Non-Linear Seismic Soil Structure Interaction (SSI) Method for Developing Non-Linear Seismic SSI Analysis Techniques

Justin Coleman, P.E.

October 25th, 2011
Presentation Outline

- Purpose of Presentation
- Linear versus Non-Linear Seismic SSI
- Non-Linear seismic Soil Structure Interaction (NLSSI) Studies
- The NLSSI Introduction
- Non-Linearity in Seismic SSI Analysis
- Commercial Software Elements
- Commercial Software Non-Linear Constitutive Models
- Non-Linear Seismic SSI Damping
- Demonstration of Time Domain 2D Model
- NLSSI Validation Approach
- NLSSI Implementation
- Need For NLSSI
- Conclusions
Purpose of Presentation

- The purpose of the presentation is to establish the need for using non-linear analysis software for performing NLSSI analysis.

- Propose a method for implementing NLSSI analysis in nuclear facilities.
Linear versus Non-Linear Seismic SSI

Linear Frequency Domain SSI
- (SASSI, CLASSI, e.t.)
- Generally Provides Conservative Facility Analysis for Low Amplitude Events
- Limited to Equivalent Linear Systems
- Soil and Structure Do Not Separate
- Hard to Quantify Facility Margin Against Failure

Non-Linear Time Domain SSI
- NLSSI (ABAQUS, LSDYNA, e.t.)
- Has Capability to Provide Reasonable Results for Large Amplitude Events
- Perform Non-Linear Analysis
- Soil and Structure Separate
- Can Quantify Facility Margin Against Failure
Non-Linear Seismic SSI Studies

- Studies indicate the need for performing non-linear analysis techniques
 - “EFFECT ON NON-LINEAR SOIL-STRUCTURE INTERACTION DUE TO BASE SLAB UPLIFT ON THE SEISMIC RESPONSE OF A HIGH-TEMPERATURE GAS-COOLED REACTOR (HTGR)” Kennedy, R.P. et al. 1975

 - NUREG/CR-6957, CORRELATION OF ANALYSIS OF JNES SEISMIC WALL PRESSURE DATA FOR ABWR MODEL STRUCTURES, Xu et al., 2008

 - “Three-dimensional nonlinear seismic ground motion modeling in basins,” Xu et al, 2002

NUPEC Field Test Model of Reactor Building with Embedment
Non-Linear Soil Structure Interaction analysis method (NLSSI)

- Utilize commercially available time domain explicit software to perform seismic SSI
- Commercially available non-linear analysis software GUI interfaces provide less user error.
- Commercial software packages with robust quality assurance programs provide software control
- Fast computer processors on multiple cores provides reasonable solving times for complex time domain problems.
- The NLSSI analysis approach potentially provides more realistic representation of facility response during earthquake motion
 - Better understanding of margin against failure
 - Provides a more accurate representation of the soil and facility
Types of non-linearity in SSI analysis

- Geometric
 - Contact – Sliding and Separation
 - Non-linear springs
- Material
 - Elastic/Plastic
- Non-linear soil behavior
- Non-linear behavior between soil and structure (i.e. the inability of soil to resist tension)
- Non-linear behavior of the structure (i.e. steel and concrete)
Commercial Software Elements

- Commercial software packages provide a large range of suitable structural elements
 - Solid element
 - Shell elements
 - 3D beam
 - Infinite Elements - Passes waves through boundaries.
Commercial Software Non-Linear Constitutive Models

- Material Models for commercially available software:
 - Cracked Concrete Constitutive Models – Developed to match concrete stiffness reduction or load displacement curves
 - Soil Plasticity Constitutive Models
 - Metal Plasticity Definitions

Soil Shear Modulus Reduction Curve
Non-Linear Seismic SSI Damping

- In the Finite Element model damping is primarily from three sources:
 - Material damping – Choice of constitutive model
 - Numerical damping – Helps with stability of the solution
 - Boundary Conditions - Affect the way in which the numerical model transmits the specific energy of the stress waves.
 - Models the “contact” between the soil and structure

- Validation of the Constitutive models are necessary to assure the appropriate soil and structure response is captured
- Additional structural damping may be required
Demonstration of Time Domain 2D Model

- Demonstration of the explicit time domain capabilities using a 2D model of the Calcine Disposition Project (CDP) process in the existing IWTU cells
- This demonstrates the modeling capabilities of explicit time domain codes to model contact and allow waves to travel through soil and structure during earthquakes.
 - Demonstration Limitations:
 - HIP Unit Mass Not Representative
 - Concrete and Soil are modeled as linear elastic
 - Damping has not been Validated
 - Soil is modeled as one homogeneous layer
 - Cell geometry is simplified
Demonstration of Time Domain 2D Model
NLSSI Validation Approach

- Validation provides evidence that the correct model is solved.

- Component validation (material modeling, vibration analysis, soil pressures)
 - Constitutive (macroscopic material) behavior
 - Contact/interface behavior
 - Energy dissipation characteristics

- Complete system validation
 - Lotung (1/4 scale containment model) LSST tests
 - Fukushima-Daiichi NPP data
 - Japanese NUPEC tests
NLSSI Validation Approach

- Analyze simple models to validate the soil constitutive model and the structural constitutive model against experimental results.

- Analyze the coupled SSI system and benchmark against experimental or actual results.
NLSSI Validation Approach

- Validate the structure constitutive model by validating it against known results.

 - Performed impact modeling in non-linear software package

 - Use shear wall testing data from “Seismic Response of Low Aspect Ratio Reinforced Concrete Shear Walls,”

- Model and analyze coupled SSI system and benchmark against experimental and known results
NLSSI Proposed Development Approach

Model and Analyze Simple Linear Soil Columns
• Compare to Hand Calculated and Experimental Results

Model and Analyze Lotung SASSI Benchmark Problem as Linear SSI
• Compare Results to Experimental and SASSI

Release the tie between soil and structure and note difference

Model and Analyze Simple non-linear soil and structure experimental problems

Implement non-linear constitutive models in Lotung problem
• Drive model with larger amplitude time histories and note the difference
• Compare to large amplitude event data, Japan Kishiwazaki, Japan Fukushima
NLSSI Proposed Method

1. Use Commercially Available Software
2. Use Non-Linear Constitutive Models
3. Use Infinite Elements to Pass Waves at Boundaries
4. Use Contact, and Friction, to Model Damping
5. Validate Approach
6. Run Non-Linear SSI Model

NLSSI
NLSSI Implementation

1. Linear and Non-Linear Validation
 - Provides Confidence in Analytical Method

2. External Peer Reviews
 - Provides Industry Confidence in Analytical Method

3. DOE Approves NLSSI
 - Allows Industry to Utilize NLSSI when Performing Seismic SSI Analysis of DOE Facilities
Need For NLSSI

- Provides more accurate representation of seismic Soil Structure Interaction
- Increases DOE confidence in facilities margin against failure
- Potentially saves cost of construction
- Eliminates the need to utilize multiple software packages to perform the analysis; only one is needed
Conclusion

- Commercial software packages have capabilities for performing non-linear SSI methods
- Commercial software packages with robust quality assurance programs provide software control
- Commercial software packages provide user friendly Graphical User Interface that minimize input errors and maximize post processing capabilities
- NLSSI provides a more accurate representation of soil structure interaction during earthquake events
- NLSSI improves confidence in predicting nuclear facilities margin against failure
- DOE standardizes the NLSSI for Nuclear facility seismic analysis
- NSR&D funding needed for development of the NLSSI