U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Challenges of assessing life cycle impacts of buildings

Life-Cycle Energy & Related Impacts of Buildings Webinar Series

October 29, 2020

Agenda

I. Opening Remarks

Karma Sawyer, Program Manager, U.S. DOE Building Technologies Office

II. Introduction to Life Cycle Carbon Assessment (LCA) Lyla Fadali - AAAS Policy Fellow, U.S. DOE Building Technologies Office

III. Whole-Building Life Cycle Analysis Jennifer O'Connor, President, Athena Institute

IV. Building Life Cycle Analysis with GREET Hao Cai, Principal Environmental Analyst, Argonne National Labs

V. Metrics & Tools for Sustainable Buildings

Joshua Kneifel, Research Economist, National Institute of Standards and Technology

VI. Q&A Session

Cedar Blazek - Management & Program Analyst, U.S. DOE Building Technologies Office

Building Life Cycle Impacts DOE Webinar Series

Торіс	Date	Time
Overview of life cycle impacts of buildings	Oct. 16	12:00pm – 1:00pm ET
Challenges of assessing life cycle impacts of buildings	Oct. 29	12:00pm – 1:00pm ET
Innovative building materials	Nov. 12	12:00pm – 1:00pm ET
"Real Life" buildings striving to minimize life cycle impacts	Dec. 3	12:00pm – 1:00pm ET
Intersection of life cycle impacts & circular economy potential for the building sector	Dec. 17	12:00pm – 1:00pm ET

Poll Questions

- What industry are you from?
- How familiar are you with life cycle analysis tools?

Efficiency is key to meeting U.S. energy goals

Our Homes and Buildings Use More Energy than Any Other Sector

Building Technologies Office

BTO invests in energy efficiency & related technologies that make homes and buildings more affordable and comfortable, and make the US more sustainable, secure and prosperous.

Budget ~US\$285M/year; activities include:

R&D Pre-competitive, earlystage investment in nextgeneration technologies

Integration Technology validation, field & lab testing, metrics, market integration

Codes & Standards Whole building & equipment standards technical analysis, test procedures, regulations

DOE research has saved energy and saved consumers money

FOR EXAMPLE:

Findsoret

- \$550 purchase
- \$50/year to operate
- 22 cubic feet

Our impact on a national scale

Energy efficiency standards completed through 2016 are expected to save 142 quadrillion Btu through 2030 — more energy than the entire nation consumes in one year.

BTO's work is making a difference, but we're missing part of the picture.

Historically, BTO has focused on operating buildings.

2018 Global Status Report. United Nations Environment Programme. International Energy Agency for the Global Alliance for Building and Construction (GlobalABC)

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Global building stock expected to more than double, making embodied carbon increasingly important.

Global building stock through 2060

Source data from GlobalABC Status Report in 2017

Let's look at the whole picture:

Lifecycle carbon refers to carbon emissions associated with all stages of a building's life

Embodied carbon is the carbon associated with all stages of a building's life cycle not including operating the building

Operational carbon is the carbon associated with operating the building

Reality is complicated.

Which mine? Wł

Resource extraction

Industry average?

Which manufacturer?

Manufacturing

Transportation

How far?

How much material is needed?

Construction/ Installation

How is the product used?

Equipment Replacement/ Maintenance

Demolition/ End of life

Operations

How long does a building last?

Landfill or ?

Whole-Building Life Cycle Assessment

Middlesex Centre Wellness and Recreation Complex

Reduced total environmental impacts by 20%

Cornerstone Architecture Incorporated

Athena Impact Estimator

COMMON WHOLE-BUILDING LCA RESULTS:

- Global Warming Potential (carbon footprint)
- Acidification Potential
 - Furrophication Potential
 - Smog Potential
 - Come Depletton Potential Human Health Particulate
 - **Fossil Fuel consumption**

Photo: Magalie L'Abbé License: CC BY-NC 2.0

Life Cycle Stages for a Building

Life cycle stages per EN 15978:11 Sustainability of construction works — Assessment of environmental performance of buildings — Calculation method.

