DOE(SNL)/CEC Energy Storage Program
FYO07 Projects

September 27, 2007
San Francisco, CA

Daniel R. Borneo, PE
Sandia National Laboratories
Presentation Outline

• DOE(SNL)/CEC Collaboration
 – Background of DOE(SNL)/CEC Collaboration
 – FY07 Project Review
 • Zinc Bromine Battery (ZBB) Demonstration
 • Palmdale Super capacitor Demonstration
 • Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration
 • Beacon Flywheel Energy Storage System (FESS)
Background of DOE(SNL)/CEC Collaboration

• Memorandum of Understanding Between CEC and DOE (SNL).
 – In Place since 2004
 – Provides support to CEC in the implementation of Electrical Energy Storage Projects.
 • Project development and coordination
 • Technology transfer
 • Data Acquisition System (DAS) management
 – Monitor and analyze system performance
 – Provide economic evaluation of technology
DOE(SNL)/CEC FY07 Projects
Zinc Bromine Battery (ZBB) Energy Storage Demonstration

• Overview
 – Peak shaving project initiated in 2004
 • 2 MW/2 MWhr Zinc Bromine Battery demonstration

• Objective
 – Allow for Substation deferral
 • Demonstrate that Zinc Bromine battery system can cost effectively provide peak shaving

• Technology
 – Presently testing 500-kWh Zinc Bromine battery system
 • Two strings of five 50-kWh battery modules
 • 500 kWh dc capacity
 • 250 kW ac continuous; 500 kW ac peak
DOE(SNL)/CEC FY07 Projects
Zinc Bromine Battery (ZBB) Energy Storage Demonstration

ZBB’s 50 kWh module (3 stacks in parallel)

ZBB’s 500 kWh system (10 - 50 kwh modules)
DOE(SNL)/CEC FY07 Projects
Zinc Bromine Battery (ZBB) Energy Storage Demonstration

• Status
 – ZBB finished field testing of initial system at the DUIT facility in 2006
 – ZBB installed upgraded 500 kWh system at DUIT summer 2007
 – Presently system is in 40 day reliability testing
 – Upon successful completion of 40 day test, determination will be made whether to install additional 500 kWh systems for further evaluation

• DOE/SNL Role
 – Collect electrical data during demonstration and provide performance analysis
 – Conduct economic evaluation of system
DOE(SNL)/CEC FY07 Projects
Palmdale UltraCapacitor Demonstration

• **Overview**
 – *System developed by Northern Power (Distributed Energy Systems) to provide voltage ride through and conditioning*
 • Energy storage
 • PF correction
 • Harmonics

• **Objective**
 – *Develop and demonstrate an ultracapacitor based Electrical Energy Storage System for power reliability and power quality applications*
 • Power outage ride-through capabilities
 • Power factor correction
 • Power conditioning
DOE(SNL)/CEC FY07 Projects
Palmdale UltraCapacitor Demonstration

• Technology
 – Ultracapacitor system provides 450 KW for 30 seconds

One-line diagram of EnergyBridge system
One of four ultracapacitor cabinets
DOE(SNL)/CEC FY07 Projects
Palmdale UltraCapacitor Demonstration

• Status
 – System is assembled at Barre Plant
 – Operation acceptance test and factory commissioning completed
 – Unit will be shipped to the Palmdale site where a functional acceptance test will take place in Q4 CY07

• DOE/SNL Role
 – Technical advisor for storage technology
 – Collect electrical data during demonstration and provide performance analysis
 – Conduct economic evaluation of system
 – Conducted Factory commissioning test
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• Overview
 – Voltage stabilization project
 • New power configuration needed to accommodate heavier and more powerful train cars
 – Existing configuration - 1 MW SS located every 2 miles
 – New configuration - 2 MW SS every mile

• Objective
 – Avoid cost of new substation by incorporating Static Energy Storage (SES) into existing lines and new expansions
 • Provide Voltage stabilization
 – Estimated 65 VDC increase from 600 V to 665V on 750 VDC system
 • Reduce Energy consumption
 – Estimated 35 – 55kWh energy savings
 • 7-10% energy reduction
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• Technology
 – 1MW Siemens Static Energy Storage System SITRAS® SES
 • BCAP 3000 Maxwell UltraCapacitor
 • 1MW for 20 second

Dresden-Hellerau (Container Version)
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

Functionality SITRAS® SES

Energy exchange between vehicles through energy storage unit

Energy storage unit absorbs energy

Time t_1: vehicle 1 brakes

The energy storage absorbs the braking energy of vehicles and the energy can be given off after a time lag to the system.

