirements specifications, designs, user guides, test
suites, test results, and user lists.

Baselines are defined and created in accordance with the SCM Plan and the phase of the
project’s lifecycle. A baseline is a specification or product that has been formally reviewed and
agreed upon, that serves as the basis for further development, and can only be changed through
formal change control procedures. A baseline is like a snapshot of the aggregate of software
components as they exist at a given point in time. During each phase of the software lifecycle,
configuration items that are completed and accepted by the approval authority become the
baseline for that phase.

Any addition, alteration, or deletion to the approved baseline is deemed a change, and is subject
to change control. Baselines, plus the approved changes from those baselines, constitute the
current configuration identification. Each of the baselines established during a software lifecycle
controls subsequent software development.[5] The following are typical configuration baselines
that are established during the life of a software project. [3]

 Functional Baseline - Established by the acceptance or approval of the software or system

specification. This baseline typically corresponds to the completion of the software
requirement review.

 Allocated Baseline – Established by approval of the software requirements specification.

This baseline typically corresponds to the completion of the software specification review.

 Developmental Baseline – Established by the approval of the technical documentation that

defines the functional and detailed design (including documentation of interfaces and
databases for the computer software). Normally, this baseline corresponds to the time frame
spanning the preliminary design review and the critical design review.

 Product Baseline – Established by approval of the product specification following

completion of the last formal functional configuration audit (FCA).

Once configuration items have been identified and baselined, Configuration Control provides a
system to initiate, review, approve, and implement proposed changes. Each engineering change
or problem report that is initiated against a formally identified configuration item is evaluated to
determine its necessity and impact. Approved changes are implemented, testing is performed to

Software Configuration Management: A Practical Guide

04/25/00 5

verify that the change was correctly implemented and that no unexpected side effects have
occurred as a result of the change, and the affected documentation is updated and reviewed.

The discipline of Status Accounting collects information about all configuration management
activities. The status account should be capable of providing data on the status and history of
any configuration item. The information maintained in Status Accounting should enable the
rebuild of any previous baseline.

Audits and reviews are conducted to verify that the software product matches the configuration
item descriptions in the specifications and documents, and that the package being reviewed is
complete. Any anomalies found during audits should be corrected and the root cause of the
problem identified and corrected to ensure that the problem does not resurface. Generally, there
should be a Physical Configuration Audit (PCA) and the Functional Configuration Audit (FCA)
of configuration items prior to the release of a software product baseline or an updated version of
a product baseline. The PCA is performed to determine if all items identified as being part of the
configuration are present in the product baseline. The audit must also establish that the correct
version and revision of each part are included in the product baseline and that they correspond to
information contained in the baseline’s configuration status report. The FCA is performed on
the each software configuration item to determine that it satisfies the functions defined in the
specifications or contracts for which it was developed. [3]

Appendix C provides a checklist of some of the activities commonly associated with the basic
SCM disciplines. This list can be modified to include additional activities that are appropriate to
the size and complexity of a specific software engineering project.

2.1 Configuration Identification

The first step in the SCM system is the identification of the items to be managed and the
specification of the management authority responsible for each item. This is a critical step in the
system since the identification scheme is employed throughout the lifecycle of the software
product. The levels of authority assigned responsibility for each configuration item will vary
depending on the complexity of the software product, the size of the development team, and the
management style of the responsible organization.

Configuration identification consists of selecting the configuration items and recording their
functional and physical characteristics as set forth in technical documentation such as
specifications, drawings, and associated lists. The following are examples of items managed in
the SCM system.

• Management plans
• Specifications (requirements, design)
• User documentation
• Test plans, test design, case, and procedure specifications
• Test data and test generation procedures
• Support software used in development, even though not part of the delivered software

product

Software Configuration Management: A Practical Guide

04/25/00 6

• Data dictionaries and various cross-references
• Source code (on machine-readable media)
• Executable code (the run-time system)
• Libraries
• Databases (data that are processed and data that are part of a program)
• Maintenance documentation (e.g., listings, detail design descriptions)

Effective management of the development of a software product requires careful definition of the
configuration items. Changes to these items also need to be defined since these changes, along
with the project baselines, specify the evolution of the software product. SCM includes all of the
entities of the software product as well as their various representations in documentation. The
entities are not all subject to the same SCM disciplines at the same time.

Support software is the class of software that may or may not be delivered with the software
product, but is necessary for designing, enhancing, or testing the changes made during the life of
the product. Support software may be user-furnished, developed in-house, leased from a vendor,
or purchased off-the-shelf. In SCM, the focus is on describing the necessary controls used to
manage support software. Developers and maintainers need to ensure that the support software
is available for use for as long as the software product is in use. Whenever a production baseline
is established, it is very important to archive all environmental and support tools along with the
production code.

Software tools used in development, especially compilers and middleware, should be placed
under configuration control so their identities and versions are included in the baseline data
about each release. [8]

Consideration also needs to be given to the hierarchy of entities managed during the SCM
system. There are several different ways of structuring this hierarchy. One way is a three-level
hierarchy consisting of configuration items, components, and units. Another way of structuring
the entities is in terms of the interrelationships between the software being developed and the
other software entities used during development and testing such as support software, test
software, and the operating system. A third method for structuring entities is in terms of the
intermediate products generated in the process of building the software product, such as:
modifiable entities (e.g., source code, document, test data); compilation entities (e.g., compilers,
support software); and configuration items (e.g., different representations created in the process
of producing deliverables).

An important aspect of configuration identification is the use of a formal naming convention for
each entity. This naming convention, which typically uses a combination of mnemonic labels
and version numbers, should be applied to all components of a configuration item. In
establishing the naming convention, consideration should be given to system constraints such as
name length or composition. Consistency in the application of this identification scheme is
critical to accurate tracking of the software engineering process.

2.2 Configuration Control (Change Control)

Software Configuration Management: A Practical Guide

04/25/00 7

Configuration control is a critically important feature of configuration management. The
primary function of configuration control is to provide the administrative mechanism for
initiating, preparing, evaluating, and approving or disapproving all change proposals throughout
the software lifecycle.[5] Configuration control ensures that changes to configuration items are
controlled and that consistency between component parts of a system is maintained. It reduces
the possibility of making changes that may later adversely affect functionality. Figure 2-2
provides a diagram of the configuration control process.

