


# Overview of life cycle impacts of buildings

Where do buildings come from and where do they go when they die?

Life-Cycle Energy & Related Impacts of Buildings Webinar Series

October 16, 2020



### Agenda

I. Opening Remarks

David Nemtzow - Director, U.S. DOE Building Technologies Office

II. Introduction to Life Cycle Carbon

Lyla Fadali - AAAS Policy Fellow, U.S. DOE Building Technologies Office

III. Embodied Carbon Overview

Ed Mazria - CEO, Architecture 2030

IV. Life Cycle Assessment

Kate Simonen - Professor and Chair of Architecture, University of Washington

V. Building Life Cycle Impacts: Challenges and Opportunities

Michael Deru - Engineering Manager, National Renewable Energy Laboratory

VI. Q&A Session

Cedar Blazek - Management & Program Analyst, U.S. DOE Building Technologies Office

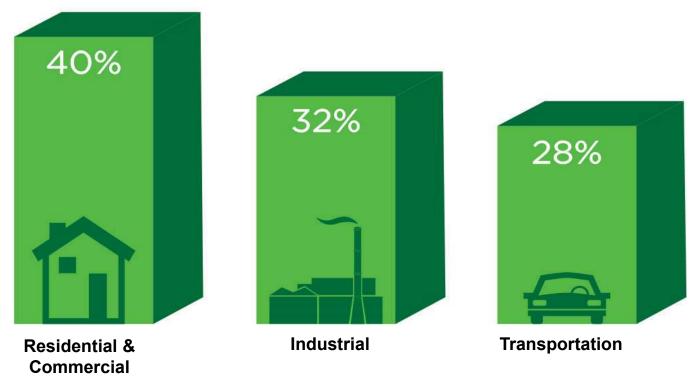
# **Building Life Cycle Impacts DOE Webinar Series**

| Topic                                                                                   | Date    | Time                |
|-----------------------------------------------------------------------------------------|---------|---------------------|
| Overview of life cycle impacts of buildings                                             | Oct. 16 | 12:00pm - 1:00pm ET |
| Challenges of assessing life cycle impacts of buildings                                 | Oct. 29 | 12:00pm – 1:00pm ET |
| Innovative building materials                                                           | Nov. 12 | 12:00pm - 1:00pm ET |
| "Real Life" buildings striving to minimize life cycle impacts                           | Dec. 3  | 12:00pm – 1:00pm ET |
| Intersection of life cycle impacts & circular economy potential for the building sector | Dec. 17 | 12:00pm - 1:00pm ET |

# **Poll Questions**



- What industry are you from?
- How familiar are you with life cycle analysis?




David Nemtzow

Building Technologies Office Director

# Efficiency is key to meeting U.S. energy goals

# Our Homes and Buildings Use More Energy than Any Other Sector



Source: EIA Monthly Energy Review

# **Building Technologies Office**

BTO invests in energy efficiency & related technologies that make homes and buildings more affordable and comfortable, and make the US more sustainable, secure and prosperous.

Budget ~US\$285M/year; activities include:



**R&D**Pre-competitive, earlystage investment in nextgeneration technologies



Integration
Technology validation, field & lab
testing, metrics, market integration



Codes & Standards
Whole building &
equipment standards
technical analysis, test
procedures, regulations

# DOE research has saved energy and saved consumers money

#### FOR EXAMPLE:

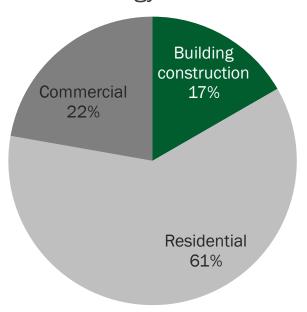
## Past

Units half the price, almost 20% bigger, and 75% less energy to operate – AND have more features!

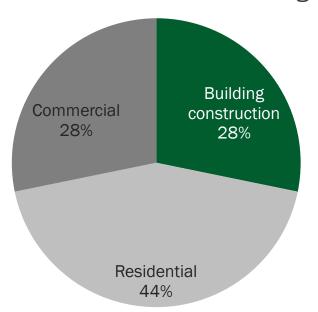


#### **Firets**eret

- \$550 purchase
- \$50/year to operate
- 22 cubic feet


# Our impact on a national scale

Energy efficiency standards completed through 2016 are expected to save 142 quadrillion Btu through 2030 — more energy than the entire nation consumes in one year.