Optimizing the system voltage

Energy storage unit supplies energy; the system voltage decreasing. Normal operation is guaranteed.

Time t_2: both vehicles accelerate at the same time

The energy storage unit absorbs energy and supplies energy to the system, when the system voltage is below a defined level.
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

Static Energy Storage System SITRAS® SES
Design: Single-line diagram

Connection unit	Converter	Capacitor bank

DC Traction System
DC 600/750 V

<table>
<thead>
<tr>
<th>S₀</th>
<th>Disconnector</th>
<th>L₁</th>
<th>Line reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>DC-Circuit breaker</td>
<td>C</td>
<td>DC-link capacitor</td>
</tr>
<tr>
<td>R₁</td>
<td>Pre-charging resistor</td>
<td>V₁</td>
<td>Step-up/step-down converter</td>
</tr>
<tr>
<td>K₁</td>
<td>Pre-charging contactor</td>
<td>L₂</td>
<td>Chopper reactor</td>
</tr>
<tr>
<td>V₂, R₂</td>
<td>Discharging unit</td>
<td>C_{Bank}</td>
<td>Capacitor bank</td>
</tr>
</tbody>
</table>
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• Static Energy Storage System SITRAS® SES
 – Capacitor bank consist of 30 Watchdog modules
 • Each module consists of 7 function blocks supervising capacitors connected in parallel.
 – Technical data of the capacitor
 • Voltage 2.7 V; capacity 3,000 F
 • Double-layer capacitors
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• Static Energy Storage System SITRAS® SES
 – Converter: IGBT converter module
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• Status
 – Phase I started in 2005 and included:
 • RT light rail system model simulation by Siemens Transportation Systems started in 2006 that analyzes the potential benefit of SES at specific locations
 – Detailed data collection and analysis by RT for input to the Siemens model
 – Detailed billing study by SMUD for all 34 RT substations
 – Phase II started in 2007 and includes:
 • Additional Data collection and cost analysis
 • SES operational for summer/Fall 2008
 • 15 month demonstration of SES System on Sacramento RT Light Rail Folsom Line
DOE(SNL)/CEC FY07 Projects
SMUD/RT SES demonstration

• DOE/SNL Role
 – Technical advisor for storage technology
 – Collect electrical data during demonstration and provide performance analysis
 – Conduct economic evaluation of system
DOE(SNL)/CEC FY07 Projects
Beacon Flywheel Energy Storage System (FESS)

• Overview
 – 100 KW 15 minute Power unit successfully demonstrated over 18 month test period (2005/06)
 • 7 ea. 15 KW flywheel units

• Objective
 – Show efficacy of flywheel technology for grid-scale frequency regulation

• Technology
 – Kinetic Energy Flywheel
 • Fast response
 – Full “up” or “down” regulation < 4-seconds vs. 5-minutes for conventional technology
DOE(SNL)/CEC FY07 Projects
Beacon Flywheel Energy Storage System (FESS)
DOE(SNL)/CEC FY07 Projects
Beacon Flywheel Energy Storage System (FESS)

• Status
 – Demonstration of 100 KW system successfully completed Dec 2006
 – Final reports in progress

• DOE/SNL Role
 – Technical advisor for storage technology
 – Capture electrical data during testing, provide performance analysis
 – Economic benefit/cost evaluation of commercial-scale plant
 – Facilitate commercialization
DOE(SNL)/CEC FY07 Projects Summary

• DOE/SNL continues to provide support to new and ongoing energy storage businesses and technologies
 – Technical performance and economic feasibility analysis
 – Technical consulting and advisory role

• Upcoming Projects
 – NaS battery installation
 • CEC/PG&E collaboration
 – VRB Battery
 • CEC/SMUD/Sprint Collaboration