

Total Cost of Ownership (TCO) Analysis of Hydrogen Fuel Cells in Aviation – Preliminary Results

R. K. Ahluwalia, C. F. Cetinbas, J-K Peng, X. Wang and D. Papadias Argonne National Laboratory

H2@Airports Workshop Hosted by the U.S. Department of Energy in partnership with the Department of Transportation and Department of Defense November 4-6, 2020

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Total Cost of Ownership Analysis

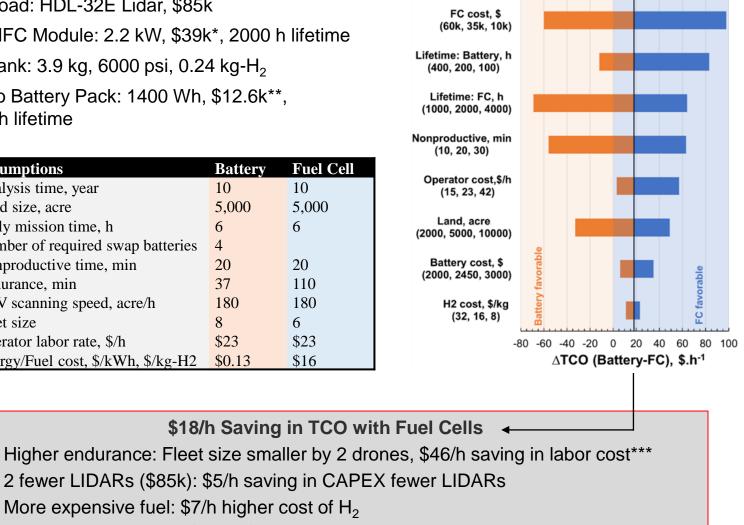
- 1. Unmanned Air Vehicles (UAVs): Piston engines, batteries, fuel cells
- 2. Urban Air Mobility (UAM) for Air Taxis: Batteries, fuel cells
- 3. UAM Helicopters: Piston engines, fuel cells
- 4. Regional Airplanes: Piston engines, fuel cells

Hydrogen and Fuel Cells for Aviation: Study Parameters for Cost and Performance

- Fuel cell system (FCS) cost: \$250/kW
- FCS lifetime: 3,000 h
- FCS specific power: 1000 W/kg
- LH₂ storage system gravimetric capacity: 18%
- LH₂ cost: \$5/kg
- Battery cost: \$200/kWh
- Battery specific energy: 200 Wh/kg
- Battery lifetime without loss of range: 300 cycles

Hydrogen and Fuel Cells for Aviation: Single Variable Sensitivity Analysis

- Identify performance and cost attributes for hydrogen and fuel cells to be competitive with the incumbent technology
- Develop metrics for DOE targets for promising applications


Baseline cost and performance parameters for fuel cells, H_2 cost, H_2 storage, and batteries derived or projected from HFTO data for automotive light-duty and heavyduty vehicles

1a. Multi-Rotor Hexa-Copter UAV: Total Cost of Ownership

Gas Drilling Area Aerial Inspection

- Payload: HDL-32E Lidar, \$85k
- PEMFC Module: 2.2 kW, \$39k*, 2000 h lifetime
- H₂ Tank: 3.9 kg, 6000 psi, 0.24 kg-H₂
- Li-Po Battery Pack: 1400 Wh, \$12.6k**, 200 h lifetime

Assumptions	Battery	Fuel Cell
Analysis time, year	10	10
Land size, acre	5,000	5,000
Daily mission time, h	6	6
Number of required swap batteries	4	
Nonproductive time, min	20	20
Endurance, min	37	110
UAV scanning speed, acre/h	180	180
Fleet size	8	6
Operator labor rate, \$/h	\$23	\$23
Energy/Fuel cost, \$/kWh, \$/kg-H2	\$0.13	\$16

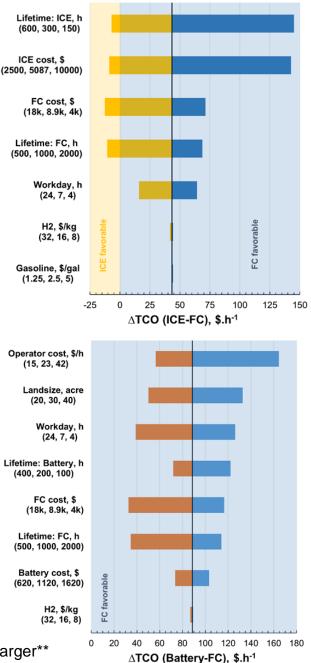
Sensitivity Analysis

- More expensive FCS (\$39k): \$25/h higher replacement cost.
- TCO most sensitive to FCS cost, battery/FC lifetime, and nonproductive time