Athena databases

- LCI data on materials, products, energy, transportation
- Rolled up LCA data on some products
- Scenario data: transportation distances, construction energy and waste, repair and replacement schedules, end of life treatment
- TRACI characterization factors

Add Project		
Project		
Athe Inna for Bu	na ict Estimator uildings	
Project Name		
New Project		
Project Location		
Vancouver ~		Chapped alagest situ for
Atlanta Calgary Halifax Los Angeles Minneapolis Montreal New York City Orlando Ottawa Pittsburgh Portland Quebec City Seattle Toronto USA Vancouver Winnipeg Project Description (CTRL + Enter for new line)	ilding Height (m) 05 0ss Floor Area (m²) 000	regionally-accurate results.

embly		
Vame:		
Mallin Sin In	Number of Columns:	Column Height (m):
		0.000
16666	Number of Beams:	Supported Element
	0	Floor
U L	Bay Size (m):	○ Roof
11-3-	0.000	
	Supported Span (m)	Live Load
	0.000	036kPa
C mipondi	Supported Area (m ²)	04.8 kPa
	0.000	
Column Type Softwood Lumber Hollow Structural St Glulam LVL / PSL	teel	n Type Iulam VL / PSL /F oncrete
WF Concrete Precast Concrete P Precast Concrete Ir User Defined Concr	erimeter OU nterior ete	recast Concrete Perimeter recast Concrete Interior ser Defined Concrete

Create a project Option 1: Early design

Use dialogue boxes to quickly create assemblies. The software will calculate a bill of materials. Status: Please map the imported Bill of Materials data columns to those expected by the BOM Import Utility.

Step 1: Load a File

Step 2: Map the Columns Step 3: Map the Rows

Step 4: Map Material Contribution Types Summary 44% Complete

Imported Bill of Materials Data Column Mapping

% Complete 75%

Material Contribution Type Is Not Mapped

S	tatu lag	atu Skij Lini Row ag Fla # Type Imported Column 1		Imported Column	Imported Column 2			Imported Column 4				
					Material Name	\sim	Unit of Measure	~	Quantity	V	Not Mapped	\sim
	1		0	HEAD	Material		Unit		Quantity		Assembly Type	
1	X		0	DATA	Concrete Benchmark 40.	22	m3		21.4911999999	9	Columns & Beams	
	/		0	DATA	Hollow Structural Steel		Tonnes		3.3007		Columns & Beams	
	~		0	DATA	Rebar, Rod, Light Sectior	ns	Tonnes		10.802199999	9	Columns & Beams	
	/		0	DATA	Screws Nuts & Bolts		Tonnes		0.8560999999	9	Columns & Beams	
	/		0	DATA	Wide Flange Sections		Tonnes		13.4894		Columns & Beams	
1	X		0	DATA	Concrete Benchmark 30.	22)	m3		323.93810000	0	Foundations	
	~		0	DATA	Rebar, Rod, Light Section	ns	Tonnes		1.3896999999	9	Foundations	
	/		0	DATA	Welded Wire Mesh / Lad.		Tonnes		1.1977		Foundations	
	~		0	DATA	#15 Organic Felt		m2		4897.8905000	0	Roofs	
	/		0	DATA	1/2" Fire-Rated Type X		m2		3150.5866000	0	Roofs	
	~		0	DATA	6 mil Polyethylene		m2		1519.1556		Roofs	
	/		0	DATA	Blown Cellulose		m2 (25mm)		12922.288699	9	Roofs	
	~		0	DATA	Galvanized Sheet		Tonnes		1.591		Roofs	
	/		0	DATA	Joint Compound		Tonnes		3.14429999999	9	Roofs	
	~		0	DATA	Nails		Tonnes		0.3643000000	0	Roofs	
	/		0	DATA	Organic Felt shingles 20y	/F	m2		6014.9531999	9	Roofs	
	~		0	DATA	Paper Tape		Tonnes		3.61E-2		Roofs	
	/		0	DATA	Small Dimension Softwoo	62	m3		40.01		Roofs	

Create a project Option 2: Import a bill of materials

Load a file and map it. Save the map for future projects.