BTO's work is making a difference, but we're missing part of the picture.

## Historically, BTO has focused on operating buildings.

Global energy use in buildings



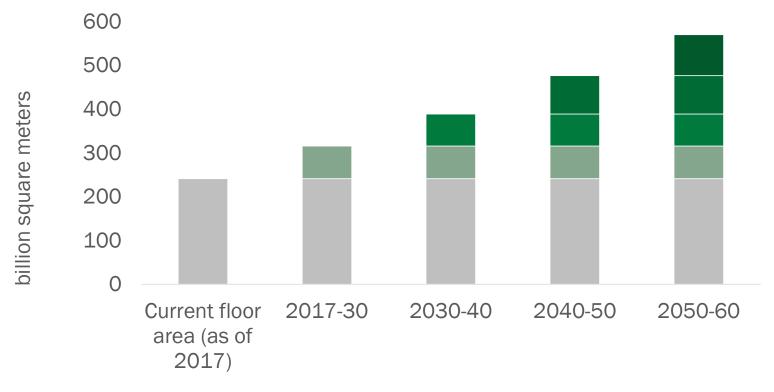
#### Global emissions from buildings



2018 Global Status Report. United Nations Environment Programme. International Energy Agency for the Global Alliance for Building and Construction (GlobalABC)

# Let's look at the whole picture:

**Lifecycle carbon** refers to carbon emissions associated with all stages of a building's life




**Embodied carbon** is the carbon associated with all stages of a building's life cycle not including operating the building

Operational carbon is the carbon associated with operating the building

# Global building stock expected to more than double, making embodied carbon increasingly important.

Global building stock through 2060



Source data from GlobalABC Status Report in 2017

# Where are the biggest opportunities? Where is BTO needed?

#### What types of buildings?

Residential or commercial?

New construction or retrofits?

#### What types of materials in the building?

Envelope? Lighting? HVAC?

#### What parts of the life cycle?

**Transportation?** 

Material extraction?

End of life?

# **Poll Question**



• What aspect of lifecycle carbon should BTO focus on? Include alternate answers in the question box!

# **Ed Mazria**

**Architecture 2030** 



# **Life Cycle Assessment**

**Kate Simonen, AIA SE** 

Director Carbon Leadership Forum
University of Washington
www.carbonleadershipforum.org