The configuration control process involves three elements: [5]

• Procedures for controlling changes to a software product.
• Levels of authority (e.g., Configuration Control Board) for formally evaluating and

approving or disapproving proposed changes to the software.
• Documentation, such as administrative forms and supporting technical and administrative

material, for formally initiating and defining a proposed change to a software system.

Many automated tools support the configuration control process. The major ones aid in
controlling software change once the coding stage has been reached. Automation of other
functions, such as library access control, software and document version maintenance, change
recording, and document reconstruction, greatly enhance both the control and maintenance
processes. [5]

2.2.1 Procedures for Controlling Changes

Changes occur at all phases in the software lifecycle. Design or implementation changes may be
necessary if requirements change, or when deficiencies are identified in the design or
implementation approach to a stable requirement. Testing may uncover defects that require
changes in the code or the design and requirements. Changes must be made to the right version
of the code, testing must verify performance of the change and the integrity of the remaining
software, and all associated documentation must be updated to be consistent with the final code.

A mechanism is needed to process change requests (e.g., discrepancies, failure reports, requests
for new features) from a variety of sources throughout the development process and during
operation and support of the software product. This mechanism should extend to a definition of
a process to track, evaluate, and implement change requests into a new version and new release
of the software. Generally, no single procedure can meet the needs of all levels of change
management and approval levels.

The minimum activities needed for processing changes include:
• Defining the information needed for approving the requested change.
• Identifying the review process and routing of information.
• Describing the control of the libraries used to process the change.
• Developing a procedure for implementing each change in the code, the documentation, and

the released software product.

Software Configuration Management: A Practical Guide

Figure 2-2. Configuration Control Process

Baseline Definition

No

Yes

No

Yes

Propose Change

Approve
Change

?

Identify Baseline

Review & Evaluate
Proposed Change

Accept
Change

?

Implement Change

Verify (test)
Implementation

Revise
Configuration

Records

Form New Baseline

S
T
A
T
U
S

A
C
C
O
U
N
T
I
N
G

Modification, improvement
or fix for error

Identify components to be
changed

Impact assessment of
change by authority as
stated in Configuration
Management Plan

Code copied to
development area

Module and system test

Notify users of change

04/25/00 8

Software Configuration Management: A Practical Guide

04/25/00 9

Software Libraries (Repositories)

The techniques and methods used for implementing control and status reporting in SCM
generally center around the operation of software libraries. Software libraries are a controlled
collection of software and related documentation designed to aid in software development, use,
and maintenance. Software libraries provide the means for identifying and labeling baselined
entities, and for capturing and tracking the status of changes to those entities. [3]

Libraries have been historically composed of documentation on hard copy and software on
machine-readable media, but the trend is moving towards all information being created and
maintained on machine-readable media. This trend, which encourages the increased use of
automated tools, leads to higher productivity. The trend also means that the libraries are a part
of the software engineering working environment. The SCM functions associated with the
libraries have to become part of the software engineering environment, making the process of
configuration management more transparent to the software developers and maintainers.

The number and kind of libraries will vary from project to project or organization to organization
according to variations in the access rights and needs of their users, which are directly related to
levels of control. The items maintained in the libraries may vary in physical form based on the
level of technology of the software tools. When the management of the libraries is automated,
the libraries that represent different levels of control may be functionally (logically) different
even though they are physically the same. The insertion of entities and changes to entities in a
controlled library should produce an auditable authorization trail.

The names of libraries may vary, but fundamentally there are three kinds: dynamic, controlled,
and static. The dynamic library, sometimes called the programmer's library, is a library used for
holding newly created or modified software entities (units/modules or data files and associated
documentation). This is the library used by programmers in developing code. It is freely
accessible to the programmer responsible for that unit at any time. It is the programmers'
workspace and is usually controlled by the programmers.

The controlled library, sometimes called the master library, is a library used for managing the
current baseline(s) and for controlling changes made to them. This is the library where the
components and units of a configuration item that have been promoted for integration are
maintained. Copies can be freely made for use by programmers and others. Changes to
components or units in this library must be authorized by the responsible authority (which could
be a configuration control board or other body with delegated authority).

The static library, sometimes called the software repository, is a library used to archive various
baselines released for general use. This is the library where the master copies plus authorized
copies of software configuration items that have been released for operational use are
maintained. Copies of these masters may be made available to requesting organizations.

Software Configuration Management: A Practical Guide

04/25/00 10

2.2.2 Levels of Authority

The levels of authority required for approving changes to configuration items under SCM control
can vary. The level of control needed to authorize changes depends on the level of the item in
relation to the product as a whole. The system or contractual requirements may dictate the level
of authority needed. For example, internally controlled software tools typically require less
change controls than critical software. Levels of authority can vary throughout the software
lifecycle. For example, changes to code in the development cycle usually require a lower level
of control to be authorized than changes to the same code after it has been released for general
use. The level of authority can also depend on how broadly the change impacts the system. A
change affecting specifications during the requirements analysis phase has less impact than a
change affecting software in operational use. Likewise, changes to draft versions of documents
are less controlled than changes to final versions.

Configuration Control Boards

Configuration Control Boards (CCBs) enable the implementation of change controls at optimum
levels of authority and scope. CCBs can exist in a hierarchical fashion (for example, at the
program, system design, and program product level), or one board may have authority over all
levels of the change process. In most organizations, the CCB is composed of senior level
managers. They include representatives from the major software, hardware, test, engineering, and
support organizations as defined in the SCM Plan. The purpose of the CCB is to control major
issues such as schedule, function, and the configuration of the system as a whole. The CCB
functions may be included in formal computer-aided software engineering (CASE) tools. [3]

Some of the functions of the CCB include:

• Directing the entire configuration management effort.
• Resolving all problems and situations that arise during the effort.
• Using the SCM system as its primary decision-making resource.
• Taking into account organizational management considerations for decision making.
• Orchestrating all activities from the beginning to the approval of the baselines for SCM

establishment.
• Determining which products should be baselined or managed, the method to be used, and the

order in which they should be done.
• Resolving all issues such as the most suitable product name to be used from among

numerous documented aliases. Multiple aliases often occur when an SCM system was not
originally in place.

