Gas Hydrate Field Experiments on the Alaska North Slope: Project Status

Ray Boswell on behalf of ANS Gas Hydrate Project R&D Committee

Methane Hydrate Federal Advisory Committee Meeting

December 1, 2020

Background

Effort to Establish an Alaska North Slope Reservoir Response Field Experiment

- Prior gas hydrate testing has confirmed the technical viability of production based on reservoir depressurization
- Insufficient test duration and quantity complicate assessment of fundamental processes.... Or well designs and testing strategies to determine commercial potential
- ANS greater PBU region provides the most viable known location for the needed long-term scientific testing.
 - Known accumulations, available infrastructure, a history of effective R&D field projects in partnership with Alaska industry and agencies (2007, 2011, 2018)
- Objectives of current ANS initiative are to establish a project that can
 - 1) assess reservoir response beyond near-wellbore and transient phenomena,
 - 2) evaluate effective well design and operational procedures to support sustained productivity, and
 - 3) use 1 and 2 to design subsequent tests intended to test potential for commercial viability.

Review of geology: western PBU

NATIONAL ENERGY TECHNOLOGY LABORATORY

SE

NW

PBU 7-11-12 location

- Working Interest Owners agreed to consider a test that could be conducted with no interference to ongoing operations
- 7-11-12 gravel pad selected based on limited log data and proprietary seismic data provided by PBU
- Stratigraphic Test Well (Dec. 2018) confirmed viable test location
- Effort ongoing to determine legal structure for desired 3rd-Party operations from the site
- Detailed planning underway in advance of initial engagement with Operator

STW

Hydrate-01 Well House

STW Reporting

three-well program designed to conduct an extended duration test of the response of gas hydrate reservoirs to controlled depressurization. Micro-CT Visualization of Hydrate ring Sediments to Aid I

Efforts

Reported: STW Sidewall Core Analysis

Measured at AIST, Sapporo Japan

Project Context

Statement of Intent (6/2008)

AIST

Memorandum of Understanding (4/2013)

PHASE 1 (Completed): Stratigraphic Test Well

Memorandum of Understanding (11/2014) CRADA (12/2018)

JOGMEC

Drilling Services Agreement with BPXA

Project Structure

NATIONAL ENERGY TECHNOLOGY LABORATORY

Jointly managed and jointly (but separately) funded

Reservoir Response Issues

In addition to an accurate assessment of the starting condition

- Sustainability and values for production rates over time (water and gas)
- Geomechanics and dynamic petrophysics (reduction in K with grain mobilization and consolidation)
- Interaction with reservoir across all boundaries (heat transfer, water influx, gas loss?)

Well Completion Design Issues

In addition to determining most effective production strategy

- 1. Sand Control
- 2. Reservoir subsidence related casing stresses
- 3. Hydraulic isolation (to maximize ability to depressurize reservoir)
- Flow Assurance (all times – particularly during shutins)

Cement Water Heat Grains 330000000000 Water Fi Gas Heat Water Water 3 Gas hydrate Sand Clay Silt

Very generic well completion and reservoir condition

Specific Data Acquisition Objectives

Science

Full characterization of GH systems → Physical Properties, Geomechanics, Petrophysics

- Sidewall pressure coring (STW)
- Whole core pressure coring (GDW)
- Full suite LWD (all wells) and wireline logs (GDW and as needed)

Observation of controlled perturbation \rightarrow Dynamic Geomechanics, Petrophysics, Heat Flow

- Fiber-optic Strain, Acoustic, and Temperature Monitoring
- Pressure and Temperature monitoring (gauges)
- Monitoring inside (PTW) and outside (PTW, STW, GDW) casing

Time Series VSP via DAS \rightarrow Reservoir System Response

Technology

Assessment of mitigations to emergent production challenges (heat flow, permeability, geomechanics)

- Sand control/completion/stimulation/shut-in
- Artificial lift; Hydraulic isolation

Improved evaluation/prediction of productivity and potential

• Numerical simulation (needed validation/calibration datasets)

Examples of tools under consideration

Current Testing Plan

Addition to the plan of a second PTW to mitigate risk/expand test flexibility

Draft GDW Coring Plan

Display is MD from STW. NOTE: GDW with slightly less inclination could result in slightly compressed apparent unit thicknesses. Color bars are nominal <u>11'</u> HPTC-III core runs.

