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Foreword 
The U.S. Department of Energy’s (DOE’s) Office of Energy Efficiency and Renewable Energy (EERE) 
invests in a diverse portfolio of technologies to ensure domestic energy security, continued economic 
competitiveness, environmental sustainability, and the availability of cleaner fuels and power.  

This report summarizes the input received from attendees of a public workshop sponsored by DOE-EERE on 
June 9–11, 2020. The views and opinions of the workshop attendees, as summarized in this document, do not 
necessarily reflect those of the U.S. government or any agency thereof, nor do their employees make any 
warranty, expressed or implied, or assume any liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not 
infringe upon privately owned rights.  

The authors would like to thank the workshop participants for their contributions during the workshop and to 
also acknowledge the team of moderators, facilitators, scribes, and logistics support staff who assisted with 
planning and administering the event.  
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Executive Summary 
Investments in integrated biorefinery scale-up have exceeded $2 billion in the United States by private industry 
and the U.S. Department of Energy (DOE), and yet these facilities are still struggling to have reliable and 
continuous operations at commercial production levels. The “Predictive Models and High-Performance 
Computing as Tools to Accelerate the Scaling-Up of New Bio-Based Fuels” workshop (hereafter “the 
workshop”) gathered bioenergy stakeholders across diverse sectors and technology areas, including 
representatives from industry, academia, and government. One hundred seventy-five participants provided 
their input to DOE’s Bioenergy Technologies Office (BETO) regarding best practices for utilizing 
mathematical modeling tools across multiple scales to reduce technology uncertainty and accelerate scaling-up 
of biorefinery/chemical production equipment and optimize operations.  

This workshop summary report summarizes stakeholder input related to discussion objectives including: 

• Understanding how modeling tools can be effectively utilized in conjunction with operational data from 
bench, pilot, and demonstration facilities to augment and accelerate scale-up and integration efforts 

• Identifying synergies, challenges, and gaps in current modeling efforts and data collection methods 
across technologies 

• Utilizing artificial intelligence and machine-learning computational technologies together with well-
instrumented systems to assess and validate models and develop transfer functions to represent scale-up 
accurately 

• Developing best practices and publicly available multiscale modeling tools to reliably represent 
integrated equipment and operations involved in biorefineries. 

BETO anticipates that the participant discussions, in addition to this workshop summary report, will have a 
role in the acceleration and commercialization of integrated manufacturing processes, with the following 
potential impacts: 

• Provide validated computational tools, helping to achieve performance goals 

• Improve understanding of state-of-the-art modeling tools at multiple scales for bioenergy and 
manufacturing technologies currently in progress 

• Enhance scientific understanding to make mathematical models predictive and to gain insights into 
potential operational issues 

• Extend mathematical models into biorefinery/manufacturing operations to guide control schemes and 
optimization strategies. 
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Introduction 
Advanced biofuels have the potential to enable the United States to use our enormous, renewable resources to 
avoid approximately 10% of U.S. carbon emissions and displace up to 27% of U.S. petroleum use, while also 
creating domestic jobs across many sectors of our economy.  

Two U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO)-funded reports, “Biomass as 
Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual 
Supply” (the “Billion-Ton Study”) (2005) and the “U.S. Billion-Ton Update” (2011), project that the United 
States could sustainably produce more than 1 billion tons of biomass—without competing with the food, feed, 
and fiber supply. This projection does not include the potential for algal biofuels, which could be significant. 

DOE-BETO Background  
BETO’s vision is “a thriving and sustainable bioeconomy fueled by innovative technologies” and its mission is 
to develop “transformative and revolutionary bioenergy technologies for a sustainable nation.” To accomplish 
these ends, BETO focuses on forming public–private partnerships with key stakeholders to produce advanced 
bioenergy and bioproducts from biomass. BETO focuses on reducing risks by developing technologies that 
enable industry investment and deployment at scale. Similarly, BETO’s strategic goal is to enable the use of 
America’s abundant biomass and waste resources for advanced biofuels, bioproducts, and biopower by: 

• Identifying and developing biofuel pathways and end uses 

• Lowering the cost of production through increased efficiency, productivity, and yields 

• Completing applied research and development (R&D) on complex, real-world systems and integrating 
engineering processes for promising new advanced bioenergy technologies 

• While maintaining or enhancing economic, environmental, and social sustainability. 