Software Configuration Control Boards

The more technical issues that do not relate to issues of performance, cost, and schedule are
often assigned to a Software Configuration Control Board (SCCB). The SCCB discusses issues
related to specific schedules for partial functions, interim delivery dates, common data
structures, design changes, and the like. This is the place for decision-making concerning the
items that must be coordinated across configuration items, but they do not require the attention
of high-level management. The SCCB members should be technically well versed in the details

Software Configuration Management: A Practical Guide

04/25/00 11

of their area, while the CCB members are more concerned with broad management issues facing
the project as a whole and with customer issues. [3]

Depending on the size and nature of the software project, the SCCB may consist of a single
librarian, multiple librarians, or include many SCCBs, each with a different functional
responsibility for ensuring that changes are implemented and tested according to standard
procedures and that hardware/software interfaces and interfaces between software modules are
not violated. The SCCB also focuses on overall project management responsibility for ensuring
that design or requirements specifications are not violated and that software changes are
implemented according to cost and schedule constraints. The size and structure of SCCBs
normally change over the lifecycle of the software.

To simplify the task of the SCCB, formal procedures for an initial analysis of each change
should be established to aid the board in prioritizing the change. Review and testing
requirements for prospective changes should also be established. Results from reviewing and
testing the change should then be submitted to the SCCB to assist in evaluating the change.

2.2.3 Documentation

The Software Change Request (SCR) is one of the major tools used for identifying and
coordinating changes to software and documentation. The SCR is used to capture important
information about the change and to track the status of a change from its proposal to its eventual
disposition. A typical SCR form contains a narrative description of the change or problem,
information to identify the source of the report, and some basic information to aid in evaluating
the report. An SCR is submitted only against baselined software or documentation. An SCR
may be submitted by anyone associated with the project, but usually is submitted by a member of
the software development team. A sample Software Change Request Form is provided in
Appendix E. [3]

The Software Change Authorization (SCA) form is used to control changes to all software and
documents under SCM control and software and documents that have been released to SCM.
The SCA form is used by software developers to submit changes to software and documents to
SCM in order to update the master library. A sample Software Change Authorization Form is
provided in Appendix E. [3]

Several reports may be needed to support the configuration status accounting needs. Typical
reports include a list of all SCRs by status (e.g., open, closed); a monthly summary of the SCRs
and SCAs; all SCRs submitted per unit or software component within a selected range of
submittal dates; the status of all documentation under SCM control; and a version description
document. [3]

2.3 Configuration Status Accounting

The formal process of tracking software entities through the steps in their evolution is referred to
as Status Accounting or Configuration Status Accounting (CSA). Status Accounting provides
the project manager with the data necessary to gauge and report project progress.

Software Configuration Management: A Practical Guide

04/25/00 12

Status Accounting provides a mechanism for maintaining a record of how the software has
evolved and where the software is at any time relative to the information contained in baseline
documents. Status Accounting answers the following questions: (1) What happened? (2) Who
did it? (3) When did it happen? (4) What else will be affected? [6]

Status Accounting is a function that increases in complexity as the software lifecycle progresses
because of the multiple software representations that emerge with later baselines. This
complexity generally results in larger amounts of data to be recorded and reported. [5]

The purpose of Status Accounting is to have the ability, at any point in the software lifecycle, to
provide the current content of a given software configuration item or computer software
component. If the entity is a software design description, a status accounting mechanism should
allow developers to easily pull together any text files, graphic files, and data files that may
comprise the document. Likewise, change requests to software products should be easy to track
and the status of these requests should be readily reproducible in an organized manner.

Each time a software configuration item is assigned a new or updated identification, a status
report entry is made. Each time a change is approved, a status report entry is made. Each time a
configuration audit is conducted, the results are reported as part of a status reporting task.
Output from a status accounting report may be placed in an online database so that software
developers or maintainers can access change information by key-word category. Status
accounting reports are generated on a regular basis and are intended to keep management and
practitioners appraised of important changes. [6]

Status accounting reports should be maintained in electronic files at logical transition points in
the software lifecycle. For example, when a baseline configuration is advanced from the design
phase to an implementation (coding) phase, a record of this should be filed in the configuration
records. Similarly, when a newly developed or modified module has been approved for system
testing and integration, this transition in status should be recorded.

2.4 Audits and Reviews

Audits and reviews are performed to verify that the software product matches the capabilities
defined in the specifications or other contractual documentation and that the performance of the
product fulfills the requirements of the user or customer. [3]

Audits

Software configuration audits provide the mechanism for determining the degree to which the
current state of the software mirrors the software depicted in baseline and requirements
documentation. Software auditing increases software visibility and establishes the traceability of
changes throughout the lifecycle. It reveals whether the project requirements are being satisfied
and whether the intent of the preceding baseline has been fulfilled. The audits enable project
management to evaluate the integrity of the software product being developed, resolve issues
that may have been raised by the audit, and correct defects in the development process.

Software Configuration Management: A Practical Guide

04/25/00 13

There are two types of audits that should be performed prior to release of a product baseline or a
revision of an existing baseline: Physical Configuration Audit (PCA) and Functional
Configuration Audit (FCA). A PCA is performed to determine whether all items identified as
being part of the configuration are present in the product baseline. The audit must establish that
the correct version and revision of each part are included in the product baseline and that they
correspond to information contained in the baseline’s configuration status report. An FCA is
conducted to ensure that each item of the software product has been tested or inspected to
determine that it satisfies the functions defined in the specifications. An important aspect of
these two audits is the assurance that all documentation (change requests, test data, and reports,
etc.) relevant to the release are current and complete. [3]

In large software projects, audits may be necessary throughout the evolution of a product to
ensure conformance with planned configuration management actions and to prevent significant
problems from being encountered just prior to release. There should always be an audit of the
configuration items at the time a product is released (see section 2.5). This will vary according
to the baseline being released and the criteria for the audit as stated in the SCM Plan.

Technical Reviews

Formal technical reviews are performed throughout the project, although SCM disciplines
generally do not initiate or direct reviews. Quite often the mechanisms used by SCM to process
changes are used to organize and process items in a review conducted by other functions such as
Software Quality Assurance. SCM supports reviews and provides the mechanism for acting on
changes resulting from the reviews. [3]

2.5 Release Processing

Major releases of software must be described so that the recipient understands what has been
delivered. Often the recipient will need installation instructions and other data concerning the
release. The installation instructions should define the environment in which the software
product will run—both hardware and software. The release package typically includes
documentation (often referred to as the version description document). The more critical or the
larger the software product, the more complete the documentation needs to be. SCM verifies
that the release package is complete and ready to be delivered.

