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Flow Battery Modeling 
 

Schematic of a Flow Battery 

PURPOSE: The flow battery modeling task 

seeks to improve fundamental 

understanding and enable high-performing, 

low-cost designs of flow batteries through 

the development of mathematical models 

implemented for numerical simulation of 

electrochemically reactive flow. 

IMPACT: Models provide a virtual 

laboratory for design and optimization, 

enabling: 

• Improved performance and safety 

• Lower cost of battery development 

• Development of new designs using new 

materials and configurations 

Key Features of a Flow Battery 
• Scalable for grid energy storage and 

renewable load leveling 
• Independently tunable power and capacity 
• Short response time 
• Long cycle life 
• Potential high efficiency 
• Low self-discharge  



How models can improve battery 
development 

  Engineer improvements 
in existing designs 

  Explore new designs on 
a computer, rather than 
in the lab. 

  Explore the 
performance of new 
materials (e.g. ionic 
liquids) and advanced 
physics (gas generation)  
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Performance:  

• self-discharge (cross-contam.) 

• shunt current (stack model) 

• new porous electrode materials 

Engineer designs: 

• flow distribution 

• flow rate schedule 

• analysis of losses (ionic, 

thermal, pumping …) 

Pore-scale electrode models 

Chemistry: 

• general aqueous chemistries 

• ionic liquids 

• side reactions 

electrode  

Flow speed  Species concentration  



Key Accomplishments 

 Developed a general cell-level flow battery finite element 
modeling capability including: 
 general multi-species electrolyte flow and electrochemistry 

 Nernst-Planck species migration 

 current flow through porous carbon electrode, membrane and 
electrolyte 

 Butler–Volmer reaction kinetics for transfer current  

 Validated model with All-Vanadium FB data and model 

 Applying model for design improvements of All-Vandium FB 
 Analysis of model parameters affecting performance 

 Characterization of efficiency losses 

 Improved flow distribution 
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Cell-Level Flow Battery Model 

(Porous Electrode Type) 

Schematic of a Flow Battery 

Our model development  approach combines SNL simulator 
development and Comsol applications 
 

• Flow battery model was developed in SNL Sierra simulator 
• Sierra provides access to advanced multiphysics and numerics 

• parallel processing 
• multiphase flow 
• multiphysics coupling (e.g. thermal energy, solid mechanics)  

• Comsol provides  
• quick access to electrochemistry/flow modeling capability and  
• model verification via code comparison 

Sierra Redox Flow Battery Development:  
• FE implementation 
• charged ion transport & electrochemistry  

•Nernst Planck ion migration 
•Butler–Volmer reaction kinetics 

• fluid flow (porous and/or single phase) 
•averaged forms of NP and BV 

• current flow (ohmic & ionic) 
•DG for discontinuity in potential (plating) 



SIERRA provides enabling capability for multiphysics 
modeling   

SIERRA 
FE application Framework and 

code services 

Services provided to mechanics 
applications: 
 
Mesh & field data management 
(parallel, distributed) 
Transfer operators for mapping field 
variables between grids 
Solution control for code coupling 
Can includes third party libraries (e.g. 
solver libraries, etc.) 
 



All-Vanadium Flow Battery Model 
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pressure specified 

open species flux 

species 

bulk flow rate 

10 cm x 4 mm 

180 microns  

electrode 

membrane 

1 mL/s  flow rate 

0.68   porosity 

10 micron  fiber diameter 

250 mL tank volume 

 

 

VII/VII VIV/VV 

• current transport  

(ohmic and ionic) 

• porous flow 

• ion migration 

• electroneutrality 

• current transfer 

•ion transport  

 

H+ 

• current transport  

 

Ref: Shah, Watt-Smith, and Walsh (2008) 



All-Vanadium Porous Flow Battery System 

inlet conditions (mol/m3) 

VII  27  

VIII  1053 

VIV  1053 

VV  27 

Start-up of charge cycle 



Spatial distribution of current and species 

transfer from solid to electrolyte 
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Spatial distribution of current and species 
(discharge) 



Modeled Battery Characteristics   
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1 mL/s  flow rate 

0.68   porosity 

10 micron  fiber diameter 

250 mL tank volume 

 

 

Charge – Discharge Cycle All-Vanadium RFB 

Model Validation: Comparison to Walsh data 

Discharge  

SOC = 80% 

Figures of Merit 
Efficiency & Losses 

Model can be used to: 

• predict round-trip efficiency 

• energy efficiency 

• heat losses, …. 

as a function of concentration, discharge rates, … 
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During recharge, O2(g) may be 

formed at high overpotential, 

especially at the end of a 

recharge stage. 

 

Cantera thermodynamics 

package is used to model the 

competition of the V4+ to V5+ 

reaction with O2(g) production.  

 

Finite overpotentials (over-

charging) can drive O2(g) 

production at the end of the 

recharge stage.  

2 2
VO 2H e VO + H O

    
 

O2(g) Generation at Positive Electrode of 
Vanadium RFB 

Pourbaix Diagram:  Vanadium RFB 



Current and Future Tasks 

 Explore improvements in existing designs and advanced 
physics of Vanadium RFB 
• Analysis of model parameters affecting performance 

• Characterization of efficiency losses 

• Alternate designs for improved performance 

 Support of SNL ionic liquid flow battery 
• Expand the model for alternate chemical systems (e.g. ionic liquid 

chemistries) 

• Apply the ionic liquid FB model to help design a low cost, high 
performing SNL ionic flow battery  

• Support of ESS flow battery development through synergistic 
collaborations 
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COMSOL model of negative electrode: 
Charge cycle (30 min) showing production of V2 & V5  

concentration shown every 10 min 

*membrane flux uniform 