 

 

https://www1.eere.energy.gov/bioenergy/pdfs/final_billionton_vision_report2.pdf
https://www.energy.gov/sites/prod/files/2015/01/f19/billion_ton_update_0.pdf
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Figure 1. Bioenergy Technologies Office's mission and vision 

 

Existing Computational Modeling Efforts 
DOE-BETO is extensively involved with bioenergy-related computational modeling efforts. Currently, these 
efforts are primarily part of the BETO consortia, process development units, and high-performance computing. 
At the beginning of the “Predictive Models and High-Performance Computing as Tools to Accelerate the 
Scaling-Up of New Bio-Based Fuels” workshop (hereafter “the workshop”), BETO provided attendees with an 
overview of these efforts to establish a baseline for discussions.  

Consortia 
DOE does have several consortia currently working on various bioenergy-related models. Although all of the 
consortia have their hands in computational modeling, there are three that focus on this work: the Feedstock-
Conversion Interface Consortium (FCIC), the Chemical Catalysis for Bioenergy Consortium (ChemCatBio), 
and the Consortium for Computational Physics and Chemistry (CCPC).  

 

Figure 2. Bioenergy Technologies Office's consortia (computational modeling-focused consortia marked with green) 

FCIC 
The Feedstock-Conversion Interface Consortium (FCIC) objectives are to quantify, understand, and manage 
variability in biomass from field through downstream conversion and to understand how biomass composition, 
structure, and behavior impacts system performance. Some of the goals include providing first principles-based 
data related to unit operations and providing transfer functions to bridge scales from bench all the way through 
a pioneer biorefinery. 

ChemCatBio 
The Chemical Catalysis for Bioenergy Consortium (ChemCatBio) aims to accelerate the development of 
catalysts and related technologies for the production of fuels and chemicals derived from biomass and waste 

https://www.energy.gov/eere/bioenergy/feedstock-conversion-interface-consortium
https://www.chemcatbio.org/
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feedstocks. The consortium maintains the ChemCatBio Data Hub, where account holders can submit their own 
data to share with others and/or search a repository of data, including interactive tools, databases, and models. 

CCPC 
Consortium for Computational Physics and Chemistry (CCPC) brings together unique computational modeling 
facilities and experience to address conversion challenges. From molecular-scale chemistry to process-scale 
operations, the CCPC integrates experimental and computational capabilities to address real-world 
complexities and enable the advancement of renewable energy technologies. Bringing together theory, 
sophisticated computational methods, and high-performance computing, CCPC provides an understanding of 
material properties and functionality. Additionally, the consortium assists collaborators with predicting 
performance based on fundamental principles and optimizing the design of new materials and unit operations.  

Process Development Units  
In addition to consortia, BETO has a number of process development units (PDUs) used to aid in scaling-up 
various bioenergy technologies and processes and, in some cases, work alongside BETO’s consortia.  

The Integrated Biorefinery Research Facility at the National Renewable Energy Laboratory (NREL) is a 
biochemical conversion pilot plant that accommodates bench-to-pilot-scale processes for converting biomass 
into a variety of fuels and chemicals at process throughputs of up to one ton of dry biomass per day. 

The Thermal and Catalytic Process Development Unit at NREL has state-of-the-art equipment for 
thermochemical process development and testing, ranging from catalyst and feedstock characterizations to 
bench-scale reactors, all the way up to pilot plants.  

The Biomass Feedstock National User Facility at Idaho National Laboratory offers technology to overcome 
biomass challenges during scale-up and integration of biomass feedstock preprocessing facilities.  

The Advanced Biofuels and Bioproducts Process Development Unit at Lawrence Berkley National Laboratory 
enables researchers to evaluate, adapt, develop, demonstrate, and transfer commercially viable biorefining 
technologies for biomass deconstruction and advanced biofuels, proteins/enzymes, and bio-based chemicals 
production. 

Lastly, Pacific Northwest National Laboratory’s Modular Hydrothermal Liquefaction System includes three 
operations sections (or skids) to enable larger-scale hydrothermal processing methods to convert wet-waste 
feedstocks into biofuels. The hydrothermal liquefaction skid uses high temperature and pressure to break down 
sludge into simpler compounds, turning them into bio-crude and bio-oil, which can then be further processed 
into biofuels and products.  

