

Fuel Cell / Battery Hybrid Systems for UAV Applications

H₂@Airports Workshop November 4-6th, 2020

Thomas Jones Director of UAV/Aerospace Technology

1st to create a market for HFC technology

31.4MM+ vehicles fueled; 35T+ liquid H₂ used daily

40,000 units deployed by year end 2020

GenKey end-to-end solution provides fuel and H₂ infrastructure, fuel cells and service

Expansion into electrolyzers and green hydrogen plants via acquisitions

In-house capability to become one of the largest green hydrogen generators over the next several years

Some Plug Power UAV History...

First Fuel Cell UAV in Canada (2007)

First Fuel Cell UAV in Israel (2007)

10 Hour Endurance - Canada (2011)

First Fuel Cell Multirotor Flights in the World (2015)

Longest Fuel Cell Multirotor Flights in the World (2015)

First Fuel Cell eVTOL UAV in the World (2017)

UAV Fuel Cell Systems & Platforms

Why Fuel Cells for UAV / Aerospace?

Advantages of Hybridization

Fuel Cell Architectures for UAVs

Туре	Advantages	Disadvantages
	Very lightweight No air compressor	Low altitude
Air Cooled	Simple	Lower ambient temperatures
Open Cathode	No external humidification required	Cathode contamination Up to 200x reactant air for cooling
	Easiest to scale	Cell pitch / packaging space

Туре	Advantages	Disadvantages
Liquid Cooled Closed Cathode	Higher altitude	Heavier Air compressor; cooling module
	Higher ambient temperatures	More complex
	Higher cell current density At expense of cell efficiency	If freeze capable, WEG coolant required, making radiator larger
	Low cathode contamination	Humidifiers required
	Easier to scale	Packaging space

Туре	Advantages	Disadvantages
Air Cooled Closed Cathode	Simple	Heavier Air compressor
	Higher altitude	Less easy to scale >1kW
	Higher ambient temperatures	
	Low cathode contamination	
	Low cell pitch - reduced packaging space	
	Freeze capable with no system design impact	
	High system level efficiency	
	No external	

- Versatile, light-weight, closed-cathode, air-cooled fuel cell platforms
- Fuel cell / battery hybrid with high specific power (W/kg) & specific energy (Wh/kg)
- Significantly longer operational endurance than LiPo batteries (of same mass)
 - ➢ Gaseous Hydrogen => 3 to 4 times
 - Liquid Hydrogen => 6 to 9 times
- Reduced logistics and operational costs
- Broader mission capabilities
- Ability to power more energy intensive payloads

ProGen 1kW System Development – "Flying Testbed"

Where ProGen 1 kW Adds Value Today

- Long endurance
- Fleet applications
- Centralized fueling
- High utilization => commercial / industrial
- Fast-fill
- Reduced maintenance (compared to IC engines)
- Zero-emission

ProGen 30 kW, 125 kW and Beyond...

Plug Power / Universal Hydrogen Partnership

For Aerospace Fuel Cells...The Future is "Light"

Urban Air Mobility

Cargo Delivery

Medical Supply Delivery

Commuter Aircraft

Pseudo-satellites

Regional Aircraft

Corporate Headquarters 968 Albany Shaker Road, Latham, NY 12110

plugpower.com