SCAP In Action

Demos of Common SCAP Use Cases

Charles Schmidt
Bryan Worrell
Dan Haynes
Documented SCAP Use Cases (from NIST SP 800-117)

- Security Configuration Verification
 - SCAP-expressed benchmarks
- Requirements Traceability
- Standardized Security Enumerations
- Vulnerability Measurement
Common Use Cases For Today

- Benchmarks
- Incident Response
- Vulnerability Management
- Data Calls

TOOLS

- Recommendation Tracker (MITRE)
- eSCAPe (G2)
- OVAL Definition Interpreter (MITRE)
- XCCDF Definition Interpreter (MITRE)
Benchmarks

- Encapsulations of policies in a standardized format
 - Human-readable descriptions
 - Machine processing instructions
- Combination of
 - Policy descriptions standards
 - Automated assessment standards
 - Information correlation standards
- Structured sets of Rules (recommendations)
 - Tailoring allows customized selection of Rules and how those rules would be automated
What can a Benchmark Rule Tell Us

- Recommendation
 - Structure encourages specific, concise, and unambiguous directives
- Rationale
 - States what the control is
 - Risks of not implementing the recommendation
 - Risks of following the recommendation, if appropriate
- How To
 - Step-by-step instructions
- References
 - Correlations to other material (CVE, CCE, CPE, and documents)
- Compliance Check
 - Reference to OVAL or OCIL
Creating a Benchmark

- Add a tool to express the policy in XCCDF
- E.g. Recommendation Tracker (RT)
- Based on good security practices
 - E.g. NIST's 800-53 Controls
- Develop specific security recommendations
XCCDF & Compliance Checks (OVAL)

- Structure and tailor machine- & human-readable
 - RT facilitates XCCDF benchmark creation
- Automated compliance checks are associated with benchmark rules
 - eSCAPe facilitates OVAL check creation
Benchmark Creation Demo
What did we get from SCAP?

- XCCDF used to structure policy
 - Supports human readers and machine assessors
 - Allows tailoring – “One size does not fit all”
- OVAL/OCIL support automated assessment
 - Universal interpretation of compliance
 - Quick, automated results
- CPE/CCE support correlation
 - Clear expression of relevant platforms
 - Clear expression of relevant configuration controls
Incident Response

Operation Aurora

- Starting in mid-December 2009
- Publicly report in January 2010
- Claimed by Google to have originated in China
- Publicly confirmed by high profile companies
Incident Response Demo
What did we get from SCAP?

- CVEs to track alerts and responses
- OVAL provides a clear description of what it means to be vulnerable, mitigated, and patched
 - Content is publicly reviewed for accuracy
- SCAP compatible tools can use OVAL for automatic assessments
 - All tools will test for the same thing – no disagreement
Vulnerability Management

- Collection of Advisories and Responses
- Aligned with Patch Management

- SCAP Use Case
 - Collection of OVAL tests to ascertain health of systems
 - Refer to CVE and CVSS to determine coverage
 - XCCDF can be used as wrapper (or not)
Data Calls

Assume broad deployment of SCAP tools in the DOE ...

- SCAP can be used to automate Data Call process
 - Using XCCDF, OVAL, and OCIL
 - SCAP content distributed and executed at remote sites
- SCAP reports easily consolidated
- Less labor intensive with faster responses
 - SCAP automation
 - Standardized report formats
Useful Data Call Standards

- OCIL is a natural choice for Q&A data collection
- More technical options using OVAL
 - Is a machine running Windows 7?
 - Is this patch installed on all systems?
 - Is my system vulnerable to this attack?
Data Call Demo
What did we get from SCAP?

- OVAL/OCIL support automated assessment
 - Universal interpretation of compliance
 - Quick, automated results
- Many SCAP-compatible tools to process content
 - No “lock-in” to any single vendor
 - “No-frills” tools freely available
- Standardized result formats
 - Open, XML format supports mechanical roll-up & analysis
Questions
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCE</td>
<td>Common Configuration Enumeration</td>
</tr>
<tr>
<td>CPE</td>
<td>Common Platform Enumeration</td>
</tr>
<tr>
<td>CVE</td>
<td>Common Vulnerabilities and Exposures</td>
</tr>
<tr>
<td>CVSS</td>
<td>Common Vulnerability Scoring System</td>
</tr>
<tr>
<td>eSCAPe</td>
<td>Enhanced SCAP Editor</td>
</tr>
<tr>
<td>OCIL</td>
<td>Open Checklist Interactive Language</td>
</tr>
<tr>
<td>OVAL</td>
<td>Open Vulnerability and Assessment Language</td>
</tr>
<tr>
<td>OVAL DI</td>
<td>OVAL Definition Interpreter</td>
</tr>
<tr>
<td>RT</td>
<td>Recommendation Tracker</td>
</tr>
<tr>
<td>SCAP</td>
<td>Secure Content Automation Protocol</td>
</tr>
<tr>
<td>XCCDF</td>
<td>Extensible Configuration Checklist Description Format</td>
</tr>
<tr>
<td>XCCDF DI</td>
<td>XCCDF Definition Interpreter</td>
</tr>
<tr>
<td>XML</td>
<td>Extensible Markup Language</td>
</tr>
</tbody>
</table>