Real-Time Security State Visualization

- **Outcomes:** Near real-time situational awareness utilizing a diverse set of data feeds with a flexible visualization implementation.

- **Roadmap Challenge:** Fusing perimeter security, network traffic analysis, signature-based intrusion detection systems, routable and serial traffic analysis.

- **Major Successes:** Produced an integrated view of real-time network and physical security events at a power substation

- **Schedule:** Deliver 1st POC, 2nd POC Fall 2010

- **Level of Effort:** $325K

- **Funds Remaining:** $75K

- **Performers:** PNNL

- **Partners:** ANL, STI, OSIsoft
Real-Time Security State Visualization

High Level Illustration of Functions/Components
Technical Approach and Feasibility

• **Approach**
 – Define data feeds and data types (both network & physical)
 – Define data collection and aggregation methods
 – Define the events of interest
 – Correlation tool evaluation & implementation
 – Visualization tool evaluation & implementation

• **Metrics for Success**
 – Security events are recognized, and the appropriate response is taken
 – Tool is relevant and useful to grid operators
Technical Approach and Feasibility

• Challenges to Success
 – Access to data (serial, synchrophasor, etc.)
 • Created a serial tap device to access the vast amount of serial data
 – Different operators want different visualizations
 • Design & implement an XML-based architecture

• Technical Achievements to Date
 – Delivered a visualization product that is substation focused
 – Data feeds all come into the visualization tool directly
 – Heterogeneous data types include: Physical security, cyber security, routable and serial flow data
Collaboration/Technology Transfer

- **Plans to gain industry input**
 - Created industry advisory board comprised of electrical, oil & gas
 - Solicited input from board during design phase, demoed proof of concept
 - Input from demo driving next version of the product

- **Plans to transfer technology/knowledge to end user**
 - Interest in serial tap commercialization from industry
 - Commercialization Plan / Business case created
 - PNNL investing IR&D money into the serial tap
 - Documentation of data types and implementation underway

- **Value proposition**
 - Leverages existing network and power systems data already being generated
 - Give operators a powerful tool to recognize and response to cyber events without information overload via an intuitive user interface
Using Google Earth as the visualization tool
Port scan at substation event

Portscan Event Troubleshooting Steps

1. Contact security personnel or law enforcement.
2. Monitor other cyber systems for signs of compromise.
3. Do not trust any data from this substation. Verify with other sources before acting upon any event data from this station until security personnel or law enforcement clear station.
4. Identify any available containment mechanisms.
5. Utilize physical security sensors to monitor adversary.
6. Schedule maintenance crew/Incident response team to visit station, check for compromise, and cyber trust is restored.
Synchrophasor Attack
Synchrophasor attack event

Phasor Event Troubleshooting Steps

1. Contact security personnel or law enforcement.
2. Monitor other cyber systems for signs of compromise.
3. Do not trust any data from this substation. Verify with other sources before acting upon an event data from this station until security personnel or law enforcement clear station.
4. Identify impact of modified/injected synchrophasor data.
5. Notify operations staff.
6. Utilize physical security sensors to monitor adversary.
7. Monitor synchrophasor data for end-to-end cyber event.
8. Schedule maintenance crew/incidence response team to visit station and check for compromise.
Serial Tap Event

SerialTap Event Troubleshooting Steps

1. Contact security personnel or law enforcement.
2. Monitor other systems for signs of compromise.
3. Do not trust any data from this substation. Verify with other sources before acting upon an event data from this station until security personnel or law enforcement clears station.
4. Identify impact of modified/injected commands.
5. Notify operations staff.
6. Utilize physical security sensors to monitor adversary.
7. Monitor security logs for end-to-end cyber event.
8. Schedule maintenance crew/incident response team to visit station and check for compromise.
Next Steps

• **Approach For the Next Year**
 – Utilize real time database
 – Separate cyber analytics function from display tool
 – Define approach to link analysis engine with multiple display tools via XML
 – Correlate events across data types and substations

• **Leverage National Visualization & Analytics Center**

• **Describe potential follow-on work, if any**
 – Next generation visualization tools
 – Multiple substations
 – More sophisticated analytics
 – Cost: $400K-$700K depending on scope
Take the Operations Control Center to the Next Level

Begin to leverage recognized world class National Visualization & Analysis Center (NVAC) capabilities

Current

Disparate Devices & Data Types

Data Collection

Utilize COTS Visualization Tool

Future

Live grid data from different sources

Data collection, aggregation, normalization, & correlation

Standards-based visualization tools for secure grid operations

Goal: Increase the situational awareness of grid security in order to allow operators to easily respond to network events in real time, while minimizing information overload.
Next Generation Collaborative Visualization Ideas

These displays, technology, and expertise exist at PNNL and can be leveraged to increase the security of the nation’s power grid.
Real-Time Security State Visualization