High-Performance Computing 
In addition to the PDUs and the consortia, BETO has access to the supercomputing at several national labs, 
including stacks at both NREL (Eagle Computing System) and Oak Ridge National Laboratory (Summit). 
Eagle is a DOE Office of Energy Efficiency and Renewable Energy (EERE)-specific high-performance 
computer with a peak performance of 8 petaFLOPS. Summit is the smartest and most powerful scientific 
supercomputer in the world, with a 200-petaFLOP performance capacity. 

https://datahub.chemcatbio.org/
https://www.cpcbiomass.org/
https://www.nrel.gov/bioenergy/ibrf.html#:%7E:text=NREL%27s%20Integrated%20Biorefinery%20Research%20Facility%20%28IBRF%29%20enables%20researchers,for%20the%20production%20of%20bio-based%20products%20and%20fuels.
https://www.nrel.gov/bioenergy/tcpdu.html#:%7E:text=The%20Thermal%20and%20Catalytic%20Process%20Development%20Unit%20%28TCPDU%29,spray%20condensation%20train%20to%20collect%20the%20final%20products.
https://bfnuf.inl.gov/SitePages/BFNUF%20Home.aspx
https://abpdu.lbl.gov/
https://www.pnnl.gov/process-development-units
https://www.nrel.gov/hpc/eagle-system.html
https://www.olcf.ornl.gov/summit/
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Figure 3. Oak Ridge National Laboratory’s high-performance computer 

Workshop Purpose 
The workshop’s purpose was to understand how modeling tools can be effectively utilized in conjunction with 
operational data to augment and accelerate scale-up and integration efforts and reduce scaling risk. Through 
the use of highly instrumented bench-, pilot-, and demonstration-scale facilities along with high-performance 
computing (HPC), artificial intelligence (AI), and machine learning (ML), it may be possible to reduce 
technology uncertainty and accelerate scale-up. 

Over the past decade, federal and private investments in the scale-up of cellulosic integrated biorefineries have 
exceeded $2 billion. A majority of these facilities have either been shut down or are struggling to have reliable 
and continuous operations. Furthermore, mathematical models representing the total end-to-end process flow 
of an integrated biorefinery do not currently exist.  

To date, computational modeling efforts have successfully incorporated particle-scale models of biomass 
feedstocks into reactor models, but typically this is done using a simplified approach with a submodel of 
reduced order (or lower dimension). There could potentially be benefits to including the full particle model, 
but that is computationally intensive. There has been a lot of work at universities trying to link atomic-scale 
models to reactor-/process-scale models. 

BETO began the workshop describing four observations made over the past several years: (1) feedstocks are 
not well understood, (2) solids handling is not well understood, (3) understanding equipment is essential, and 
(4) understanding integration of equipment is essential. These observations were the foundation of all 
modeling discussions conducted with workshop participants during breakout sessions. The general descriptions 
follow: 

(1) Feedstocks are not well understood. 

BETO has observed that feedstock variation should not be underestimated, and associated quality and system 
specifications should all be understood prior to design.  
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Verenium Biofuels' final technical report emphasizes this fact. This was one of BETO’s large-scale 
demonstration integrated biorefinery projects designed to utilize bagasse to make cellulosic ethanol. The report 
states: 

“One of the single most important lessons learned from the project was the data gathered 
from compositional [analysis] of the feedstocks. The key message regarding feedstock 
composition is that it will vary. It will vary over the course of the growing season; it will vary 
due to harvest method; it will vary due to on-site staging/storage methods; and finally, it will 
change due to handling methods immediately prior to the conversion process.” 

(2) Solids handling is not well understood. 

Solids handling should not be underestimated and should be fully understood prior to design. This includes 
abrasion, bridging, channeling, particle size distribution, effects on rate of reaction, ash content, neutralization 
effects, ability to flow, and the angle of repose, to name a few.  

The BETO FCIC images (Figures 4 and 5) illustrate that when improper construction materials are used in 
feedstock handling, like the 316 stainless steel used on the auger in Figure 5, significant wear can occur. This 
wear can occur in pipes, reactors, pumps, conveyors, and really anything that comes in contact with solids—
particularly biomass solids—during a scaled-up process. Additionally, you can see how the milled corn stover 
in Figure 4 can bind and lock up a piece of equipment, bringing a facility to a standstill when the solids 
handling system is not properly designed. 