#### **Life Cycle Thinking**

**Life Cycle Costing (LCC)** 

**FINANCIAL Impacts** 

**Life Cycle Assessment (LCA)** 

**ENVIRONMENTAL I Impacts** 



#### **Building Sector Decarbonization**



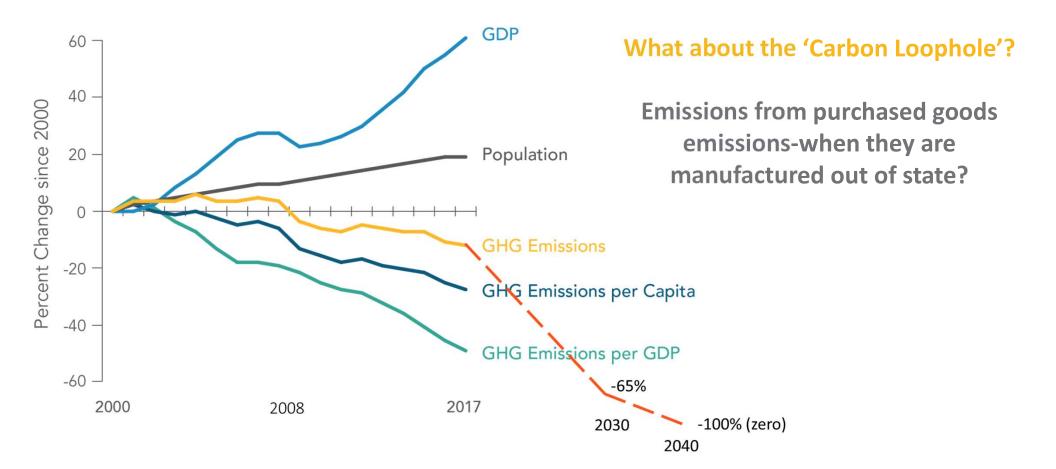
#### **Embodied Carbon**

Manufacture, transport and installation of construction materials

## **Operational Carbon**

**Building Energy Consumption** 

Image: S. Smedley Skanska


Total Carbon = Embodied Carbon + Operational Carbon

TC = EC + OC

#### **Carbon Smart Building**

- New Buildings Operations and Embodied Emissions.
   All new buildings and developments are net zero carbon by 2030, with increase in carbon-storing material use.
- Existing Buildings Operations and Embodied Emissions. Extend building lifespan to 100 + years and retrofit existing buildings to net zero carbon operations by 2050.
- All new building (material production, construction, and use) is healthy, equitable and just.

#### **California GHG Emissions since 2000**



#### **Embodied Carbon Reduction Strategies**

# Optimize Project

#### **Strategies**

- New vs Retrofit
- Smaller footprint
- Design for Disassembly



Rules of Thumb/LCAs

# Optimize System

#### **Strategies**

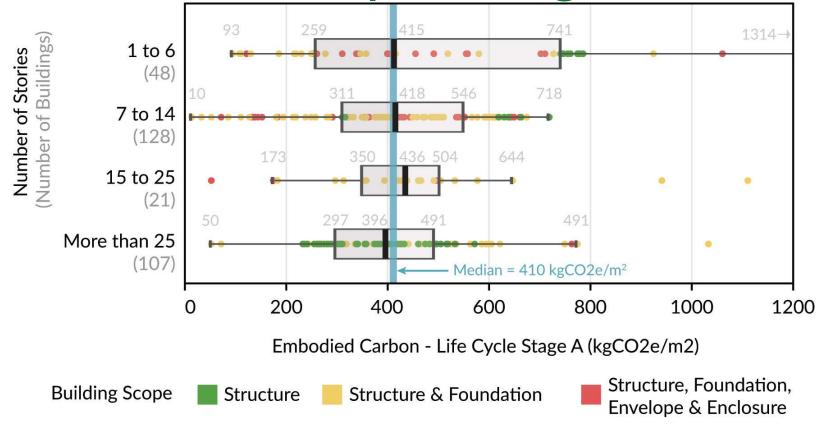
- Alternate materials
- Building shape
- Life cycle thinking