Once a release is completed, a configuration baseline should be captured that associates
components and their versions with the release identity of the whole product. In this way, a
release can be created or the presence of a component version can be traced. This feature is
likely to be associated with a configuration management tool that controls software “builds”
producing a report that lists all of the components. [8]

Software Configuration Management: A Practical Guide

04/25/00 14

3. Tailoring Software Configuration Management to Different
Software Environments

Software Configuration Management disciplines should be practiced as a part of every software
engineering project. The completeness and level of detail for the configuration management
disciplines depend on the size, complexity, and importance of the project.

For small user/developer projects a simple version control mechanism can be utilized to track
development activities. One example is a three-digit numbering system (e.g., 1.2.3) where 1 is
the number of the current accepted release; 2 identifies a certain level of development that has
been verified as achieved (reset when the higher field changes), and 3 is changed with routine
development (again reset when the higher field changes).

When more development freedom can be allowed, formal configuration management may apply
once the developer has achieved a level of functionality or confidence to release to users. In this
situation, a ‘freeze’ on development would occur with verification of the functionality of the
software. Items to be configured would then be booked into a configuration management tool or
library. All further changes or development would then be checked in and out, and controlled to
a documented process. For larger, more complex software projects this formal configuration
management process could be used at the start of the development activity. Appendix A
provides a diagrammatic representation of how SCM fits into the software development
lifecycle.

The level of formality associated with SCM depends on the risks to be mitigated. Using a broad
definition of SCM as those processes capturing a logical snapshot of a dynamic development
process, the formality can range from totally informal to fully controlled with auditable
processes. Software with minimal risks associated with loss of historical or baseline information
may have no formally defined process. For instance, the software developer may decide which
versions should be kept based on a personal risk assessment. At the other end of the formality
scale, large projects introduce processes to assure the capture of a useful set of final and
intermediate deliverables with rules for changes to the deliverables. As there is a cost to the
implementation of formal procedures, it is important to select processes that minimize risks
proportioned to their costs.

The disciplines of SCM apply to the development of programmed logic, regardless of the form of
packaging used for the application. Whether software is released for general use as programs
(e.g., RAM or DRAM) or embedded in read-only memory (ROM), it is a form of logic.
Therefore, SCM disciplines can and should be extended to include development of the
software’s component parts (e.g., source code and executable code).

Firmware raises some special considerations for configuration management. While being
developed, the disciplines of SCM apply, but when made part of the hardware (e.g., burned into
[EP]ROM or [EEP]ROM), the disciplines of hardware configuration management apply.
Testing may vary, but the SCM requirements are generally the same. The packaging of
[EP]ROM or [EEP]ROM versus RAM or DRAM code also introduces and necessitates different
identification procedures.

Software Configuration Management: A Practical Guide

04/25/00 15

4. Planning for Software Configuration Management

Planning for software configuration management (SCM) is essential to its success. The routine
clerical-type functions associated with SCM are repetitious and can be automated fairly easily.
The more important disciplines of SCM, such as defining a scheme for identifying the
configuration items, components, and units; or the systematic review of changes before
authorizing their inclusion in a program, are activities that require engineering judgment.
Relating engineering judgment with management decisions, while also providing the necessary
clerical support without slowing the decision-making process, is the critical role of SCM
planning. Effective SCM involves planning how all of these activities are to be performed, and
performing the activities in accordance with the plan. [3]

The planning and application of SCM is very sensitive to the context of the project and the
organization being served. If SCM is applied as a corporate policy, it must be done in such a
way that the details of a particular SCM system are reexamined for each project (or phase for
very large projects). It must take into consideration the size, complexity, and criticality of the
software project being managed; and the number of individuals, amount of personnel turnover,
and organizational form and structure.

Software Configuration Management Plan

The SCM system defines the interaction between a number of activities extending throughout the
lifecycle of the product. The Software Configuration Management Plan (SCM Plan) functions as
the focal point for integrating and maintaining the necessary details for the SCM system. The
SCM Plan is a dynamic document that is maintained by approved changes throughout the life of
the software product. [3]

The plan is used to:
• Identify the specific SCM concerns.
• Define what the SCM Plan will and will not address.
• Identify the configuration items and how they will be managed.
• State the actions to be performed by software engineering.
• State supporting activities that are required to maintain visibility of the evolving

configuration of the software products.
• Support management in the process of evaluating and implementing changes to each

configuration
• Assure that the changes have been properly and completely incorporated into each software

product.

Control of changes to support third-party software presents a special challenge when planning
SCM. Such software entities are usually maintained at a different site from the primary software
product and are usually not subject to the same SCM Plan. Controls should be in place to
identify the dependencies on third-party software and to ensure the continued availability of all
required support software including compilers, operating system, etc. It may be desirable to
retain support software and documentation along with the primary software product.

Software Configuration Management: A Practical Guide

04/25/00 16

Maintenance of the SCM Plan throughout the life of the software product is especially important
as the disciplines of identification, configuration control, status reporting, and release processing
apply throughout the maintenance part of the lifecycle. Differences may be expected in how
change processing is managed; and these need to be understood by all participants.

Projects differ in scope and complexity and a single format for all SCM Plans may not be
desirable or applicable. ANSI/IEEE Std 828-1983 describes a format for plans with a minimum
set of required information and a maximum amount of flexibility. Appendix B provides a
template for an SCM Plan that is compliant with the ANSI/IEEE standard. If a section of the
template is not applicable, insert wording that conveys there is no pertinent information for that
section to indicate that the section has not been overlooked.

A review of each project’s SCM Plan should be periodically performed to assess the
effectiveness of the approach and the extent to which configuration management procedures are
being followed by project staff. This enables adjustments to the SCM Plan to improve the staff’s
ability to follow the procedures and allows for more effective approaches to be incorporated as
they are developed.