 

 Figure 4. Channeling of corn stover 
Source: Jenike & Johansen  

https://www.osti.gov/servlets/purl/986586
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Figure 5. Wear on stainless steel 316 auger from corn stover (left: light wear; right: significant wear)  
Source: FCIC 

(3) Understanding equipment is essential. 

When utilizing equipment designed for a different purpose, it is critical to understand the similarities and—
more importantly—the differences, and how to account for these differences. “Commercially available” 
equipment needs to be treated as a new technology if it has not been demonstrated in a new function or at a 
new scale. Greater emphasis needs to be placed on the risks associated with scaling-up critical unit operations 
from proof-of-concept to lab-scale to “next”-scale designs; additional data validation, modeling, and piloting 
efforts should be investigated prior to design of an integrated facility. 

(4) Understanding integration of equipment is equally essential.  

Combining two well-known unit operations in a new way can increase complexity and lead to operational 
issues. Also, engineers need to understand the systems readiness level, which quantifies the maturity of 
technology integration in a system and overall system readiness—basically how an unproven unit operation 
will affect the overall process, which is only as strong as its weakest link. 

Effective utilization of mathematical models and artificial intelligence with machine learning to validate and 
improve system and subsystems models using highly instrumented bench-, pilot-, and demonstration-scale 
facilities may reduce technology uncertainty and accelerate scale-up of biorefinery manufacturing facilities. 

Plenary Presentation Summaries 
In order to set a basis of understanding for the workshop participants and to highlight the current work being 
performed in this space, two subject-matter experts presented. The first presentation, “Modeling and 
Simulation for Bioenergy Applications: Challenges, Successes, and Lessons Learned,” was given by Dr. Peter 
Ciesielski, a scientist at NREL. The second plenary presentation, titled “Scientific Artificial Intelligence and 
Machine Learning,” was given by Dr. Steven Lee, Program Manager for Applied Mathematics and Artificial 
Intelligence at the Office of Science’s Advanced Scientific Computing Research. 
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Modeling and Simulation for Bioenergy Applications: Challenges, Successes, and Lessons Learned  
Dr. Peter Ciesielski began with an outline of just how difficult predictive modeling and scale-up of bioenergy 
applications can be due to incorrect assumptions and attempted shortcuts when working with biomass and bio-
based intermediates. The assumption that handling and comminution methods designed for other solid 
materials will also work for biomass is not correct and can lead to issues in attempts to model biomass 
feedstocks. Biomass feedstock particle sizes are inconsistent and composition can vary even within a single 
bale, so trying to employ the same handling and comminution methods as might work for a feedstock like coal 
will not work. To the same effect, attempts to utilize upgrading and conversion technologies originally 
developed for petroleum feedstocks will not have the same results when applied to biomass-derived feedstocks 
such as pyrolysis oil. Dr. Ciesielski also discussed the difficulties encountered in modeling work when 
scientists assume that modeling and simulation frameworks and engineering heuristics developed for other 
feedstocks will translate directly to biomass; these assumptions lead to inaccurate results. He went on to 
explain that the hierarchical structure and variability of biomass feedstocks differentiate it from other 
commonly used feedstocks. 

The hierarchical structure of biomass gives rise to emergent properties that dictate the behavior of biomass 
feedstocks in handling, preprocessing, and conversion operations. He explained that emergent properties are 
difficult or impossible to characterize by experiment or simulation performed at individual length/time scales, 
which ultimately makes it difficult to scale up bioenergy applications. An example of an emergent property is 
the nanomechanics of cellulose. He discussed how kink defects formed by mechanical stress in cellulose fibrils 
can be linked to the breakdown of bonds within these fibrils. They used the CHARMM carbohydrate forcefield 
model to simulate the kink defects in their work. They then showed that following partial enzymatic digestion, 
the sites of these kink defects were targeted for hydrolysis initiation by the enzymes more readily than other 
sites, which leads to greater conversion of cellulose. These findings provide new fundamental insights to 
evaluate the impacts of preprocessing and pretreatments. 

