OE Peer Review

Smart Grid R&D

November 2-4, 2010

Eric Lightner
Merrill Smith
Dan Ton
Presentation Outline

- OE Program Overview
- Smart Grid Program Goals and Strategies
- OE Programs Addressing Smart Grid Development
 - Recovery Act Programs
 - Smart Grid R&D Base Program
- International Coordination
OE Programs and Funding

(Dollars in Thousands)

<table>
<thead>
<tr>
<th></th>
<th>FY 2010</th>
<th>FY 2011</th>
<th>FY 2010 Appropriation to FY 2011 Request</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research and Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Energy Transmission and Reliability</td>
<td>37,373</td>
<td>35,000</td>
<td>34,000</td>
</tr>
<tr>
<td>Smart Grid Research and Development*</td>
<td>31,541</td>
<td>39,293</td>
<td>34,872</td>
</tr>
<tr>
<td>Energy Storage</td>
<td>13,608</td>
<td>40,000</td>
<td>26,674</td>
</tr>
<tr>
<td>Cyber Security for Energy Delivery Systems</td>
<td>38,880</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>SUBTOTAL, Research and Development</td>
<td>121,402</td>
<td>144,293</td>
<td>125,546</td>
</tr>
<tr>
<td>Permitting, Siting, and Analysis</td>
<td>6,400</td>
<td>6,400</td>
<td>6,400</td>
</tr>
<tr>
<td>Infrastructure Security and Energy Restoration</td>
<td>6,187</td>
<td>6,188</td>
<td>6,187</td>
</tr>
<tr>
<td>Program Direction</td>
<td>21,420</td>
<td>29,049</td>
<td>27,049</td>
</tr>
<tr>
<td>Congressionally Directed Activities</td>
<td>13,075</td>
<td>6,800</td>
<td>4,250</td>
</tr>
<tr>
<td>TOTAL, Electricity Delivery and Energy Reliability</td>
<td>168,484</td>
<td>185,930</td>
<td>171,982</td>
</tr>
</tbody>
</table>

*Included in Smart Grid R&D is Power Electronics R&D with an FY10 budget of $5M and an estimated FY11 budget of $10M.

**$4.5 billion in ARRA funds was appropriated to OE in FY09.
Smart Grid Program Goals & Strategies

Goals

- Dynamically optimize grid operations and resources
- Fully integrate demand response and consumer participation into grid resource planning and operations

Strategic Areas of Focus

21st Century Smart Grid

- Grid Self-Optimization
- Highly Differentiated Reliability
- Automated Efficiency
- End-to-End Automation
- Clean Resource Optimization
- Demand Management
- Local Power Parks
- Online Energy Efficiency & Management
- Distribution Automation
- Electric Vehicle Management
- Load Curtailment
- Emergency Power
- EE Programs
- Advanced Metering
- Distributed Renewables
- Capacity
- Power Quality & Reliability
- Energy Efficiency
- Operational Efficiency
- Clean Technology

Foundation / Infrastructure
Alignment with DOE Objective & Target

Smart Grid R&D
- Demand response & consumer participation

STEP Goal 4
- Cut grid losses to less than 5% and reduce capital required for expansion by 20% by 2030 and by 50% by 2050

DOE Target
- By 2019, 25% of American households and businesses will have real-time knowledge of their energy use and the tools to manage it

STEP Goals 4&5
- Enable innovation in grid system design and operation, and create a robust, flexible and secure “plug and play” grid by 2020

DOE Objective
- Modernize the electric grid within 10 years to increase consumer choice, reduce cost, and increase reliability and flexibility of the energy system
OE Programs Addressing Smart Grid Development

Recovery Act
Commercial applications and demonstrations of near-term technology

Smart Grid R&D Program
- Renewable and distributed systems integration
- Longer-term R&D
 - Microgrids
 - Multi-Year Program Plan implementation
Recovery Act Smart Grid Development
$4.5 Billion for Grid Modernization in Recovery Act Funding

- Title XIII - Smart Grid, Energy Independence and Security Act of 2007
 - $620M for demonstration projects (Section 1304)
 - $3.375B for matching for deployment (Section 1306)

Amounts are in billion US Dollars

SEE: http://www.energy.gov/recovery
Recovery Act: Smart Grid Investment Grants

(100 projects: $3.4B Federal; $4.7B non-Federal)