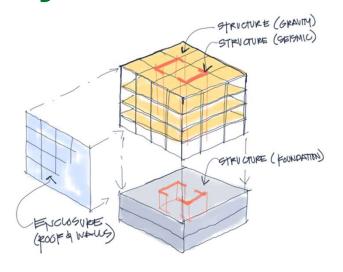
Life Cycle Assessment

# Optimize Procurement

#### **Strategies**


- Transparency
- EC limits/incentives
- Low carbon specs

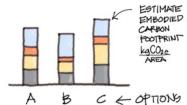



EPDs, EC3
Buy Clean

# **CLF Embodied Carbon Benchmark Study**

www.carbonleadershipforum.org




# Cycle Assessment





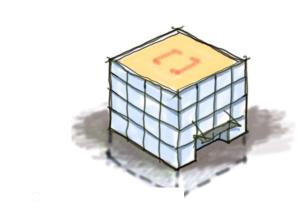






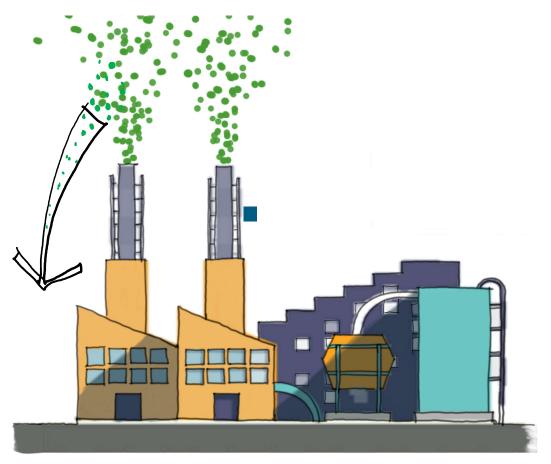
MATERIAL QUANTITY ESTIMATE

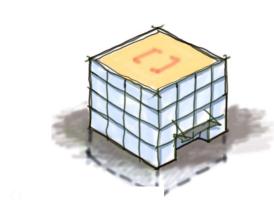



CARBON PER UNIT MATERIAL



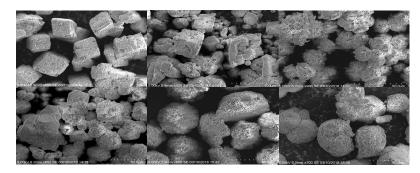
BUILDING EMBODIED CARBON (EC) ESTIMATE


## **Embodied Carbon Solution Strategies**









## **Embodied Carbon Solution Strategies**







#### **Innovative Carbon Storing Materials**





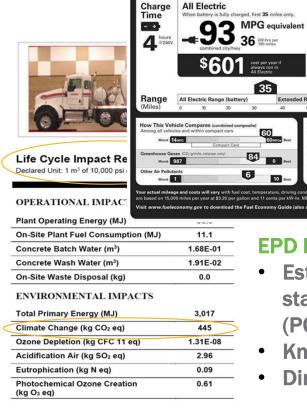
#### **Environmental Impacts**

#### **Concrete Innovations**

- Grow concrete with algae
- Store carbon in rocks
- Cure concrete with CO2

#### **Bio Based Materials**

- Long life wood products from sustainably managed forests
- Agricultural waste to building products
- Bio based insulations


#### **Steel Innovations**

Hydrogen Steel Production

#### **EPDs Enable Embodied Carbon Transparency**

**Environmental Product Declarations** 





EPA Fuel Economy and

**Environmental Comparisons** 

35

60

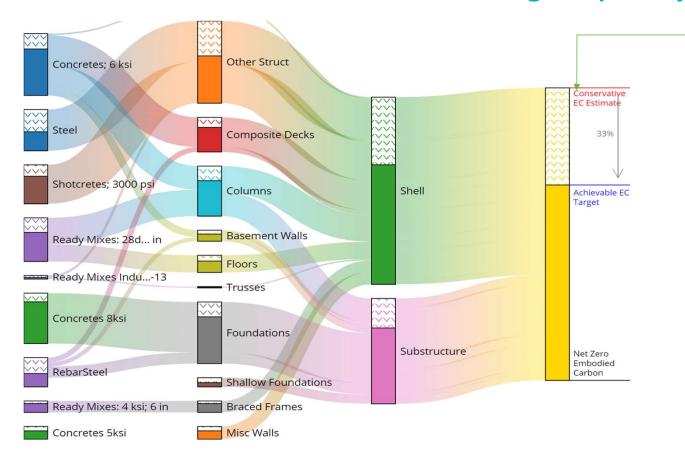
Extended Range (gas)

### **EPD Results are like MPG**

- **Estimates based on** standard assumptions (PCR)
- **Known variability**

Gas Only

**Directionally accurate** 


Dual Fuel Vehicle

, runs on gas for another 344 miles.

12.9 kWh

#### EC3: Embodied Carbon in Construction Calculator

www.buildingtransparency.org



#### **CLF Conservative Baseline:**

If you don't know the supplier, don't assume 'average'