Make custom concrete mixes as needed

Jser Defined Co	oncrete Mix Design Library			
User Define	ed Concrete Mix Design Record		300	- 6
	Add 🌇 Duplicate 🤤 Remove 📄 Revert 🏼	Calculate 🗸 Validate		
Record Type Product ID Product Name Product Type Unit	User Defined 100002 Concrete Benchmark Pacific Northwest 2500 ps; Concrete ~ m3	Manually Override Product Density Image: Component Material Contribution Type Image: Component Material Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Waterial Contribution Type Image: Component Type		
C	Add B Pomovo (Clasr	U by Percent Volume Total % by Volume 100.00%		
Components	; 🚱 Add 🖨 Remove 🔏 Clear Name	Unit Quantity Unit Mass Contribution Contribution Calculated Density Unit [Tonnes/m3]	% By Weight	% By Volume
Components ID 166 g	: Clear Gemove Clear	Unit Mass Contribution Calculated Density Tonnes/m3] tonnes 2.9200 0.0163 0.01	% By Weight 3 0.69%	% By Volume 0.45
ID 198 F	a O Add	O By Percent Volume Total % by Volume 100.00% Unit Density Unit Mass Contribution [Tonnes/m3] Unit Quantity Contribution [Tonnes/m3] tonnes 2.9200 0.0163 0.07 tonnes 1.9300 0.8706 0.83706	% By Weight 3 0.69% 3 36.95%	% By Volume 0.49 39.48
ID 198 199	Add G Remove Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Crushed Stone	O By Percent Volume Total % by Volume 100.00% Unit Density Unit Mass Contribution [Tonnes/m3] Unit Mass Contribution [Tonnes/m3] tonnes 2.9200 0.0163 0.0163 tonnes 1.9300 0.8706 0.830 tonnes 2.6700 0.0028 0.000	% By Weight 3 0.69% 3 36.95% 3 0.12%	% By Volume 0.49 39.48 0.09
ID 198 199 201	Add GRemove Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Natural Coarse Aggregate Natural	O By Percent Volume Total % by Volume 100.00% Unit Density Unit Mass Contribution [Tonnes/m3] Unit Mass Contribution [Tonnes/m3] tonnes 2.9200 0.0163 0.0163 tonnes 1.9300 0.8706 0.8706 tonnes 2.6700 0.0028 0.000 tonnes 2.4000 1.0385 1.000	% By Weight 3 0.69% 3 36.95% 3 0.12% 5 44.08%	% By Volume 0.45 39.48 0.05 37.87
ID 198 199 201 202	Add GRemove Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Crushed Stone Coarse Aggregate Natural Coarse Aggregate Crushed Stone	O By Percent Volume Total % by Volume 100.00% Unit Density Unit Mass Unit Contribution Unit Tonnes/m3] Unit Mass Contribution tonnes 2.9200 0.0163 0.01 tonnes 1.9300 0.8706 0.87 tonnes 2.6700 0.0028 0.00 tonnes 2.4000 1.0385 1.03 tonnes 2.6700 0.0078 0.00	% By Weight 3 0.69% 3 36.95% 3 0.12% 5 44.08% 3 0.33%	% By Volume 0.4s 39.4z 0.0s 37.87 0.26
ID 198 199 201 202 202 205	Add GRemove Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Crushed Stone Coarse Aggregate Natural Coarse Aggregate Crushed Stone Portland Cement	Unit Density Unit Mass Unit Quantity Unit Density [Tonnes/m3] [Tonnes/m3] [Tonnes/m3] tonnes 2.9200 0.0163 0.07 tonnes 1.9300 0.8706 0.87 tonnes 2.6700 0.0028 0.00 tonnes 2.4000 1.0385 1.03 tonnes 2.6700 0.0078 0.00 tonnes 2.6700 0.0078 0.00 tonnes 2.6700 0.0078 0.00 tonnes 3.1500 0.2222 0.222	% By Weight 3 0.69% 3 36.95% 3 0.12% 5 44.08% 3 0.33% 2 9.43%	% By Volume 0.4s 39.4t 0.0s 37.87 0.26 6.17
ID 198 199 201 202 202 202 202 202 202 202 202 203 204 205 208	Add Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Crushed Stone Coarse Aggregate Natural Coarse Aggregate Crushed Stone Portland Cement Fly Ash	Unit Density Unit Mass Unit Quantity Unit Density [Tonnes/m3] [Tonnes/m3] [Tonnes/m3] tonnes 2.9200 0.0163 0.07 tonnes 1.9300 0.8706 0.87 tonnes 2.6700 0.0028 0.00 tonnes 2.4000 1.0385 1.03 tonnes 2.6700 0.0078 0.00 tonnes 2.6700 0.0078 0.00 tonnes 2.6700 0.0335 0.03	% By Weight 3 0.69% 3 36.95% 3 0.12% 5 44.08% 3 0.33% 2 9.43% 5 1.42%	% By Volume 0.4s 39.4t 0.0s 37.87 0.26 6.17 1.27
ID 198 199 201 202 202 202 202 202 202 203 204 205 208 208	Add Clear Name Slag Cement Fine Aggregate Natural Fine Aggregate Crushed Stone Coarse Aggregate Natural Coarse Aggregate Crushed Stone Portland Cement Fly Ash Water	Unit Density Unit Mass Contribution [Tonnes/m3] Unit Quantity Contribution Calculated Density tonnes 2.9200 0.0163 0.07 tonnes 2.9200 0.0163 0.07 tonnes 2.9200 0.0163 0.07 tonnes 2.9200 0.0163 0.07 tonnes 2.6700 0.0028 0.000 tonnes 2.4000 1.0385 1.03 tonnes 2.6700 0.0078 0.000 tonnes 2.3000 0.0335 0.000 tonnes 2.3000 0.0335 0.000 tonnes 1.0000 0.1642 0.164	% By Weight 3 0.69% 3 36.95% 3 0.12% 5 44.08% 3 0.33% 2 9.43% 5 1.42% 2 6.97%	% By Volume 0.48 39.48 0.05 37.87 0.26 6.17 1.27 14.37