<table>
<thead>
<tr>
<th>Smart Grid Systems and Equipment</th>
<th>Numbers of Units (self-reported estimates)</th>
<th>Improvements</th>
<th>Impacts</th>
</tr>
</thead>
</table>
| Networked Phasor Measurement Units | 877 | • Near-nationwide coverage
 • 6X the 166 existing networked PMUs | Enhanced situational awareness and electric system reliability and resiliency |
| Smart Transformers | 205,983 | • Enables preventative maintenance | |
| Automated Substations | 671 | • 5% of 12,466 transmission and distribution substations in U.S. | |
| Load Control Devices | 176,814 | • Enables peak demand reductions | 1444 MWs of peak demand reduction per year (self-reported estimates) |
| Smart Thermostats | 170,218 | • Enables peak demand reductions | |
| Smart Meters | 18,179,912 | • 13% of the 142 million customers in the U.S. | Transformational changes in consumer behavior and energy consumption |
| In-Home Display Units | 1,183, 265 | • Enables customer empowerment | Begin the path toward energy independence |
| PHEVs / Charging Stations | 12 / 100 | • Accelerates market entry | |
SGIG: AMI & Customer Systems

Number of SGIG projects offering individual dynamic pricing programs and enabling technologies

Dynamic Pricing Programs

- TOU: 51
- RTP: 22
- CPP: 46
- CPR: 2
- PTR: 4

Enabling Tech

- Direct Load Control: 55
- Smart Thermostat: 48
- In-Home Display: 55
- Web Portal: 37
SGIG: Distribution Automation

Distribution Automation Function

- Automated Feeder Switches and Reclosers: 20
- Smart Relays and RTUs: 18
- SCADA/HMI: 29
- Feeder Monitors: 15
- Remote Fault Indicators: 15
- Transformer Monitors (Line): 9
- Capacitor Bank/Controller: 23
- Regulator: 17
- Load-Tap Changers: 4
- Distributed Generation Control/Monitoring: 15
SGIG: Transmission System

Transmission Function

- Phasor Data Concentrators: 12
- Angle/Frequency Monitoring: 15
- State Estimation/Enhanced State Estimation: 8
- Voltage Stability Monitoring, Line Protection and Control: 12
- Renewable Integration (DG): 10
- Power System Restoration: 4
- Post Event Analysis (DDR): 7
- Real-time Situation Awareness / Visualization: 5
Accelerating Smart Grid Interoperability Standards Development

Through close work with DOE and over 600 stakeholders, the NIST Smart Grid Interoperability Standards Program has:

- Released **NIST Framework and Roadmap** for Smart Grid Interoperability Standards, Release 1.0
- Released Guidelines for **Smart Grid Cyber Security**
- Launched **Smart Grid Interoperability Panel (SGIP)** to provide a forum for collaboration with the private sector
Recovery Act: Smart Grid Regional Demonstrations
($435M Federal; $877M non-Federal)

16 Awards Support Projects in 21 States

- Demonstrate cutting edge SG technology (including integration of renewables)
- Prove ability/ease to replicate
- Show benefits (with actual data)
- Validate business models
- Address regulatory and scalability issues
Examples of Smart Grid Regional Demonstrations

The Pecan Street Project in Austin, Texas, is developing an Energy Internet microgrid in a large mixed-use infill (Brownfield) development. The microgrid will integrate clean energy generation, smart grid water systems, distributed storage, smart appliances, PEVs, and AMI with pricing models for 1,000 residences and 75 businesses.

AEP Ohio’s gridSMART is demonstrating a secure, interoperable, and integrated smart grid infrastructure for 110,000 consumers, with integrated Volt-VAR control, distribution automation, AMI, home area network, PEVs, smart appliances, community energy storage, NaS battery, and renewable generation.
Smart Grid R&D Base Program
Ongoing and Planned Activities
Objective:
To encourage use of distributed resources to provide power during peak load periods (minimum of 15% reduction in peak load on distribution feeder or substation) and for other functions/services.

Projects are either microgrids or are developing technologies that will advance microgrids.

Systems must be capable of operating in both grid parallel and islanded modes.

$55 million of DOE funds over five years (total value of awards will exceed $100 million, including participant cost share).