### **Target:**

At least 20% of products in EC3 are below this

#### **Embodied Carbon Reduction Strategies**

# **Optimize Project**

#### **Strategies**

- New vs Retrofit
- Smaller footprint
- Program efficiency



**Rules of Thumb** 

#### **Strategies**

- Alternate materials
- Building shape
- Life cycle thinking



**Life Cycle Assessment** 

# **Optimize Procurement**

#### **Strategies**

- Transparency
- EC limits/incentives
- Low carbon specs



EPDs, EC3 **Buy Clean** 

# www.carbonleadershipforum.org





#### Research

- Data assessment
- Data methodology
- Policy
- Strategies



#### Resources

- Newsletters
- Toolkits
- Curricula
- References

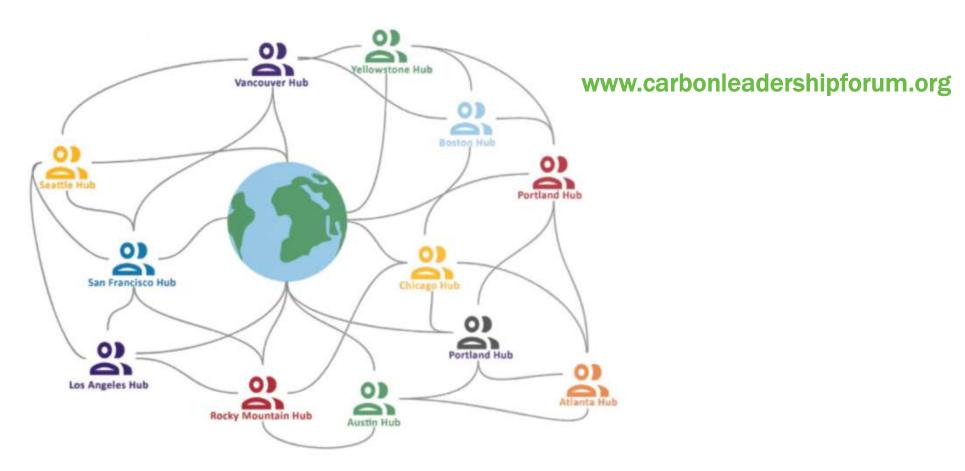


#### Network

- Local hubs
- Focus groups
- Online community
- NGO roundtable
- Members



#### Initiatives


- SE 2050 Challenge
- EC3 Tool
- Events
- Etc.



#### **Sponsors**

- Organizations
- Foundations
- Individuals

# Carbon Leadership Forum Network 12 Regional Hubs, 12 more under development!





# Building Life Cycle Impacts: Challenges and Opportunities

Michael Deru October 16, 2020

# Challenge and Opportunity #1

**Challenge:** Massive new construction and retrofits of existing buildings are needed to meet the demands of growing and shifting populations and energy and climate goals

**Opportunity:** Transform the construction of our buildings to be more sustainable, economical, and equitable

# Challenge and Opportunity #2

**Challenge:** Growing environmental and economic impact of energy consumption, resource constraints, and aging infrastructure

**Opportunity:** Transform our energy generation, distribution, and consumption systems to be low carbon, efficient, resilient, and reliable

# Solutions

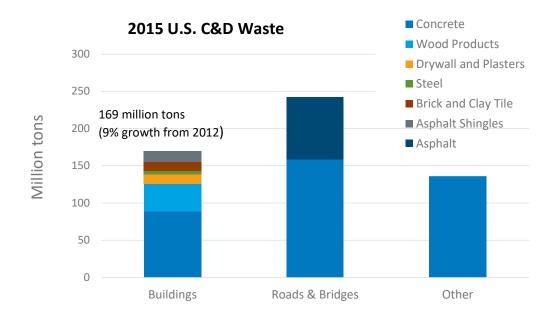
# **Advanced Building Construction Initiative**

https://www.energy.gov/eere/buildings/adv anced-building-construction-initiative

# Transform the construction industry:

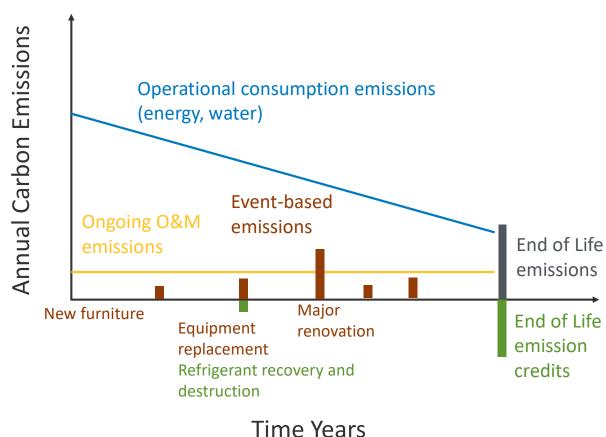
- Improve energy performance
- Increase labor productivity
- Improve circularity
- Address social and economic inequities

