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Our Team

 CHEETA

e Established in 2019 under
a S6M NASA ULI program

* Led by the University of
lllinois at Urbana-
Champaign

* Bringing together world
experts in
* Aeronautics
* Electrical Systems
* Material Science

 Multi-institutional
e 7 Universities
e 2 Industry groups

* Government research
collaboration
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CHEETA Goals

* Develop, mature, and design disruptive
technologies for electric commercial aviation
 Distributed propulsion and high-efficiency electrical
power conversion
* High-power, flight-weight cryogenic electric machines
and power electronics

* Materials and systems for superconducting high-power
transmission and large current density

* Integration and optimization of unconventional and
complex aircraft systems

* Motivate and train the next-generation of
professional engineers through engaging outreach
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Why Electric Aircraft?

Global Civil Aviation Fuel Consumption

* Global aviation industry produces
over 900 million metric tons of CO,
per year!!]

* Forecasted 4-5% growth rate in air e T hte

travel per year!?

* Transportation is the leading
source of greenhouse gas
emissions in the USI3]

Yutko and Hansman (2011)

_ . COVID-19
* Aircraft make up ~10% of this 0 Alr Tratfic in RPKs |
contribution :E : oil crisis S
» Technology improvements in flight £ |
efficiency lag growth (net 64% 33 b
increase in aviation CO, by 2050)  ::: T
=3 1
n: 0

(1 Air Transport Action Group

[21 US Department of Transportation Year
_ \ 81 US Environmental Protection Agency Ansell and Haran (2020)



Implementation Challenges: Components

Commercial Aircraft Propulsion

and Energy Systems Research
Reducing Global Carbon Emission

S .

TABLE 4.2 Electrical System Component Performance Requirements for Parallel Hybrid, All-Electric, and
Turboelectric Propulsion Systems

Aircraft Requirements

Electric System? Battery?

Power Capability (MW) Specific Power (kW/kg)© Specific Energy (Wh/kg)

General aviation and commuter
Parallel hybrid
All-electric
Turboelectric

Regional and single-aisle
Parallel hybrid
All-electric?
Turboelectric

Twin-aisle
Parallel hybrid
All-electric
Turboelectric

APU for large aircraft

Motor <1 >3 =250
Motor <1 >0.5 >400
Motor and generator <1 >0.5 n/a

Motor 1-6 >3 >800
Motor 1-11 =0.5 >1,800
Motor 1.5-jgenerator 1-11 >6.5 nfa

Current (non-cryo): 0.25 MW Current: 250
Not studied  [B787 Generator] Wh/kg
Not feasible [T la Li-l ]
Motor 4; generator 30 =10 n/a esla Li-lon
Generator 0.5-1 >3 Not studied

@Includes power electronics.

b Total battery system and usable energy for discharge durations that are relevant to commercial aviation flight times, nominally 1-10 hours.
Values shown are for rechargeable batteries; primary (nonrechargeable) batteries are not considered relevant to commercial aviation.
¢ Conversion factors: 1 kW/kg = 0.61 HP/1b: 1 kg/kW = 2.2 Ib/kW = 1.64 1b/HP.

National Academies (2016)



Implementation Challenges: Energy Storage
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Implementation Challenges: Configuration




Hydrogen as an Energy Carrier

° Liquid Hydrogen (LHZ) 100000 Energy Storage Medium Comparison
* Specific energy 700x that of 10000
batteries (3x Jet A) R orescco e
* Liquid state ~20K, with 1/4 energy = o " N
density of Jet A = ]
. g 10 s Recent
* Abundance of H,, improvements 3 S e O T L,
in economic viability with time Tty ey DZZOMIL et Combuior
ope . = [ i ischarge bl useable
* Ability to produce/supply on-site 5 o1 Battery sesbiel
Q. £ ©
» 001 - sal— ¢
* Fuel Cells o BozlmlthMJ
« Specific power increase from 0.3 R 0 100 1000 10000
kW/kg to 373 kW/kg[4] over Specific Energy (Wh/kg)
previous 15 years Haugan (2013)
e Large improvements in specific
ower forecast at fuel Ce” StaCk‘ Table 1. Rated Power Performance of FCS with SOA Alloy Catalysts
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particulate matter el famas
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* Dual-Use H, Configuration

* Hydrogen as an energy carrier
and as a cryogen, enabling
superconducting system

e Superconducting Power Transmission

* No ohmic losses

e Lower transmission voltage
(mitigates breakdown/partial

discharge challenges)

* Smaller, lightweight conductors

* Cryogenic machines

* Ultra-high efficiency

(superconducting wire)

* Large current density and small
conductor size for very high rated

and specific power
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LH, Superconducting Power System

Superconducting Material Current Density
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Assume entry-into-service ~2050
* Technology development concept

Aircraft Platform
* High-volume energy storage

requirement

Distributed Electric Propulsion
* Flexibility in placement and

configuration of propulsors enables

* Boundary- Iafyer mgestlon (improves
in system efficiency)

* Improved high-lift performance

* Resilience against propulor-out
scenarios (OEl)

System Integration
* Electrical, thermal system

archltecture and control

* Design optimization of aircraft
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Hydrogen-Electric Aircraft Configuration

LH, Circuit

Airframe

Battery - Supercenducting
L — Power Transmission Motor
+ R
Ducted Fan
Inverter
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ULI Study Components

I
I
I
| Integrated aero-propulsive system :

Aero-structural-thermal I Ii—\lrcraft sizing and performance

Superconducting machine I

design optimization I_design and quench dynamics

Multi-domain aircraft!
system modeling L



Research Needs

* Fuel cell specific power

* Not yet competitive with gas turbines at
system level

e Further hindered by thermal
management (PEM) and other BOP
e Stack gross power
e 10’s to 100’s of MW power required

* Lightweight tanks

* High-temperature PEM and other
lower-TRL systems

* Attractive means for thermal challenges
of LT-PEM

* Increase current density and specific
power
* System integration impacts

* Close loop between hydrogen and fuel
cell advances and aircraft system
performance

e Support infrastructure

e Even if aircraft system is viable, what else
does it take?
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HEV 2015 West Virginia
HEV 2000 West Virginia

Transportation Power and Energy Required
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