Condensed LCA Measure Table By Life Cycle Stages

Project: Case Study - Condo

		PRODUCT (A1 to A3)	CONSTRUCTION PROCESS (A4 & A5)	USE (B2, B4 & B6)			END OF LIFE (C1 to C4)	BEYOND BUILDING LIFE (D)	E TOTAL EFFECTS		
LCA Measures	Unit	Total	Total	Replacement Total	Operational Energy Use Total	Total	Total	Total	A to C	A to D	
Gobal Warming Potential	kg CD2 eq	5.45E+05	6.31E+04	9.31E+03	0.00E+00	9.31E+03	4.01E+04	1.51E+04	6.57E+05	6.72E+05	
Acidification Potential	kg SO2 eq	2.40E+03	5.02E+02	7.58E+01	0.00E+00	7.58E+01	5.05E+02	-1.22E+01	3.49E+03	3.47E+03	
HH Particulate	kg PM2.5 eq	7.06E+02	3.36E+01	5.40E+00	0.00E+00	5.40E+00	2.38E+01	1.92E+01	7.69E+02	7.88E+02	
Eutrophication Potential	kg N eg	2.04E+02	3.41E+01	2.61E+00	0.00E+00	2.61E+00	3.14E+01	1.87E+00	2.72E+02	2.74E+02	
Dzone Depletion Potential	kg CFC-11 eq	5.00E-03	2.43E-04	2.98E-04	0.00E+00	2.98E-04	1.66E-06	-4.82E-07	5.55E-03	5.55E-03	
Smog Potential	kq O3 eq	3.66E+04	1.44E+04	6.30E+02	0.00E+00	6.30E+02	1.65E+04	4.32E+01	6.81E+04	6.82E+04	
Total Primary Energy	MU	5.73E+06	7.95E+05	1.01E+05	0.00E+00	1.01E+05	5.93E+05	1.62E+04	7.22E+06	7.23E+06	
Non-Renewable Energy	MU	5.43E+06	7.80E+05	1.01E+05	0.00E+00	1.01E+05	5.92E+05	1.70E+04	6.90E+06	6.92E+06	
Fossil Fuel Consumption	MU	4.37E+06	7.58E+05	9.95E+04	0.00E+00	9.95E+04	5.91E+05	1.39E+05	5.82E+06	5.96E+06	

Get detailed LCA and LCI results by life cycle stage and by assembly

Eutrophication Potential LCA Measure Chart By Assembly Groups (A to C)

Project: Case Study - Condo Reference

Multiple graph options, or export all results to Excel

Operational vs Embodied Global Warming Potential (A to C)