Software Configuration Management: A Practical Guide

04/25/00 17

5. Automated Tools for Software Configuration Management

The Software Configuration Management (SCM) automated tools used for a project and
described in the Software Configuration Management Plan (SCM Plan) need to be compatible
with the software engineering environment in which the development or maintenance is to occur.
SCM tools offer a wide range of capabilities and choices have to be made as to the tool set most
useful for supporting the engineering and management environment. [2]

There are many different ways of evaluating SCM tools. One way is to categorize the tools
according to characteristics of their products, such as: a filing system, a database management
system, and an independent knowledge-based system. Another way is to examine the functions
that the tools perform, such as: clerical support, testing and management support, and
transformation support. A third way of categorizing the SCM tools is by how they are integrated
into the software engineering environment on the project. [3]

5.1 Benefits of Using Tools
Configuration management of complex software may depend on ad hoc systems whose
effectiveness is based on close adherence to written procedures. Such systems, which may be
paper-based or electronic, require considerable effort to achieve the necessary levels of integrity
and traceability, particularly for team development projects. Software tools designed for
configuration management can simplify this process and provide better access to the information
required by the developer, project manager, or user.

Software tools for configuration management can provide a number of benefits over paper-based
systems, including: [4]

• Increased reliability and repeatability of the development process through automation of

many mundane processes.
• Ability to track and manage changes within a user-defined process workflow.
• Enhanced productivity, by eliminating wasted effort and speeding up frequent activities such

as the build and support of concurrent development.
• A means to manage product variants.
• Real-time analysis of all development activities.
• Complete audit trails of both software and documentation.
• More effective team management.

5.2 Types of Automated Tools
The automated tools described in this section are classified into broad categories in terms of the
level of automation they provide to the programming environment on a project.

Software Configuration Management: A Practical Guide

04/25/00 18

5.2.1 Basic Tool Set

The basic tool set is compatible with a programming environment that is relatively
unsophisticated. The tools control the information on hard copy regarding a program product.
These tools provide a capability that distinguishes between controlled and uncontrolled units or
components. The tools simplify and minimize the complexity, time, and methods needed to
generate a given baseline.

The basic tool set includes:
• Basic database management systems.
• Report generators.
• Means for maintaining separate dynamic and controlled libraries.
• File system for managing the check in and check out of units, for controlling compilations,

and capturing the resulting products. [3]

5.2.2 Advanced Tool Set

The advanced tool set provides a capability for an SCM group to perform more efficiently on
larger, more complex software engineering projects. These tools provide a programming
environment that has more computing resources available. It provides the means of efficiently
managing information about the units or components and associated data items. It also has
rudimentary capabilities for managing the configurations of the product (building run-time
programs from source code) and providing for more effective control of the libraries.

The advanced tool set includes:
• Items in the basic tool set.
• Source code control programs that will maintain version and revision history.
• Tools for comparing programs for identifying (and helping verify) changes.
• Tools for building or generating executable code.
• A documentation system (word processing) to enter and maintain the specifications and

associated user documentation files.
• A system/software change request/authorization (SCR/SCA) tracking system that makes

requests for changes machine-readable.
• Capability to manage concurrent development efforts. [3]

5.2.3 Online Tool Set

The online tool set requires an interactive programming environment that is available to the
project. It also provides an organization with the minimal SCM capabilities needed to support
the typical interactive programming environment currently available in industry. These tools
provide online access to the programming database and the resources necessary for using the
tools.

Software Configuration Management: A Practical Guide

04/25/00 19

The online tool set includes:
• Generic tools of the advanced tool set integrated so they work from a common database.
• An SCR/SCA tracking and control system that brings generation, review, and approval of

changes online.
• Report generators working online with the common database, and an SCR/SCA tracking

system that enables the SCM group to generate responses to online queries of a general
nature. [3]

5.2.4 Integrated Tool Set

The integrated tool set integrates the SCM functions with the software engineering environment
so that the SCM functions are transparent to the engineer. The software engineer becomes aware
of the SCM functions only when he/she attempts to perform a function or operation that has not
been authorized (for example, changing a controlled entity when the engineer does not have the
required level of authority or control).

An integrated tool set includes:
• Online SCM tools covering all functions.
• An integrated engineering database with SCM commands built into the online engineering

commands commonly used in designing and developing programs (most functions of CM are
heavily used during design and development phases).

• The integration of the SCM commands with online management commands for building and
promoting units and components. [3]

5.3 Tool Selection

SCM tools should be carefully selected to match working practices and ideology. Selection of
SCM tools should be based on the following features.

• Cross-platform support.
• Developer empowerment (librarian or other supervisory role optional).
• Match to existing work practices (task or lifecycle based).
• Tool integration (between components and other software engineering tools).
• Ease of installation and use.
• Code visibility outside tool (to support intranet technology).
• Supplier support before and after delivery.
• Market position of supplier and product.
• Overall cost.

While the selection of tools will be influenced by the functional requirements, tools are
characterized by a series of additional attributes that reflect software engineering practices.
These attributes are briefly summarized below. [4]

Software Configuration Management: A Practical Guide

04/25/00 20

Team Support

Feature Description
Workspace Management Independent workspaces, enabling developers to work

autonomously and yet be informed of any relevant
changes

Concurrent Development Developers work on file(s) concurrently; tools have
merge facilities to ease amalgamation

Tool Integration Interface with development environments and other tools

Remote Development
Feature Description
Distributed Development Support for synchronization and integration of projects

developed at different sites
Third-Party Software Ability to manage subcontracted software development
Internet Support Use of the Internet for file check-in, check-out

Configuration Management
Feature Description
Configuration Specification Record of information pertaining to a specific build
Impact Analysis Calling trees and dependencies
Traceability Relationships between items

Change Management
Feature Description
Problem Tracking Complete record of a problem history, from initial

logging to final close-out
Change Control Authorization and approval for change
Change Sets File-based or task-based changes
Reports and Metrics Dynamic provision of management information

Build and Release Support
Feature Description
Building Automation of the build process
Re-building Identification of source files of the original build
Release Support Formal release and customer records

Software Configuration Management: A Practical Guide

04/25/00 21

Process Management

Feature Description
Lifecycle Support Support of customized lifecycle stages for different

product components
User Roles Promotion through the lifecycle with user-defined roles,

with associated access permissions and responsibilities

Software Configuration Management: A Practical Guide

04/25/00 22

Appendix A: Diagrammatic Representation of Software
Configuration Management and Interfacing Processes

This appendix provides a detailed example of one method for implementing Software
Configuration Management (SCM) and its interfacing processes.