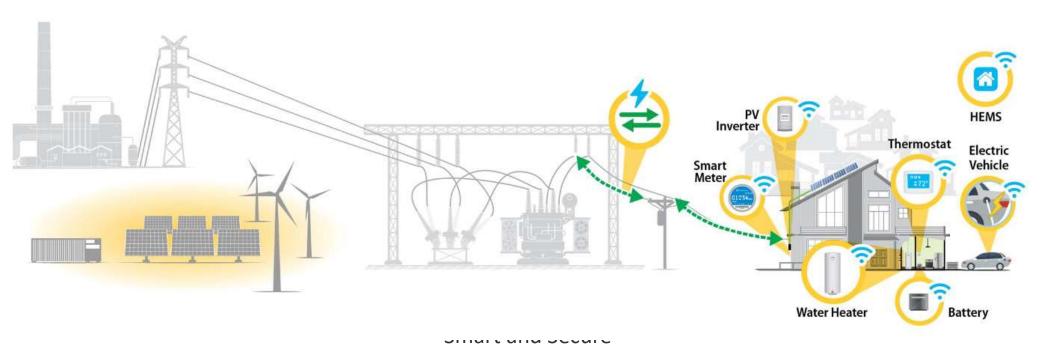



# Circular Economy for Buildings and Building Materials

Minimize embodied carbon
Minimize waste
Reduce material consumption
Reduce toxic materials
Improved end-of-life actions

# Why CE thinking is important


Global construction expected to double building stock by 2060 = NYC every month for 40 years






# **Operational Carbon Decision Making**

Framework and data to help facility operators make smart low-carbon decisions





Clean Energy Generation

Transmission and Distribution

**Smart and Efficient Loads Distributed Energy Resources** 

# **Transformation of our** energy systems

- Decarbonization
- **Efficient**
- Resilient
- Secure

# Grid-Interactive Efficient Buildings – GEB

(https://www.energy.gov/eere/buildings/g rid-interactive-efficient-buildings)

Grid and buildings operating as one large system

Distributed energy resources

- Generation
- Storage
- Flexible loads







#### **EFFICIENT**

Persistent low energy use minimizes demand on grid resources and infrastructure

#### CONNECTED


Two-way communication with flexible technologies, the grid, and occupants

#### SMART

Analytics supported by sensors and controls co-optimize efficiency, flexibility, and occupant preferences

#### **FLEXIBLE**

Flexible loads and distributed generation/storage can be used to reduce, shift, or modulate energy use





#### **LADWP**

\$6 billion annual budget 9,400 employees 4 million residents

#### **Advisory Group**

Diverse energy backgrounds Quarterly meetings Policy oriented

# Integrated Electricity Modeling

Full range power system modeling Integrated transmission and distribution analysis

#### Environmental Analysis

Air quality
Environmental
Impact

# Economic Analysis

Job creation
Job migration
Economic
development

# Thank You

www.nrel.gov

michael.deru@nrel.gov



# **Q&A Session**

- Use the Q&A feature to ask a question
- Panelists
  - Ed Mazria CEO, Architecture 2030
  - Kate Simonen Professor and Chair of Architecture, University of Washington
  - Michael Deru Engineering Manager, National Renewable Energy Laboratory

# **Building Life Cycle Impacts DOE Webinar Series**

| Topic                                                                                   | Date    | Time                |
|-----------------------------------------------------------------------------------------|---------|---------------------|
| Overview of life cycle impacts of buildings                                             | Oct. 16 | 12:00pm - 1:00pm ET |
| Challenges of assessing life cycle impacts of buildings                                 | Oct. 29 | 12:00pm - 1:00pm ET |
| Innovative building materials                                                           | Nov. 12 | 12:00pm - 1:00pm ET |
| "Real Life" buildings striving to minimize life cycle impacts                           | Dec. 3  | 12:00pm - 1:00pm ET |
| Intersection of life cycle impacts & circular economy potential for the building sector | Dec. 17 | 12:00pm - 1:00pm ET |