Project Case Study - Condo Reference

Compare operating and embodied energy and carbon

Easy side-by-side comparisons

Instantly generate project reports and LEED submittals

Factors Affecting Reliability of Results for Any Whole-Building LCA study

- Bill of materials: Accuracy and comprehensiveness
- Background material and process data: Accuracy, consistency, comprehensiveness
- Life cycle stages: Comprehensiveness

The Whole-Building LCA technical infrastructure

Component	Purpose	Status
Standards	Guardrails	Good
Guidelines	Consistency	Inadequate
Data and methods	Accuracy	Lots of gaps
Software tools	Access	Needs improvement
Benchmarking	Comparison	Missing
Training	Interpretation	Inadequate

www.athenasmi.org

- Free software download
- Case studies
- Research reports
- Learn more about LCA
- Join our mailing list!

BUILDING LIFE-CYCLE ANALYSIS WITH GREET

HAO CAI

Principal Environmental Analyst Systems Assessment Center Argonne National Laboratory

10/29, BTO Building Life-cycle

LCA IS AN EFFECTIVE APPROACH TO ADDRESSING EMBODIED CARBON/ENERGY, WHICH BECOMES INCREASINGLY IMPORTANT FOR PROMOTING NEAR-ZERO ENERGY/EMISSIONS DESIGNS

 As the building sector continues to improve energy efficiency to reach net zero energy buildings, embodied energy/GHGs become the integral part of consideration for pursuing sustainable building components/technologies and whole buildings

33

Illustrative Tradeoffs Between Embodied Energy and Operational Energy: MJ/M²

(From Goetsch 2020; Chastas et al, 2016)

Building LCA: Cradle-to-grave consideration of a building product/technology to address its energy and environmental footprints

All inputs (materials, energy, and water) have their own life cycles and footprints!

BUILDING LCA OFFERS INSIGHTS FOR PROMOTING SUSTAINABLE BUILDING TECHNOLOGIES AND DESIGNS

 LCA results can help answer numerous questions that arise during the design and construction of a green building. It can reinforce the decisions taken by architects, manufacturers, and engineering firms by providing a scientific justification (American Institute of Architects, 2020)

Example: holistic and comparable LCA results of insulation materials offer insight on material choices in architecture designs.

BUILDING LCA CHALLENGES: METHODOLOGIES

Thorough, consistent LCA methodologies need to be agreed upon to

- Clearly defined and consistent system boundary
- Defining and using a performance-equivalent functional unit is key to comparable LCA among building technologies

BUILDING LCA CHALLENGES: DATA

Building LCA needs extensive, representative data

- Extensive and consistent background data
 - Energy supply systems:
 - ✓ Electricity, natural gas, etc.
 - Emissions of not only end use but also supply chain of energy systems (electricity generation, methane leakage of NG supply chain)
 - Material supply systems:
 - \checkmark LCI data for raw materials to end-use materials
 - Commonality and uniqueness of materials specifications among different applications, e.g., automobile steel vs structural steel/rebar
- Foreground data need to be developed for building components/technologies
 - Embodied energy/emissions as well as operational performance data are needed
 - Impacts of circular economy practices in the building sector as well as in other sectors need to be considered for dynamic evaluation

Process-level foreground data

Common background data for process materials and energy types

 Functional Unit
 1 m² of EPS insulation with a thermal resistance RSI= 1 m²K/W and with a building service life of 60 years

Reference: Franklin Associates, 2017

8.32E-4 MMBtu Natural Gas, 0.0243 kWh Electricity, 1.51E-5 Liter Gasoline, 1.31E-5 Liter Diesel, 4.33E-3 kg Internal Offgas from Oil, 0.0198 kg Internal Offgas from Natural Gas, 4.81E-3 MJ Recovered Energy

Building LCA challenges: LCA models for Transparent, detailed, and consistent modeling of building products and technologies

ARGONNE GREET BUILDING LCA MODULE FOR DETAILED BUILDING LCA

GREET: <u>Greenhouse gases, Regulated</u> <u>Emissions, and Energy use in Technologies</u>

Argonne has been developing GREET since 1995 with DOE support

- It is publicly available at greet.es.anl.gov
- At present, there are >40,000 registered GREET users worldwide
- Users include governments, industries, R&D communities, universities, and NGOs