SCM systems interface with all other software processes. The diagram on the next page represents
how these various processes link to a SCM system that consists of a document management center,
a software archive, and a secure software repository.

The text following the diagram describes each process and its interfacing arrangements to the
SCM system.

Software Configuration Management: A Practical Guide

Software Design & Development Process
or Life Cycle

Software
Documents

Source
Code

Testing and Verification

Software
Documents

Source
Code

Source
Code Build

Record

Build Procedure

Issue
Authorized

Issued
Copies

Issue Procedure

Issue
Records

Master
Code

Software
Documents

Software
Documents

Source
Code

Software Change Process

Authorized
Change

Investigate & Authorize

Change
Request

Access Controlled By Software Configuration Manager

Document
Management

Center

Software
Archive

Secure
Software

Repository

04/25/00 23

Software Configuration Management: A Practical Guide

Design and Development Procedure

Software will be developed to a design and development process or lifecycle. The deliverables for
this process could include source code with its associated documentation.

Software Design & Development Process
or Life Cycle

Software
Documents

Source
Code

As development is completed or the project is at a predetermined point such as a software module,
the design is frozen and then verified against its specified requirements. This will be tested via a
test procedure that will also generate results. All items that constitute the software and its
supporting documentation will be identified and then placed under formal configuration
management. This is achieved by placing the software under the control of the software
configuration management system and entered into a secure repository. These configured items
would normally consist of a single set of definitive modules.

Software

Documents

Source
CodeSoftware

Documents

Testing and Verification

Access Controlled By Software Configuration Manager

Document
Management

Center

Software
Archive

Secure
Software

Repository

04/25/00 24

Software Configuration Management: A Practical Guide

Build Procedure

Assembling the software system will usually involve the use of tools to transform the source item
or modules produced by the developer into executable programs. The exact procedure used to
build a piece of software can affect its operation and must therefore be controlled and documented.

Source
Code

Build

Record

Build Procedure

The build procedure includes definition of the tools involved (including versions) and their
settings. It will possibly call up “make” files, “linker” files, “batch” files, etc. These files must be
managed in the same way as source modules and be subject to the same controls. The decision to
build a new version must be appropriately authorized and documented. The documentation (build
record) shall include the new version number and a list of all the relevant modules (with their
version numbers). The build procedure could include the input of the overall version number into
the software. Following the build, the new version of the program, together with all of the source
files required (including library files, header files, make and linker files) must be archived. This
archive will be under control of the Configuration Manager. The archive should provide the
facility to rebuild the program at some future date.

04/25/00 25

Software Configuration Management: A Practical Guide

Issue
Authorized Issued

Copies

Issue Procedure

Issue
Records

Master
Code

04/25/00 26

Software Configuration Management: A Practical Guide

Issue Procedure

Each new version of a program should be used to produce a new master disk(s) stored under
controlled access conditions. A unique serial number should be allocated and documentation up-
dated. Any old master disks should be archived. The master disks should not be used for any
other purpose than creating other disks. The program should never be run from them and a master
disk should be “write protected” after creation. Access to the master disk should be restricted to
the Configuration Manager or designated deputy.

Change Procedure

During the lifetime of a software module it is likely that it will become necessary to modify it. It
is essential that modifications be carried out in a controlled manner. A software change is initiated
by the submission of a Software Change Request. It must specify the change required or fault
reported, reasons for the change, and an indication of priority.

Testing and Verification

Software
Documents

Source
Code

Software Change Process

Authorized
Change

Investigate & Authorize

Change
Request

Once the Software Change Request has been submitted it should be investigated. The
investigation should identify the software modules affected including any effects on other modules
or overall program features and the effort required to implement and verify the change. Reference
to the module(s) and documentation held in the software repository should be made. The Software
Change Request must be authorized by the appropriate level of authority. Once authorized, the
change can be implemented. The software change then enters the testing, verification, and review
process. Following review the new version is authorized and issued; the previous version
(software and documentation) should be archived. It is essential that all associated documentation
is modified and re-issued appropriately; the change documentation should also be archived.

04/25/00 27

Software Configuration Management: A Practical Guide

04/25/00 28

Consideration should be given to informing all users of the availability and reason for the new
version. The withdrawal of old versions should be controlled and documented.

Software Repository

The software repository is a secure container with access controlled by the Configuration
Manager. It may simply be a drawer with a store for disks and a file with appropriate control
forms. It is emphasized that the control of the software documentation is as important as the actual
software.

Software Configuration Management: A Practical Guide

04/25/00 29

Appendix B: SCM Plan Template

Software Configuration Management Plan

The following sample outline provides a brief description of the content of each section and
subsection for a SCM Plan. [3] Each section should be further subdivided to reflect the level of
detail appropriate for the project for which the SCM Plan applies.

1. INTRODUCTION

• Purpose – Provide information on the requirements and procedures necessary for the
configuration management of the software engineering project. State that the plan
identifies the SCM requirements and establishes the methodology for generating
configuration items, controlling engineering changes, maintaining status accounting, and
performing audits and reviews.

• Scope – Identify the phases of the software development lifecycle addressed by the plan.

State that the plan applies to all software and related documentation used in the production
of the software product.

• Definitions and Abbreviations – Provide definitions of the terms used in the plan or cite an

industry standard source for definitions such as the ANSI/IEEE Std 729-1983, IEEE
Standard Glossary of Software Engineering Terminology. Provide full text wording for all
abbreviations used in the plan.

• References – Identify the standards and other resources used in developing the SCM Plan.

• Management – Define and describe the framework within which administrative and

technical control of SCM activities will be integrated into the software engineering project.
Describe organizational features that impact the SCM system planned for the software
engineering project. Identify all SCM policies, directives, and procedures that apply to the
project.

2. CONFIGURATION IDENTIFICATION

• Responsibility – Designate appropriate responsibility and authority for SCM identification
activities.

• Identify Software Configuration Items – Identify the software and documentation items in

the project that are subject to change. Provide detailed information on how to identify each
item to be controlled. (Refer to section 2.1, Configuration Identification, for information
about configuration items.)

Software Configuration Management: A Practical Guide

04/25/00 30

3. CONFIGURATION CONTROL

• Responsibility – Designate appropriate responsibility and authority for SCM control
activities.