Includes H₂ tank and pressure booster* Includes swap batteries and charger**

More expensive fuel: 7/h higher cost of H₂

FAA requires 1 pilot per drone***


1b. Fixed-Wing UAV: Total Cost of Ownership

Gas Drilling Area Aerial Inspection

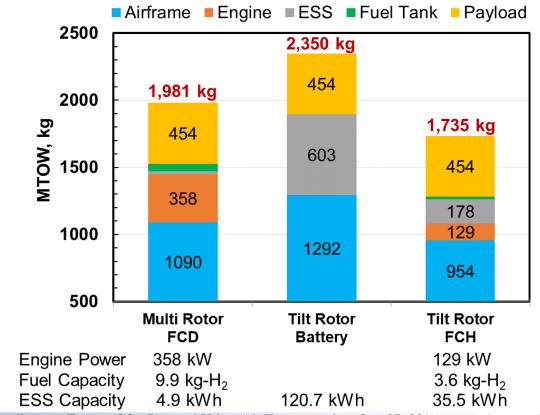
- Payload: RIEGL Lidar, \$100k
- PEMFC Module: 650 W, \$13k*, 1000 h lifetime
- H₂ Tank: 2.9 kg, 6000 psi, 0.18 kg-H₂
- Li-Po Battery Pack: 640 Wh, \$2.6k**, 200 h lifetime
- ICE: 2500 W, \$5k, 300 h lifetime

Assumptions	ICE	Battery	Fuel Cell
Analysis time, year		10	
Land size, acre	30,000		
Daily mission time, h	7		
Number of required swap batteries		1	
Endurance, min	576	88	450
Nonproductive time, min	30	30	30
Area scanning speed, acre/h	800	800	800
Fleet size	6	8	6
Operator labor rate, \$/h	\$23	\$23	\$23
Fuel/energy cost, \$/gal,\$/kWh, \$/kg-H2	\$2.5	\$0.13	\$16

Fuel cell vs. ICE: \$43/h saving in TCO because of cheaper FCS replacement cost, longer lifetime
Fuel cell vs. battery: \$88/h saving in TCO mainly because of fleet size smaller by 2 drones, 4 fewer operators and spotters

Includes H₂ tank and pressure booster* Includes

Includes swap batteries and charger**


2. Urban Air Mobility (eVTOLs) – Air Taxis*

Objectives: Identify fuel cell air-taxi platforms that can match the payload (454 kg), range (96 km) and maximum cruise speed (240 km/h) of battery-powered urban air taxis

• Compare performance (MTOW, FCS/ESS size, LH₂), initial cost and total cost of ownership (TCO)

Conclusions

- Multi-Rotor FCD eVTOL: 358-kW_e FC, 5-kWh battery not required for speeds > 150 mph.
- Fixed-Wing Battery eVTOL: 121-kWh battery, 603 kg battery weight
- Fixed-Wing FCH eVTOL: 129-kW FCS + 36-kWh battery. FCH charges the battery during cruise.
- MTOW: FCH-powered tilt rotor < FCH-powered multi rotor < battery-powered tilt rotor</p>

Uber Elevate. Fast-Forwarding to a Future of On-Demand Urban Air Transportation. Oct. 27, 2016, <u>www.uber.com/us/en/elevate</u>.

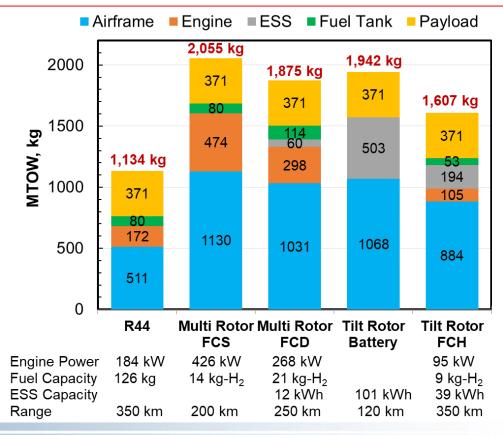
UberAir Vehicle Requirements and Missions. https://s3.amazonaws.com/uber-static/elevate/Summary+Mission+and+Requirements.pdf.