Dr. Ciesielski provided an additional example focused on thermochemical conversion in catalytic fast 
pyrolysis. He again discussed the highly variable nature of biomass feedstocks and how the different 
microstructures of various species of biomass dictate intraparticle heat and mass transfer. In addition to the 
microstructure within the particles, even varied particle shape and size can affect conversion times, fluidization 
behavior, and flowability, which makes modeling these systems particularly difficult. He discussed a critical 
question in developing biomass models: “If the feedstock attributes change, how does the model change?” 
They have modeled aspen and pine particles to simulate heat-transfer scenarios as well as the 
reaction/diffusion process for lignin extraction. The work is further described in a paper by Thornburg et al., 
“Mesoscale Reaction-Diffusion Phenomena Governing Lignin-First Biomass Fractionation.” He stated that by 
developing detailed particle models, they enabled the prediction of yield, product distribution, and required 
conversion times as a function of feedstock attributes, including particle size, shape, microstructure, and 
composition.  

Dr. Ciesielski then discussed how coupling to reactor simulations and ensemble calculations enables highly 
accurate predictive reactor models. He looked at NREL’s fluidized bed reactor and discussed how reactor-scale 
simulations and particle-scale simulations can be used together to achieve an accurate product yield prediction 
within 1%–2%. The differences between the two simulation scales gives insight into different aspects of the 
conversion process. Whereas the reactor-scale simulations account for hydrodynamics and are used to estimate 
residence-time distributions, the particle-scale simulations are used to account for feedstock-specific effects 
and calculate conversion.  

One of the next steps in bioenergy process simulation could come from the ability to directly import complex 
3D geometries for finite element analysis. Dr. Ciesielski gave the example of modeling a catalyst particle’s 
microstructure. By taking a transmission electron micrograph of the catalyst particle microstructure, they can 
make a meshed geometry that can then be used directly in finite element analysis or simulations that provide 
researchers results that more closely relate to real-world conditions. Something else that can help researchers 
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gain insight into what happens in real-world scenarios is the development of reduced-order models. These 
models can help researchers extract intrinsic kinetics from experimental data, which then enables process-scale 
models that can investigate reactor designs and operating conditions.  

He closed by discussing conclusions and lessons learned through his work. He suggested to start by modeling 
the feedstock itself, not the process. This helps avoid embedded assumptions (e.g., black box with arrows), and 
models are generally applicable to many processes. He also suggested starting from scratch and using 
measurements and data to parameterize the model. Models are rooted in reality rather than assumptions or 
convenient math. Additionally, he suggested appreciating the complexity of organic systems because there are 
not “plug-and-play” tools that will make things easier. Finally, he proposed modeling variability distributions 
rather than averages, and noted that ensemble calculations are critical because one particle is not representative 
of the entire feedstock. 

Scientific Artificial Intelligence and Machine Learning  
Dr. Steven Lee discussed the next steps for advancing AI and ML, as well as how these technologies can be 
harnessed to advance science and energy research. He provided an overview explaining that AI and ML for 
science broadly refers to the development and use of AI-enabled facilities, infrastructure, and technologies in a 
manner that accelerates scientific discovery, increases scientific competitiveness, and creates innovative 
scientific and operational capabilities. He broke down the basics of AI, ML, and deep learning and described 
the types of tasks that can be enabled through these technologies. He posed that AI could be developed and 
used to assist, augment, or automate human skills to complete tasks associated with vision and perception, 
natural language processing, search and planning, problem solving, and knowledge reasoning. Additionally, 
ML is the foundational basis for AI and these algorithms make predictions, decisions, and estimates from 
building a mathematical model or “learning” based on probabilities, samples, or training data. The types of 
tasks that ML is best utilized with are classification, clustering, regression, simplified or surrogate models, 
feature extraction, and pattern recognition. He also described deep learning, which includes neural network-
trained approaches for tasks such as spam filtering, fraud/anomaly detection, and image analysis. All three of 
these technologies can be harnessed to advance scientific research but are still in relatively early stages of 
development. In order to further these technologies and enable the next generation of machine-learning 
methods and AI capabilities Dr. Lee described six priority research directions (PRDs) that need to be focused 
on. These PRDs were classified as “foundations” and “capabilities.” The three “foundation” PRDs focus on the 
idea that ML should be domain-aware, interpretable, and robust. This means that it should leverage and respect 
scientific domain knowledge, provide explainable and understandable results, and produce stable, well-posed, 
and reliable formulations. The “capabilities” PRDs focus on data-intensive scientific machine learning, ML-
enhanced simulations, and intelligent automation and decision support. 

