Advanced Stationary Electrical Energy Storage R&D at PNNL

Z. Gary Yang

2010 DOE Stationary Storage Program Review, November 2-4, 2010, Washington DC

Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Pacific Northwest National Laboratories
EES technologies and PNNL focus

Electrical energy

- **Direct Storage in charges**
 - Electrical charges: Capacitors

- **Indirect storage via energy conversion**
 - Kinetic energy: flywheels
 - Potential energy: pump hydro, compress air
 - Chemical energy: batteries
PNNL strategy in stationary EES R&D

EES R&D at PNNL

Collaboration with industries, universities, etc.

Grid analytics on EES
• Roles of storage in US grids
• Value, locations, targets
• Cost and performance requirements

EES Technologies

Novel redox flow batteries, MWhs
New gen Na-batteries, up to MWhs
Low cost, long life Li-ion, community storage

Materials
➢ Materials synthesis,
➢ Ionic membrane
➢ Mixed conducting electrodes
➢ ...

Crosscutting science

Computer Modeling
• Mass/charge transport
• Electrical fields
• Flow, thermal, ...

Advanced diagnostic study, NMR, TEM, etc.
• Basic chemistry
• Materials structure
• Physical properties

Electrochemical study
• Electrochemical activity
• Reaction kinetics
• Performance/chemistry/structure

Collaboration with industries, universities, etc.

Computer Modeling
• Mass/charge transport
• Electrical fields
• Flow, thermal, ...

Advanced diagnostic study, NMR, TEM, etc.
• Basic chemistry
• Materials structure
• Physical properties

Electrochemical study
• Electrochemical activity
• Reaction kinetics
• Performance/chemistry/structure

Collaboration with industries, universities, etc.
Grid analytics on energy storage technologies (discussed by Dr. Kintner-Meyer)

- Actual production
- Generation schedule
- Real-time operation
 - Meeting Balance Requirements
 - Arbitrage
 - Infrastructure deferment
 - Located at strategic location in bulk power to reduced congestion
 - In distribution system/home to reduce distribution congestion

Energy storage is an valuable grid assets to provide balance services

- Reliability value
- Economic value
Redox flow battery RD&D

Materials, components, technology RD&D
- Redox electrolytes
- Electrodes-bipolar plate
- Membranes/separators
- Other stack components
- Modeling & Simulation
- Design and prototype

Core team
- PNNL
- Other labs
- Universities
- Industries
- Small business

Demonstration commercialization
- Scale up
- System design/engineering
- Demonstration
- Production

Vertical team
- Battery manufacturers
- Utilities
- ……

Pacific Northwest
NATIONAL LABORATORY
Toward cost reduction and commercialization

Develop cost-effective, optimized components:
- Electrolytes, higher energy capacity and improved stability;
- Electrodes of improved electrochemical activity;
- Membrane/separator of high conductivity, selectivity and stability;

Develop novel cell/stack designs/engineering:
- Increase current density (>50mA.cm⁻²);
- Reduce shunt current;

Demonstration (kWh prototype)

Scale production

Current focus

Kwh / hr

Year

2010 2011 2012 2013 2014 2015

Pacific Northwest
NATIONAL LABORATORY
Electrolyte development

- Alternative redox couples to all V:
 - Fe$^{3+}$/Fe$^{2+}$ vs. V$^{3+}$/V$^{2+}$, ...

- Supporting electrolytes:
 - Chloride acid
 - Sulfate-chloride mixed acid
 (to be discussed by Dr. Liyu Li)

\[
[\text{VO}_2\text{H}_2\text{O}]^+ \rightarrow \text{VO(OH)}_3 + \text{H}_3\text{O}^+
\]
\[
2\text{VO(OH)}_3 \rightarrow \text{V}_2\text{O}_5 \cdot 3\text{H}_2\text{O}
\]
Stability of chloride electrolytes

<table>
<thead>
<tr>
<th>V specie</th>
<th>-5°C</th>
<th>25°C</th>
<th>40°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sulfate</td>
<td>Chloride</td>
<td>sulfate</td>
</tr>
<tr>
<td>V^{2+}</td>
<td>2M (419 h)</td>
<td>2.3M (>20 d)</td>
<td>2M (30 d)</td>
</tr>
<tr>
<td>V^{3+}</td>
<td>2M (634 h)</td>
<td>2.3M (96 h)</td>
<td>2M (>30 d)</td>
</tr>
<tr>
<td>V^{4+} (VO^{2+})</td>
<td>2M (18 h)</td>
<td>2.3M (>20 d)</td>
<td>2M (95 h)</td>
</tr>
<tr>
<td>V^{5+} (VO_{2}^{+})</td>
<td>2M (>30 d)</td>
<td>2.3M (>20 d)</td>
<td>2M (>30 d)</td>
</tr>
</tbody>
</table>

- Energy capacity up to 2.3M V over 0~50°C (1.7 M and 10~40°C for current sulfate chemistry), due to change in chemistry:
Electrochemical properties of all V chloride system

Chloride system shows higher charging and discharging potential for the same condition.