• Third-Party Controls – Describe the controls that will be implemented for software

provided by subcontractors or vendors.

• Configuration Control Board (CCB) – Describe the responsibilities of those involved with
SCM. A list of CCB members, or the titles of members, should also be included. (Refer to
section 2.2.2, Levels of Authority, for information on configuration control boards.)

• SCM Libraries – Define the SCM libraries required to maintain controlled SCM

environments. Note any differences in the SCM procedures for each library. (Refer to
section 2.2.1, Procedures for Controlling Changes, for information on software libraries.)

• Baseline Change Control Procedures – Define software and documentation problem

reporting, software change procedures, and software release methods. Outline the
procedures for processing various types of changes to the identified baselines, including
utilization of the Change Control Board, change control forms, testing, and DOE interfaces.
(Refer to section 2.2, Configuration Control, for information about change control
procedures.)

4. CONFIGURATION STATUS ACCOUNTING

• Responsibility – Designate appropriate responsibility and authority for SCM status

accounting activities.

• Recording – Define the tracking processes for collecting, storing, handling, and verifying

software configurations.

• Reporting – Define the method by which information will be presented to management.
Both ad hoc inquiry capability and periodic milestone reporting should be covered.

(Refer to section 2.3, Configuration Status Accounting, for related information.)

5. AUDITS AND REVIEWS

• Responsibility – Appropriate responsibility and authority must be designated for SCM

auditing activities.

• Audits – Describe and provide the schedule for the planned project audits including the

Physical Configuration Audits and the Functional Configuration Audits.

Software Configuration Management: A Practical Guide

04/25/00 31

• Baseline Review Procedures – Provide plans for the required project reviews. Typical
project reviews include the critical design review, system requirements review, and
software specifications review.

(Refer to section 2.4, Audits and Reviews, for related information.)

6. TOOLS, TECHNIQUES AND METHODOLOGIES

Describe the automated tools, techniques, and methodology that will be used to perform the
activities described in the SCM Plan. Include records collection and retention plans for all SCM
artifacts.

APPENDIXES

• Forms and Instructions – Attach any forms and their instructions that are identified in the
SCM Plan and used in the SCM system such as the Software Change Request and Software
Change Authorization forms.

• System Definition – Describe the owners and potential users of the project, the hardware

and software configuration, interfaces, and other vendor software. Also identify any
further enhancements that may cause a redefinition of the system.

• Site-Specific Software Configuration Management Plan – Describe any site-specific SCM

that may vary according to remote system locations.

Software Configuration Management: A Practical Guide

04/25/00 32

Appendix C: SCM Checklist

Create procedures to ensure identification and control of all configuration items and
baselines including necessary changes to those items.

Identify appropriate tools or methods to support the configuration system including change
control and methods of backup.

Document procedures for review and authorized release of products consistent with the level
of testing applied.

Develop a mechanism for coordinating the updating of software at all customer locations.

Create procedures for replication and subsequent verification and product identification
activities.

When a configuration management software tool is employed, clearly document the use of
that tool.

Develop a mechanism to support the labeling or other means of identification of third-party
supplied products including, where necessary, integration into the configuration management
system.

Develop a mechanism to ensure that software or designs produced or modified externally to
the organization (for example by a subcontractor) are fully integrated into the configuration
control process.

Determine how the software configuration management system will be tailored to
accommodate the size and complexity of the project.

Software Configuration Management: A Practical Guide

04/25/00 33

Appendix D: Glossary and Abbreviations

The following abbreviations and definitions apply to the terms used in this practical guide.

Baseline – A specification or product that has been formally reviewed and agreed upon, that
thereafter serves as the basis for further development, and that can be changed only through
formal change control procedures. (2) A document or set of documents formally designated and
fixed at a specific time during the lifecycle of a configuration item. [1]

Component – One of the parts that make up a system. A component may be hardware or
software and may be subdivided into other components. [1]

Configuration Control – An element of configuration management, consisting of the
evaluation, coordination, approval or disapproval, and implementation of changes to
configuration items after formal establishment of their configuration identification. [1]

Configuration Control Board (CCB) – A group of people responsible for evaluating and
approving or disapproving proposed changes to configuration items, and for ensuring
implementation of approved changes. [1]

Configuration Identification – An element of configuration management, consisting of
selecting the configuration items for a system and recording their functional and physical
characteristics in technical documentation. [1]

Configuration Item (CI) – An aggregation of hardware, software, or both, that is designated for
configuration management and treated as a single entity in the configuration management
process. [1]

Configuration Management (CM) – A discipline applying technical and administrative
direction and surveillance to: identify and document the functional and physical characteristics
of a configuration item, control changes to those characteristics, record and report change
processing and implementation status, and verify compliance with specified requirements. [1]

Configuration Status Accounting (CSA) – An element of configuration management,
consisting of the recording and reporting of information needed to manage a configuration
effectively. This information includes a listing of the approved configuration identification, the
status of proposed changes to the configuration, and the implementation status of approved
changes. [1]

DRAM – Dynamic Random Access Memory

[EEP]ROM – Erasable Electrically Programmable Read Only Memory

[EP]ROM – Electrically Programmable Read Only Memory

Software Configuration Management: A Practical Guide

04/25/00 34

Entity – Any component of a software product such as source code, specifications, documents,
development tools, and test data.

Firmware – The combination of a hardware device and computer instructions and data that
reside as read-only software on that device. [1] Computer software and data loaded in a class of
memory that cannot be dynamically modified by the computer during processing.

Functional Configuration Audit (FCA) – An audit conducted to verify that the development of
a configuration item has been completed satisfactorily, that the item has achieved the
performance and functional characteristics specified in the functional or allocated configuration
identification, and that its operational and support documents are complete and satisfactory. [1]

Physical Configuration Audit (PCA) - An audit conducted to verify that a configuration item,
as built, conforms to the technical documentation that defines it. [1]

RAM - Random Access Memory

ROM - Read Only Memory

SCA - Software Change Authorization

SCCB - Software Configuration Control Board

SCM – Software Configuration Management

SCMP – Software Configuration Management Plan

SCR - Software Change Request

Software – Computer programs, procedures, and possibly associated documentation and data
pertaining to the operation of a computer system. [1]

Software Configuration Management - The process of identifying and defining the software
configuration items in a system, controlling the release and change of these items throughout the
system lifecycle, recording and reporting the status of configuration items and change requests,
and verifying the completeness and correctness of configuration items.

