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Pathways for Emitter Material Improvements
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Past advances in emitter materials were made - Development of new mat

possible by improvements in: Materials discovery

*  Growth technology
* Doping and defects
e LED design

Implementation

Historical emitter material timeline data adapted from:
R.D. Dupuis and M.R. Krames, History, Development and Applications of High-Brightness Visible Light-Emitting Diodes, J. Lightwave Technology., 26, 1154 (2008)

S. Nakamura and M.R. Krames, History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination, Proc. of the IEEE, 101, 2211 (2013) NREL | 2



Accessing Existing Materials: High Efficiency Photovoltaics
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J.F. Geisz, et al., Six-junction 1lI-V solar cells with 47.1% conversion efficiency under 143 Suns concentration, Nature Energy, 5, 326 (2020) NREL | 3



Example: Direct Bandgap AlInP for Red and Amber LEDs
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D.A. Beaton, et al., Determination of the direct to indirect bandgap transition composition in AklniP, J. Appl. Phys., 114, 203504 (2013)  NREL | 4
LED EQE data adapted from: DOE 2019 Lighting R&D Opportunities Report



Example: Direct Bandgap AlInP for Red and Amber LEDs

Ordered/disordered AllnP LEDs can be grown on GaAs
substrates with manageable dislocation densities.
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TEM and diffraction images by N. Pokharel and P. Ahrenkiel (SDSMT) Photo by K. Alberi, NREL

LED growth by MicroLink Devices Inc. .
LEDs have been demonstrated, but there is

still a lot of room for improvement.

See our poster on “AlinP-based LEDs for efficient red and amber emission” for more information. NREL |5



Developing Known “New” Materials: Ternary Nitrides
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R.R. Schnepf, et al., Utilizing site disorder in the development of new energy-relevant semiconductors, ACS Energy Lett., 5, 2027 (2020)
M. Brooks Tellekamp, et al., Heteroepitaxial integration of ZnGeN, on GaN buffers using molecular beam epitaxy, Crystal Growth and Design, 20, 1868 (2020)
Ternary Nitrides: Fundamentals and Emerging Device Applications, A. L. Greenaway et al., accepted (2020) — Annual Reviews of Materials Research NREL | 6



Computational Materials Discovery

Example: ternary nitrides
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W. Sun, et al., A map of the inorganic ternary metal nitrides, Nature Materials, 18, 732 (2019)
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Materials Discovery

* New compounds
Composition and crystal structure,
basic properties, synthesis

* Known compounds
Identification of performance and application,
how to make it work

Materials Design

* Fine tuning of properties, often by alloying
* Composition-gradient thin-film synthesis

NREL
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Approaches and Considerations

Understand current Improvement of existing Development of known Discovery and development
limitations material/device new materials of new materials
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near term far term
Existing Materials Improvement New Materials Development Computational Materials
Discovery
* Build on previous R&D * Expands materials selection * Opportunities to identify
* Learn from work performed * Theory aids experimental rr:ater:ﬁ?s with “optimal
by other industries materials optimization and Properties

« May not be able to overcome hypothesis validation * Requires a lot of development

fundamental material * Longer development timeline * Success is not assured

property limitations * Theoretical methods are still

evolving

NREL | 8



Critical Questions for Implementation

When do we shift the focus of R&D on emitter materials?

* What timelines can the LED R&D community tolerate?
* What is an acceptable return on R&D investment?

How can we leverage R&D for other technologies?

e Build on breakthroughs in understanding and controlling material properties
* Collaboratively advance aspects that are beneficial to multiple technologies
* Engage a broader range of specialists

NREL | 9
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