To demonstrate the benefits of employing AI in science, Dr. Lee described an experiment performed by 
researchers at Brookhaven National Lab and Lawrence Berkeley National Lab. In this experiment, an AI 
algorithm was integrated into an X-ray-scattering instrument and used to study nanomaterials. The AI was able 
to autonomously reconstruct a nanomaterial’s shape faster and more accurately than when performed 
manually. This achievement is just one example of how an AI ecosystem can be harnessed to perform 
experimental tasks more effectively to enable new science.  

One of the PRDs for the capabilities of future ML algorithms is to enable handling data-intensive tasks. Due to 
the data-intensive nature of many scientific applications, scientific ML methods require development of 
improved methods for statistical learning in these high-dimensional systems involving noisy and complex data 
sets. The development of these next-generation algorithms will need to incorporate approaches to find structure 
hidden within complex high-dimensional data and be able to sample efficiently within high-dimensional 
parametric model spaces.  

Machine learning will also give an advantage in computational model and algorithm development, as a 
combination of scientific computing with learned adaptivity will help create more-efficient simulations. It can 
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also be used for in situ parameter tuning, which would help further improve scientific models and simulations. 
Progress in this space will require the development of new methods to quantify trade-offs and optimally 
manage the interplay between traditional and machine-learning models and implementations. Regarding 
intelligent automation and decision support, there are challenges in managing the interplay between 
automation and human decision-making that machine learning is well suited to handle. Machine learning can 
help complex systems such as power grids or cybersecurity. As these types of systems continue to grow more 
complex, AI and machine learning can help guide data acquisition and ensure data quality and adequacy. 
Scientific machine-learning methods can be also be utilized to improve system resilience or responsiveness. 

AI and machine learning are rapidly evolving technologies, and there is tremendous national and international 
interest in AI and machine-learning development and use for science. DOE has hosted “AI for Science” town 
halls, and in Europe, the Alan Turing Institute has launched a £38.8-million research program focused on AI 
for science and government. The fiscal year 2020 Office of Science Funding Opportunity Announcements and 
Lab Calls are generating numerous new ideas in this space, and the Office of Science’s planning and AI-
ecosystems approach focuses on DOE’s strengths and assets, including modern facilities, national laboratories, 
and high-performance computing capabilities. 

Stakeholder Input  
The purpose of the “Predictive Models and High-Performance Computing as Tools to Accelerate the Scaling-
Up of New Bio-Based Fuels” workshop was to understand how modeling tools can be effectively utilized in 
conjunction with operational data to augment and accelerate scale-up and integration efforts. 

The workshop was designed to improve BETO’s understanding of process modeling activities at multiple 
scales for bioenergy technologies currently underway, identify existing gaps and development areas for future 
modeling efforts to accelerate reliable scaling-up and integration, and promote information exchange and share 
lessons learned. It also sought to identify gaps in experimental data to enhance modeling and opportunities for 
enhanced scientific understanding to make models of different scales more reliable. Further, the workshop was 
meant to determine if effective utilization of mathematical models and artificial intelligence with machine 
learning in conjunction with highly instrumented bench-, pilot-, and demonstration-scale facilities can be used 
to validate and improve system and subsystem models. 

This virtual workshop used a web conferencing and brainstorming platform called MeetingSphere to gather 
input from participants. Participants were divided into four breakout groups, each covering the same set of 
topics and questions. The participant input was exported from MeetingSphere at the end of the workshop and 
compiled into this workshop report.  

Most brainstorming discussions included a prioritization activity. The prioritization results described in table 
format were created using the following methodology:  

• Averaged sum of impact and likelihood scores from all four breakout groups 

• Identified top-ranked responses 

• Adjusted for duplication  

• Edited for clarity. 

In some cases, the top-ranked responses did not include the top response from each of the four groups. To 
ensure that each group’s top priority was represented in this summary, we list the top-ranked response for each 
group in addition to the table of aggregated priorities across groups.  

https://www.turing.ac.uk/research/asg
https://www.turing.ac.uk/research/asg
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Understanding the Current State of Technology 
The first breakout session topic was identified with the recognition that there are not enough data or enough 
data in the same format to feed a system of models. Additionally, the bioenergy industry faces modeling 
challenges related to dealing with lack of physical properties data, new compounds (including biological ones), 
and variation in data.  