- Built in GREET2 platform to leverage existing data and analysis of materials
- Allow for detailed, transparent modeling of building components and whole buildings with consistent methodologies
- Beta Version is developed and ready for stakeholder inputs

The GREET building LCA module: Overall User Graphical Interface (GUI)

The building LCA module architecture was designed with interactive features

Instructions: To viewed in the re	perform analysis of an inc sults Dashboard after the	lividual building comp LCI has been entered	onent, enter supply ch and the simulation is c	ain life-cycle inventories completed.	(LCI) using the buttons be	elow. Results can be
Sele System Bounda Building Componen Technology to Anal (Including Intermed	ct ry Cradle to Cradle t or yze liates)	_	Functiona	al Unit of Selected Comp	onent	
A1 - Raw Material Sourcing	A2 - Raw Material Transportation	A3 - Manufacturing	A4 - Finished Produc Transportation	A5 - Construction & Installation	B - Use, Maintenance, Repair, Replacement, Refurbishment	C - End of Life D - Re-X
Energy Units Emissions Units ater Consumption Units	BTU g Gal		Run imulation	View Results in Dashboard		Show/Edit

The GREET building LCA module: Addressing new building technologies

		rd arter the LCI has b	een entered and th	e simulation is comp	pietea.		
System Bounda	ry Cradle to	Cradle					
Building Componer	it or			Functional Ur	nit of Selected Comp	ponent	
(Including Intermed	yze liates)						
	Se	elect Material			×		
A1 - Raw	A2 - Ra	Instructions: Select the mate you may create a new mate	rial to be analyzed. If the rial and provide details for	material is not in the datab it to be analyzed	A5 -	B - Use, Maintenance,	C - End of
Sourcing	Trans	Select Component		•	nstallation	Repair, Replacement, Refurbishment	Life D - Re-X
		1					
		Create New Component	Save As	ок			
			nter name				
Energy Units	BTU	•	inter name of new bui	laing component	OK		
Emissions Units	g	-			Cancer		
	1.000		New Material)	

The GREET module provides an interactive Dashboard to quickly visualize, compare, and interpreting multiple metrics of LCA results of multiple modeled building materials/technologies

2) Embodied Energy Use

Embodied Energy

National Institute of Standards and Technology U.S. Department of Commerce

Metrics & Tools for Sustainable Buildings

Joshua Kneifel, PhD Economist Applied Economics Office Engineering Laboratory

Metrics & Tools for Sustainable Buildings

Problem: Difficult to Measure and Evaluate Building Sustainability

Goal: <u>Assist stakeholders</u> in making more sustainable buildingrelated decisions using life cycle analysis

Approach: Develop (standards-based) information, metrics, data, and tools that are <u>accessible</u> in a form and function that can be incorporated into their decision-making process.

Numerous Sustainability Criteria

Whole Building Simulation

Challenges Assessing Life Cycle Impacts

Hard to **Quantify Environmental Impacts**:

- Consistent, transparent scope, methodologies, and data?
- Comparable?
 - Building Product Selection (Interaction Effects?)
 - Whole Building Design (Comparable performance?)
 - Whole Building Life (Embodied and Operational?)

Hard to <u>Communicate</u> Environmental Impacts:

- How to present results in a useful way?
- How do you use results in decision-making?

Changing Demand and Technologies

- How to design tools to provide useful, up-to-date information to decisionmakers?
 - Relevant data, Flexibility to the user, Do not want to duplicate efforts

Building for Environmental and Economic Sustainability (BEES) Framework

Weighted Normalized Carbon Dioxide Carcinogenics Web Interface Single Average Methane GWP flows (ASTM AHP Std) **Nitrous** Oxide Acidification **Individual Building Products** V Respiratory (LCA) Effects Non Environmental Criteria Carcinogeni Impact Ozone Depletio Sum of single **LCIA** Categories Score Eutrophication flows Smog Environmental Impact Score (EIS) (LCIA) Ecotoxicity Life Cycle Costs (ISO Stds) Weighted normalized average IAQ (ASTM Bldg Econ Stds) Life Cycle Costs Land Use Ľ Water Consumption **Guidance and Default Values for Users** Economic **First Costs** Impact Assumptions Score **Future Costs Product selection** Visual Displays and CSV Access