Lower Peak Demand Reduces Infrastructure Investments

5% = ~400 hrs/yr

25% of distribution & 10% of generation assets (transmission is similar), worth 100s of billions of US dollars, are needed less than 400 hrs/year!
Renewable and Distributed Systems Integration for Peak Load Reduction

- **Chevron Energy Solutions**—CERTS Microgrid Demo at the Santa Rita Jail - large-scale energy storage, PV, fuel cell
- **SDG&E**—Beach Cities Microgrid - demand response, storage, outage management system, automated distribution control, AMI
- **U of HI**—Transmission Congestion Relief, Maui - intermittency management system, demand response, wind turbines, dynamic simulations modeling
- **UNLV**—“Hybrid” Homes - Dramatic Residential Demand Reduction in the Desert Southwest - PV, advanced meters, in-home dashboard, automated demand response, storage
- **ATK Space System**—Powering a Defense Company with Renewables - Hydro-turbines, compressed air storage, solar thermal, wind turbines, waste heat recovery system
- **City of Fort Collins**—Mixed Distributed Resources - PV, bio-fuel CHP, thermal storage, fuel cell, microturbines, PHEV, demand response
- **Illinois Institute of Technology**—The Perfect Power Prototype - advanced meters, intelligent system controller, gas fired generators, demand response controller, uninterruptable power supply, energy storage
- **Allegheny Power**—WV Super Circuit Demonstrating the Reliability Benefits of Dynamic Feeder Reconfiguration - biodiesel combustion engine, microturbine, PV, energy storage, advanced wireless communications, dynamic feeder reconfiguration
- **ConEd**—Interoperability of Demand Response Resources - demand response, PHEVs, fuel cell, combustion engines, intelligent islanding, dynamic reconfiguration, and fault isolation
Longer-term Smart Grid R&D Multi-Year Program Plan (FY10-14)

R&D Areas

- Standards & Best Practices
- Technology Development
- Modeling
- Analysis
- Evaluation & Demonstrations

Focusing on

Distribution Systems
Customer Solutions
Interfaces & Integration with Transmission and Generation Systems
Smart Grid R&D MYPP
Development & Implementation

MYPP to guide Smart Grid R&D investments with staged development process

- Meeting in October 2009 involving national labs
- Stakeholder Roundtable Meeting in December 2009
- Public comment in March-April 2010

MYPP implementation

- Funding opportunity announcement for private sector-led projects (5 awards expected in October 2010 with estimated $20M DOE funding over 5 years)
- Program review of national lab R&D in June
- Peer review of all R&D projects in November
FY 2010 Funding by SG R&D Area & by Sector

FY10 Budget: $25 M
(excludes PE, crosscut, SBIR/STTR)
FY 2011 Program Planning

$34.8M - $39.2M in FY11

- Smart Grid R&D, $24.8M - $29.2M
 - ~$10M planned for continued funding to AOPs for support of MYPP high-priority tasks
 - ~$10M planned for the final year funding of the FY10 FOA projects
 - ~$2.5M for crosscut, analysis, SBIR/STTR, etc.
 - ~$2M - $6M for new, competitively awarded projects potentially in the following areas
 * Simulation of impacts of PEV charging scenarios on prototypical feeder circuits
 * Field demonstrations of PEV charging scenarios to test, refine, and validate simulation models
 * Microgrid development and demonstration

- Power Electronics, $10M
Outyear Program Planning

- Addressing heightened needs for critical smart grid communications & controls to manage increasing variability from higher penetration of:
 - Renewable energy generation
 - PEVs
 - Demand response and load management

- **Technology pathway:** Integration of smart grid technology, advanced distribution architecture, and modeling and simulation to meet resource management needs for progressive penetration levels of:
 - Renewable energy generation (15-30%)
 - PEVs (combinations of circuit loading and rating, charging scenarios, etc.)
 - Demand response and load management (15-25%)
 - Combinations of the above

- Launch integration development at prototypical feeders under high-penetration use cases
Representatives met for first time during GridWise Global Forum in September

Developing a portfolio of projects across five key engagement areas with distributed leadership

First project: Global Smart Grid Inventory
Contact Information

<table>
<thead>
<tr>
<th>Name</th>
<th>Phone Number</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Lightner</td>
<td>(202) 586-8130</td>
<td>eric.lightner@hq.doe.gov</td>
</tr>
<tr>
<td>Merrill Smith</td>
<td>(202) 586-3646</td>
<td>merrill.smith@hq.doe.gov</td>
</tr>
<tr>
<td>Dan Ton</td>
<td>(202) 586-4618</td>
<td>dan.ton@hq.doe.gov</td>
</tr>
</tbody>
</table>

Office of Electricity Delivery and Energy Reliability
U.S. Department of Energy

For more Smart Grid information:

OE: www.oe.energy.gov
Smart Grid: www.smartgrid.gov
Smart Grid Task Force: www.oe.energy.gov/smartgrid_taskforce.htm