Participants identified a few themes from their discussions on this topic. For example, there are some valuable 
new standardized sensor technologies and analytic techniques available for the industry to use. Another fairly 
recent development is the application of machine learning at various scales, from atomic to commercial 
facilities. Additionally, the best type of model to use will depend upon the user’s ultimate purpose. There are 
varying perspectives regarding whether or not to begin with a simple model and then build its complexity. A 
commonly expressed idea was that bioenergy researchers need standardized data and models because lab-scale 
and plant-scale systems can—and do—differ.  

Current Process Modeling Efforts 
Participants provided their input to develop an inventory of current process modeling tools. Workshop 
organizers asked for participants to consider both simple and rigorous tools. Simple, or traditional, modeling 
tools are defined as models that explain a single aspect in a fundamental way or those that may not require 
advanced computing resources. Rigorous modeling tools are defined as models that include the integration of 
multiple models and/or those that include significant complexity, thus requiring more computing resources.1 

Workshop participants mentioned many of the tools BETO currently uses. For example, full-process models 
(Aspen) are being used for techno-economic analysis efforts and to identify critical research needs. CCPC is 
using complex multiphase flow with interphase exchanges (MFiX) using computational fluid dynamics (CFD) 
models. Computational particle fluid dynamics (CPFD) models by Barracuda, coupled with Aspen, have been 
used for scale-up and commercial-scale prediction; both Aspen and CPFD models have been validated to pilot 
and commercial data. There have been machine-learning techniques applied to catalyst modeling with density 
functional theory for catalyst surface chemistry. This has been done in CCPC and ChemCatBio to help guide 
experimentalists on materials to study for catalyst innovations in bioenergy. 

General Approach  
Stakeholders provided input regarding the general approach to support process modeling. For example, they 
emphasized the need for developing fundamentals first before diving into rigorous models. Additionally, they 
suggested that scientific ML should try to capture data from multiple sources, including HPC models to 
describe a process (this is referred to as “multifidelity analysis” in applied math). Also, ML-guided 
interpretation of experimental characterization data (spectroscopy and microscopy) may be based on simulated 
models. 

There are a wide variety of machine-learning tools being applied to (for example) microbial strain engineering 
to accelerate improvements in bioproduction titers, rates, and yields. Ideas have been proposed to combine 
genome-scale metabolic models, computational fluid dynamics, and data from arrays of bioreactor sensors to 
better predict microbial bioreactor scale-up from the submilliliter to thousands-of-liters scale. Machine 
learning could be layered and integrated into these approaches. There are many dimensions that could be 
explored, such as bioreactor geometries, microbial genotypes (and communities thereof), feedstock, and 
controlling strategies (e.g., feed rates/locations, mixing, aeration, where to place sensors, how to extract 
products). Computational fluid dynamics models could use concepts like voxels, each containing an 
independent (parallel evolution) but potentially interacting microbial genotypes/metabolic states that flow 
through the reactor. 

 
1 Definitions developed in reference to Rigorous Simulation: Its Theory and Applications, Adam Duracz (https://old.liu.se/elliit/artiklar-
3/1.741918/AdamDuracz.pdf) 

https://old.liu.se/elliit/artiklar-3/1.741918/AdamDuracz.pdf
https://old.liu.se/elliit/artiklar-3/1.741918/AdamDuracz.pdf
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Classification on different scales may be needed—molecular-scale, mesoscale, and reactor-scale models. 
Challenges are different at each scale, and scale integration itself is a unique problem. Connecting information 
between scales with ML-based reduced-order models could be useful. There have been great developments in 
models at the different scales; however, the integration between scales requires a lot of work. Molecular refers 
to anything from the sub-nanoscale to nanoscale; mesoscale is anything from the nanoscale up to microscale. 
The biggest flexibility lies in “mesoscale.” Mesoscale is gray territory and also important for connections. 
Atomistic to mesoscale is also very difficult (e.g., for simulating catalytic conversion reactions) and ML can 
play an important role in this effort. There is a lot of work done at NREL for reactor-scale CFD modeling of 
low-temperature conversion as well (e.g., pretreatment, enzymatic hydrolysis, and aerobic bioreactors). 
Reduced-order assumptions are used bridge the connection between scales. NREL are Idaho National 
Laboratory are collaborating on scale-bridging between mesoscale and macroscale in particle mechanics for 
FY21. 