NIST

Building Industry Reporting & Design for Sustainability (BIRDS) Framework

- Web Interface
- Whole Building Prototypes
- Building simulation results
 - Standards/Codes
 - Incremental Design
- Criteria
 - LCIA categories & EIS
 - Life Cycle Costs
 - Operational Energy
 - Thermal Comfort
 - IAQ
- Guidance and Defaults to assist Users
 - Assumptions
 - Building Designs
- Displays Key Results
- CSV Database available

Building Industry Reporting and Design for Sustainability

NIST

Trends in Sustainability Analysis

- Shifts in Technology to estimate building performance
 - Data and Computing power
 - Massive simulation and computational capabilities
 - Software development
 - Capabilities are ever expanding and increasingly open source
- Shift in Demand for "Green" Buildings
 - Product & Building Certification Programs
- Shift in Focus of Sustainability in Buildings
 - Product -> assembly -> "whole building" LCA
 - Credits in green certification programs

Needs in Sustainability Analysis

- Broader & Quantifiable Scope
 - How can you make quick, accurate evaluations to make informed decisions without a need for expertise in sustainability measurement science?
- Interoperable Software
 - Disaggregated and modularized tools
 - Ability to connect software tools and analyses
 - Leverage/Collaborate with other organizations to accelerate development
- Standards and Data
 - Standardization in data format
 - Reliable, transparent data is costly and difficult to create and maintain
 - Leverage existing data when feasible

BIRDS Neutral Environment Software Tool (NEST)

- Life Cycle Impact Assessment (LCIA) API
 - Custom, real-time LCIA calculations for single-family dwellings
 - Generic building products
- Audience
 - Builders and Architects
 - (Green) Code Compliance Software
 - NASEO Harmonizing HERS and Home Energy Score
- Interoperable with DOE's OpenStudio
 - 40,000+ users
 - Basis for building evaluation software
- BIRDS NEST API is Generic
 - Compatibility with other software tools

For further information...

Joshua Kneifel, PhD

joshua.kneifel@nist.gov

BIRDS

http://ws680.nist.gov/Birds

NIST EL Applied Economics Office

http://www.nist.gov/el/economics/

IE4B

http://www.athenasmi.org/our-softwaredata/impact-estimator/

BEES Online

http://ws680.nist.gov/Bees/

OpenStudio

https://www.openstudio.net/

Standardization and Data

Highlighted Standardization and Data Efforts

- Detailed Documentation
 - Transparency on how the LCIA data was developed
 - BIRDS NEST code could be published on GitHub
 - Data will be published when feasible
- Standardized Component Dictionary and LCIA Results
 - LCIA Results using EN15978
 - Data Format using HPXML
- Operational Energy LCIA Data
 - Collaborating with NETL to develop publicly available on-site energy consumption LCIA data
 - Regionalized and published on a regular basis with most recent data
 - Electricity Baseline, Natural Gas Baseline, etc.
- Other Collaboration Efforts
 - Federal LCA Commons
 - Best Practices and consistent data across federal agencies
 - Building Transparency OpenLCI Project
 - North American LCI database

Easy to Use Software – LCA in Buildings

- BEES (1997, 2011, 2018)
 - Individual Products
- BIRDS (2014)
 - Whole Building Prototypes

- BIRDS NEST (2018)
 - User-Defined Buildings

Poll Question

A variety of tools and resources exist now to assist organizations making lifecycle impact decisions. What additional resources would be most helpful?

Enter answers in the question box!

Q&A Session

- Use the Q&A feature to ask a question
- Panelists
 - Hao Cai, Principal Environmental Analyst, Argonne National Labs
 - Jennifer O'Connor, President, Athena Institute
 - Joshua Kneifel, Research Economist, National Institute of Standards and Technology

Building Life Cycle Impacts DOE Webinar Series

Торіс	Date	Time
Overview of life cycle impacts of buildings	Oct. 16	12:00pm – 1:00pm ET
Challenges of assessing life cycle impacts of buildings	Oct. 29	12:00pm – 1:00pm ET
Innovative building materials	Nov. 12	12:00pm – 1:00pm ET
"Real Life" buildings striving to minimize life cycle impacts	Dec. 3	12:00pm – 1:00pm ET
Intersection of life cycle impacts & circular economy potential for the building sector	Dec. 17	12:00pm – 1:00pm ET