GDW: On Site Pressure Core Processing

PTWs Facilities Plan

Recommendations prior to engagement with Operator

• Drilling Support

- Accurate metering of low/variable flow rates
- OBM handling, Mud Chilling, other standard drilling support.
- Mud logging, geochemistry, pressure core handling, sensor interfaces, etc.
- Well intervention including injectant storage and use

• Solids disposal

• Trucking to PBU grind and inject facilities

• Water handling and disposal

- Planning targets \rightarrow 3000 bbl/d
- On site temporary storage
- Trucking to PBU water injection facilities
- On-site evaporation

• Gas disposal

- On site consumption
- Emergency flaring

Modeling: NETL/JOGMEC

Code Comparison - Constraint on max gas and water rates to guide surface facility design

PTWs Technical Plans

- <u>Highest priority</u>: safety; reg. compliance; no disturbance to PBU Ops
 - Water/Sand: local storage w/ sufficient excess. Trucking and disposal in unit facilities
 - Gas: local consumption
- Focus: data interpretability step-wise and controlled depressurization
 - Single driving force 2 MPa steps
- Focus: monitoring reservoir response
 - Periodic VSPs to assess system response (geometry/scale)
 - DTS/DSS/DAS and P-gauges in 3 wells to monitor dissociation reaction and impacts in 4D, with additional DTS/DAS deployment in a 4th well.....
- Focus: well design & survivability
 - Artificial lift: robust, viable across expected flow range
 - Flow assurance; pre-staged intervention: downhole heater, heat trace, chemical injection lines
 - Completion to optimize sand control/hydraulic isolation
 - Staged shut-in and restart procedures
- NOTE: all plans developed to-date by JOGMEC, USGS, DOE ... will be reviewed/revised with TPO and PBU WIOs once testing program is authorized to proceed and TPO selected

PTWs Intervention Plan

Ongoing

Flow Assurance: Shut-in & remediate

Gas Rate (low, declining, erratic, persistently flat)

- Hydrate formation \rightarrow P drop and monitor
- Ice formation \rightarrow P drop and monitor: hot methanol
- Sand/fines blockage \rightarrow P cycling: acid?: re-perf
- Gas-Water block \rightarrow P cycling
- Reservoir Limitation \rightarrow stimulation... TBD
- Equipment failure \rightarrow shut in and repair

Excessive Sand (robust systems; cleanout options)

• Systems failure \rightarrow patience, move to D

Excessive Water (ensure adequate onsite storage)

• Reservoir \rightarrow P drop; P cycling, move to D

Next Project Phase: Status

As of December, 2020

- STW confirmed site feasibility: Steering Committee approval to advance to next project phase obtained.
- PBU and DNR have reconfirmed interest in exploring a viable project structure under previous "standalone/3rd-party" framework and continue effort to gain alignment on project structure.
- **Context**: Oil price decline. Complications over PBU asset sale (finalized in June 2020). New PBU Operator in place. New proposed SOA tax initiative. COVID-related impacts.
- Issues: project design should minimize interference with PBU operations, PBU administrative burdens (during operations and acreage return to the unit), long-term liabilities, and unwanted precedents.
- Project schedule continues to visualize drilling/data acq. in CY2021, followed by testing operations, with project close-out by end of Q1 CY2023.

Ongoing Planning

- JOGMEC RFP designed to secure an experienced Operator capable of conducting the field program has been issued and closed
- Viable proposals received and now in consideration
- NETL will proceed to develop separate contract with separate scope and budget once JOGMEC negotiations are completed.
- Final resolution of leasing structure (agreement between PBU and Alaska DNR) TBD.
- Comprehensive Program Plan in Preparation
 - Purpose is to facilitate discussion with selected Operator
 - Statement of Data Requirements to achieve Science Objectives
 - Review of Operational Recommendations (based on lessons learned in prior tests within both the Japan and US programs).

THANK YOU