Software Engineering – The application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software; that is, the application of engineering
to software.

Software Library – A controlled collection of software and related documentation designed to
aid in software development, use, or maintenance. [1]

Software Product – The complete set of computer programs, procedures, and possibly
associated documentation and data designated for delivery to a user. [1]

Software Configuration Management: A Practical Guide

04/25/00 35

Software Repository – A software library that provides permanent, archival storage for software
and related documentation. [1]

Source Code – Computer instructions and data definitions expressed in a form suitable for input
to an assembler, complier, or other translator.

Unit – A separately testable element specified in the design of a computer software component.
A software component that is not subdivided into other components. [1]

Version – An initial release or re-release of a computer software configuration item, associated
with a complete compilation or recompilation of the configuration item. [1]

Software Configuration Management: A Practical Guide

04/25/00 36

Appendix E: Sample Configuration Management Forms
E.1 Software Change Request Form 1

System/Software Change Request

 SCR Number

1. Submitted by: Date: / /

 Project Name:

2. Software Program/Document Name:

 Version/Revision

3. SCR Type: (1- Development, 2 - Problem, 3 - Enhancement)

4. Short Task Description:

5. Detail Description

6. Submitter’s Priority [] 1 = Critical 2 = Very Important 3 = Important 4 = Inconvenient 5 = Interesting

7. CCB Action: CCB Priority []

8. Assigned to: Target Release Date

9. Solution Comments:

10. Other Affected Software Configuration Items:

11. I&T Approval Date:

 SCM Approval Date:

12. Actual Release Date:

13. Closed by Date:

 SCA Reference No.

14. SQA Approval Date:

1 This form was modified from the original version that appeared in ANSI/IEEE Std 1042-1987

Software Configuration Management: A Practical Guide

04/25/00 37

E.2 Software Change Authorization Form2

Software Change Authorization

 SCA Number:
 Sheet Number: 1
Submitter: System: Date / / Time: / / 00:00:00

Product Version ID: Computer Name

Input
Names

Release
Names

Module
Types

L
N

A
C

System/Software Change Request Numbers

Comments

Approvals

Integration & Test (I&T)

SCM

SQA
Signature

Date

2 This form was modified from the original version that appeared in ANSI/IEEE Std 1042-1987

Software Configuration Management: A Practical Guide

04/25/00 38

Appendix F: References/Resources

The following publications were used in the preparation of this guide. Later versions of some of
the standards may have been published after the research was performed for this guide.

[1] ANSI/IEEE Std 729-1983, IEEE Standard Glossary of Software Engineering Terminology.

[2] ANSI/IEEE Std 828-1990, IEEE Standard for Software Configuration Management Plans.

[3] ANSI/IEEE Std 1042-1987 (Reaff 1993), IEEE Guide to Software Configuration
Management.

[4] AWE/DOQ/15/16/00-AT44, A Guide to Software Configuration Management, AWE
Hunting-Brae, December 24, 1997.

[5] Bersoff, Edward H., “Elements of Software Configuration Management,” IEEE Transactions
on Software Engineering, January 1984.

[6] Pressman, R., Software Engineering: A Practitioner’s Approach, 3rd ed., McGraw-Hill, New
York, NY, 1997.

[7] SAND85-2347, Sandia Software Guidelines, Volume 4, Configuration Management, Sandia
National Laboratories, 1992.

[8] The TickIT Guide, A Guide to Software Quality System Construction and Certification to
ISO 9001, British Standards Institution, London, January 12, 1998.

[9] DOE Software and Systems Engineering Web site: http://cio.doe.gov/smp

[10] Dorofee, Audrey J., et al, Continuous Risk Management Guidebook, Carnegie Mellon
University, 1996.

[11] Carnegie Mellon University Software Engineering Institute Web site:
http://www.sei.cmu.edu

http://cio.doe.gov/smp

	
	1. What Is Software Configuration Management?
	1.1 Why Is Software Configuration Management Important?
	1.2 What Are the Benefits of Software Configuration Management?
	2.1 Configuration Identification
	2.2 Configuration Control (Change Control)
	2.2.1 Procedures for Controlling Changes

	2.3 Configuration Status Accounting
	2.4 Audits and Reviews
	2.5 Release Processing
	3. Tailoring Software Configuration Management to Different Software Environments
	Firmware raises some special considerations for configuration management. While being developed, the disciplines of SCM apply, but when made part of the hardware (e.g., burned into [EP]ROM or [EEP]ROM), the disciplines of hardware configuration management apply. Testing may vary, but the SCM requirements are generally the same. The packaging of [EP]ROM or [EEP]ROM versus RAM or DRAM code also introduces and necessitates different identification procedures. 4. Planning for Software Configuration Management
	5.1 Benefits of Using Tools
	5.2 Types of Automated Tools
	5.2.1 Basic Tool Set
	5.2.2 Advanced Tool Set
	5.2.3 Online Tool Set
	5.2.4 Integrated Tool Set

	5.3 Tool Selection

	 Appendix B: SCM Plan Template
	Software Configuration Management Plan

	
	Appendix C: SCM Checklist
	
	Appendix D: Glossary and Abbreviations
	 Appendix E: Sample Configuration Management Forms
	E.1 Software Change Request Form
	SCR Number
	1.
	Submitted by:
	Date:
	 / /
	Project Name:
	2.
	Software Program/Document Name:
	Version/Revision
	3.
	SCR Type: (1- Development, 2 - Problem, 3 - Enhancement)
	4.
	Short Task Description:
	5.
	Detail Description
	6.
	Submitter’s Priority []
	1 = Critical 2 = Very Important 3 = Important 4 = Inconvenient 5 = Interesting
	7.
	CCB Action:
	CCB Priority []
	8.
	Assigned to:
	Target Release Date
	9.
	Solution Comments:
	10.
	Other Affected Software Configuration Items:
	11.
	I&T Approval
	Date:
	
	SCM Approval
	Date:
	
	12.
	Actual Release
	Date:
	
	13.
	Closed by
	Date:
	SCA Reference No.
	14.
	SQA Approval
	Date:
	
	
	 E.2 Software Change Authorization Form
	 Appendix F: References/Resources