Total Cost of Ownership of Air Taxis

• Fuel cells can offer performance and cost advantages over batteries for UAM air taxis, but additional study is needed for evaluating LH₂ vs. battery recharging infrastructure

~\$100k (CAPEX FCH eVTOL is cheaper option LH ₂ storage syst y small	em	OPEX than to lower replace • Multi-rotor I FCS + \$4/h • Tilt-motor b • FCH tilt-mo	OPEX FC eVTOLs have ~\$50/h lower OPEX than battery eVTOL due to lower replacement costs • Multi-rotor FCD eVOL: \$42/h FCS + \$4/h battery • Tilt-motor battery eVTOL: \$86/h • FCH tilt-motor eVTOL: \$20/h FCS + \$30/h battery		TCO • FCH eVTOL << Battery eVTOL • FCH tilt-rotor eVTOL < FCD multi-rotor eVTOL, but tilt rotors may require additional maintenance cost			
Airframe \$655k	e ■ FCS ■ ESS ■ \$659k \$14	■ Fuel Tank	 Insurance Unscheduled Maintenance Periodic Maintenance Battery Replacement Engine/FC 		CAPE	K ■ Fuel \$0.99	■ O&M		
\$81	_			\$174/h		\$0.79		\$0.63	
	\$644	\$554k \$7 \$29	\$127/h \$33	\$34 \$22 \$33	\$122/h \$28	\$0.40	\$0.66	\$0.37	
\$570		\$516	\$19 \$29		\$17 \$27	\$0.16	\$0.04	\$0.06	
			\$4 \$42	\$86	\$30 \$20	\$0.24	\$0.29	\$0.20	
Multi Rotor FCD	Tilt Rotor Battery	Tilt Rotor FCH	Multi Rotor FCD	Tilt Rotor Battery	Tilt Rotor FCH	Multi Rotor FCD	Tilt Rotor Battery	Tilt Rotor FCH	
CAPEX, k\$			OPEX, \$/h		TCO, \$/PAX.mile				

Other annual fixed costs include crew wages, hangar fees, navigation/weather service


3. Hydrogen Fuel Cell Powered Helicopters : Multi-Rotor and Tilt-Rotor Crafts

Objectives: Identify battery and fuel cell air-taxi platforms that can match the published payload and maximum cruise speed of a commercial helicopter (Robinson R44 Raven II)

• Compare performance (range, MTOW), initial cost and TCO of promising air taxis

Conclusions

- Only FCH tilt-rotor eVTOL can match the range of R44 at 1.4 MTOW
- Batteries are not suitable for the targeted 350-km range
- Hybridizing FCS reduces MTOW and extends the range
- Fuel Cell Size: 426 kW for FC multi rotor, 268 kW for FCD multi rotor, 95 kW for FCH tilt rotor