Positive: \[
[\text{VO}_2 \cdot 3\text{H}_2\text{O}]^+ + 2\text{H}^+ + e \xrightleftharpoons[\text{D}][\text{C}] [\text{VO} \cdot 4\text{H}_2\text{O}]^{2+} \quad E^0 = 1.0 \text{ V}
\]
\[
\text{VO}_2\text{Cl} \cdot 3\text{H}_2\text{O} + 2\text{H}^+ + e \xrightleftharpoons[\text{D}][\text{C}] [\text{VO} \cdot 4\text{H}_2\text{O}]^{2+} + \text{Cl}^- \quad E^0 = 1.0 + \alpha
\]

Negative: \[
\text{V}^{2+} \xrightleftharpoons[\text{D}][\text{C}] \text{V}^{3+} + e \quad E^0 = -0.25 \text{ V}
\]
Performance of all V chloride batteries

<table>
<thead>
<tr>
<th>Chloride</th>
<th>Sulphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>7th</td>
<td>2.05 Ah</td>
</tr>
<tr>
<td>94th</td>
<td>1.95 Ah</td>
</tr>
</tbody>
</table>

- Chloride system shows better and stable performance
- 30% energy density improved; Lower capacity loss
- Negligible, if any, chlorine gas evolution
Electrochemical properties of Fe/V redox couples

- Fe$^{3+}$/Fe$^{2+}$ (positive) vs. V$^{3+}$/V$^{2+}$, $E_o=1.02$ V
- Advantages over Fe/Cr system: no H$_2$ evolution and without catalysts
- Over V/V system: significantly improved chemical compatibility by avoiding high oxidant V$^{5+}$, allowing use of low cost materials, e.g. separator
Battery performance of Fe/V chloride system

On going research on the electrolyte system with higher concentration and improved efficiency
Membrane/separator development

- Develop cost-effective, optimized membranes or separators that can demonstrate high ionic conductivity, selectivity and mechanical/chemical durability through collaboration with universities, among national labs, industries.

- Nafion modification
 - Surface coating (PPR, PANI)
 - Nano-composite doping with SiO₂

- Hydrocarbon membrane:
 - S-Radel and SPEEK
 - Degradation Mechanism

Collaborated with Prof. Mike Hickner of Penn State

- Future focus on optimization of Nafion and searching its low cost alternatives via collaboration with ORNL, SNL, Penn State, DuPont, …
Electrodes/bi-polar plates of improved electrochemical activity

- Improve carbon/graphite electrode activity and current capability by modifying surface chemistry and structure/microstructure.
- Carried out thermal oxidation, doping and nanostructuring.

\[
E = E_0 - [(\eta_{ct})_a + (\eta_c)_a] - [(\eta_{ct})_c + (\eta_c)_c] - iR = iR
\]

Graph:
- Cell voltage increasing
- Current increasing
- IR – Ohmic loss or polarization
- \((\eta_{ct})_a + (\eta_{ct})_c\) – activation polarization
- \((\eta_c)_a + (\eta_c)_c\) – concentration polarization
Na-batteries

Electrochemical storage that utilize Na- or Na-containing electrodes and a Na\(^+\) conducting electrolyte, either solid or liquid

Why Na-battery chemistries?

- Li-resources constrains;
- Low cost of raw materials

- Na-beta alumina electrolyte batteries (SBB)
- Na-S or Na-Ni/NaCl
- Na-NaSicon electrolyte batteries
- Na-ion (aqueous or non aqueous electrolyte) batteries

Operating °C

~300

RT
PNNL (supported by DOE-ARPA-E, with Eagle Pitcher (lead)) is developing new generation Na-beta batteries that can meet economic and performance requirements for wide market penetration.

To be discussed by Dr. Vince Sprenkle.
Na-ion battery development

- Search materials and structures that are capable of facile Na\(^+\) insertion/deinsertion, and develop low cost Na-ion batteries

orthorhombic Na\(_4\)Mn\(_9\)O\(_{18}\)

To be discussed by Dr. Jun Liu
Unique Li-ion for community storage

- Long cycle life (>6,000 cycles)
- Low cost (<$250/kWh)
- Low P/E (≤0.5)
- Easy heat management

To be discussed by Dr. Choi
Summary and Future Work

- PNNL has adopted a systematic approach in searching suitable technologies, including novel redox flow batteries, Na-batteries and low cost, long life Li-ion batteries, for distribution and community storage.

- Substantial progress has been achieved in development and optimization of key materials, components, and cell designs, which include new redox flow battery electrolytes, electrodes and electrolytes for planar Na-beta alumina batteries, etc.

- Future work will focus on cell scale up, stack design and engineering, while continuing efforts on materials/components, through collaboration with academia, industries, and among national labs.

Please follow other talks from PNNL for further information.
Acknowledgements

- DOE-OE Energy Storage Program: Dr. Imre Gyuk, John Boyes and SNL
 ARPA-E Storage Programs: Drs. Dave Danielson, and Mark Johnson
 PNNL directed R&D fund

- Staff at PNNL:
 Jun Liu, Gordon Graff, Donghai Wang, Daiwon Choi, Jason Zhang, Zimin Nie, Chongming Wang, Jianzhi Hu, Vilayanur Viswanathan
 John Lemmon, Vince Sprenkle, Xiaochun Lu, Kerry Meinhardt, Greg Coffey, Guosheng Li
 Liyu Li, Soowhan Kim, Gordon Xia, Wei Wang, Vijayakumar Murugesan, Dean Matson, Jianlu Zhang, Yuliang Cao, Birgit Schwenzer, Feng Chen, …
Electrical energy storage

Carbon constrained, unsustainable

Clean, sustainable future

THANK YOU FOR YOUR ATTENTION