Fuel Cells for Helicopters: Total Cost of Ownership

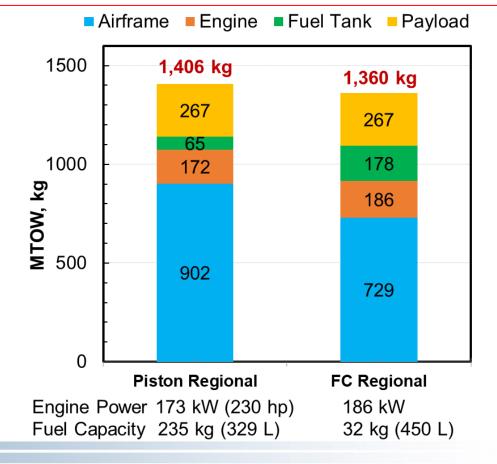
CAPEX

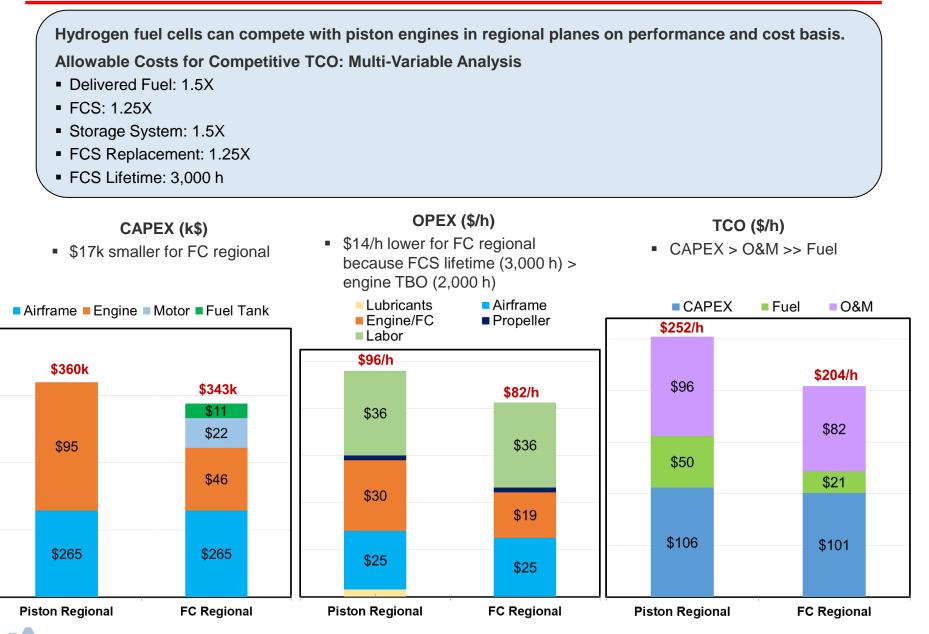

- FCD Multi Rotor: \$67k higher because of 1.7X MTOW, but the range is < 350 km
- FCH Tilt Rotor: \$28k lower because of less expensive propulsion system, but the range is << 350 km

OPEX

- FCS Replacements: 3
- Battery Replacement: 47 for battery tilt rotor, 5 for multi-rotor FCH, 7 for tilt rotor FCH
- FCS OPEX: \$36/h FCH multi rotor
- Battery Replacement Cost: \$142/h for battery tilt rotor

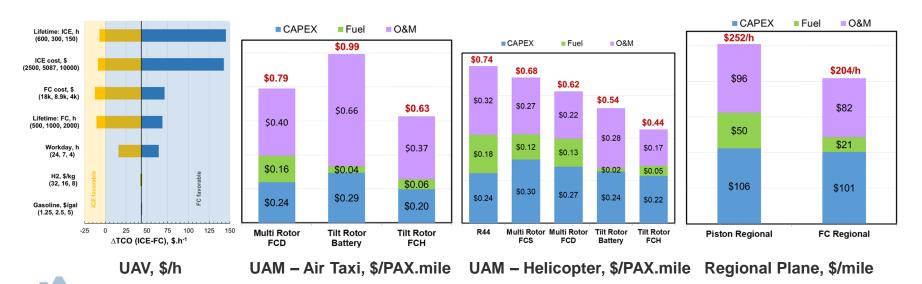
тсо


- Hybrid fuel cells and tilt-rotor eVTOL can compete with the incumbent technology
- Fuel cells offer superior range and lower TCO than the batteries


Other annual fixed costs include crew wages, hangar fees, navigation/weather service

4. Hydrogen Fuel Cells for Regional Planes: Feasibility and Performance

- Objective: Verify that a LH₂-fueled PEMFCS can replace a turbo-charged, 6-cylinder, aviation gas fueled piston engine in a 4-seat regional plane without sacrificing payload (267 kg), cruise speed (269 km/h) at 18,000 ft elevation, or range (1,695 km)
- Conclusion: Determined FCS rated power (186 kW) and LH₂ tank capacity (32 kg) to satisfy the mission requirements, 0.123 kW/kg power-to-weight ratio, allowing for 10% power degradation at ground over lifetime and boil-off losses
- Main FCS Parameters: 50% higher efficiency, 850 W/L power density, 1000 W/kg specific power
- Main Storage Parameters: 18% gravimetric capacity (kg-H₂/kg-system)


Fuel Cells for Regional Planes: Total Cost of Ownership

Other annual fixed costs include crew wages, hangar fees, insurance, navigation/weather service

Fuel Cells for Aviation: Summary and Conclusions

- 1. Hydrogen fuel cells (HFC) are promising candidates for deployment in commercial UAVs
- Superior to ICEs because of longer lifetime (1,000 h vs. 300 h), lower maintenance cost
- Superior to batteries because of longer endurance, smaller fleet
- 2. HFC are suitable for consideration in UAM air taxis
- Main advantages of HFC over batteries: Higher specific power, and longer durability as the duty cycle has rapid charge and discharge rates
- Because of short range (25-60 miles), fuel cells can be used in multi-rotor and tilt-rotor eVOLs
- 3. HFC can replace aviation gasoline and piston engines in UAM helicopters
- Because of long range (350 km), hybrid FCS powered tilt rotor eVOL is the best candidate
- 4. HFC can compete with aviation gasoline and piston engines in regional planes
- Fuel cells not competitive with turbine engines on the basis of specific power (W/kg), but hydrogen may replace aviation gasoline