Process Modeling Tools Currently in Use or in Development 
This section lists data collection tools as well as simple and rigorous modeling tools. Participant input related 
to general approaches and bioenergy applications is also included. All tools mentioned in this report are merely 
an inventory of software and models familiar to the bioenergy stakeholders who participated in this breakout 
session discussion. This is not intended to be a comprehensive list, nor is it an endorsement of any tool listed.  

Generally, participant identified five categories of tools:  

1. Computational fluid dynamics codes (e.g., Fluent, OpenFOAM) 

2. Fundamental kinetic and thermodynamic models 

3. Machine-learning tools (e.g., for catalyst development and thermodynamics) 

4. Process models (AspenPlus and SuperPro) 

5. Cloud-based computing platforms (e.g., Amazon Web Services, Azure, Google Cloud). 

Workshop participants mentioned several mathematical and statistical data modeling methods, including 
recurrent neural network (for predicting process deviations), discrete element method (for high-performance 
particle flow), artificial neural network, support vector machines, k-nearest neighbor, decision tree, and 
random forest. The tools that participants use or are familiar with in the bioenergy industry are listed here: 

Data Collection Tools  
• JMP Software from SAS for statistical discovery 

• LabKey for research data management 

• iFIX from GE Digital for sensor data acquisition 

• PI System from OSIsoft for real-time operational data collection and storage 

• Internet of Things (IoT) sensors for data collection 

• Blockchain for production attributes. 

Modeling Tools  
• Adaptive mesh refinement 

• AspenTech is the main process modeling tool in use, with embedded kinetic models. 

o Includes Aspen Plus (steady-state) and Aspen Custom Modeler (steady-state and dynamic) 

https://www.jmp.com/en_us/home.html
https://www.labkey.com/
https://www.ge.com/digital/applications/hmi-scada/ifix
https://www.osisoft.com/
https://www.aspentech.com/products/engineering/aspen-plus/
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• Anura3D software for modeling large deformation and soil–water–structure interaction using the 
material point method 

• Athena Visual Studio for process modeling 

o This is the primary tool used at Dow Chemical for reaction kinetics and models used for process 
scale-up 

• Combination of techno-economic analysis (TEA) tools like SuperPro or AspenTech with Python-based 
ML/AI libraries 

o For example, researchers have developed AI/ML models based on CPFD and Aspen-based 
simulations and data validation 

• ChemCAD for chemical process simulation 

• Chemkin-Pro for gas phase oxidation/secondary reactions 

• COMSOL Multiphysics for modeling and simulating 

• Custom tools can be developed using standard, open-ended software and coding languages including 
MATLAB, Python, R, and Excel 

o Excel supports linear regressions 

o There are statistics and machine-learning toolboxes available, as well as is a deep-learning toolbox, 
for MATLAB  

o Python-based machine-learning tools from the SciPy library (e.g., scikit-learn, TPOT) 

o R-based random forest regressions and artificial neural networks supported by open-source 
platforms such as TensorFlow, Keras, and Theano 

o All of these work with DOE supercomputers and are compatible with Jupyter notebook 

• Fluent fluid simulation software from Ansys 

o There are many CFD codes such as Fluent that are routinely used by industry for scale-up of 
reacting turbulent fluid flows with heat and mass transfer  

• High-performance computing software from Hewlett Packard Enterprise Development 

• LIGGGHTS discrete element method particle simulation code (open-source) 

• Molecular dynamics tools (various available) 

• OpenFOAM CFD software (open-source) 

o CFD utilized for simulations of unit operations (e.g., bubble column) 

• ROCKY advanced particle simulation software using discrete element method. TensorFlow machine-
learning platform (open-source) 

• Stress analysis and dynamic analysis codes such as ANSYS and NASTRAN 

http://www.mpm-dredge.eu/
https://athenavisual.com/
https://www.intelligen.com/products/superpro-designer/superpro-designer-overview/
https://www.chemstations.com/CHEMCAD/
https://www.ansys.com/products/fluids/ansys-chemkin-pro
https://www.comsol.com/
https://www.mathworks.com/products/matlab.html
https://www.python.org/
https://www.r-project.org/
https://www.microsoft.com/en-us/microsoft-365/excel
http://en.wikipedia.org/wiki/SciPy
https://scikit-learn.org/stable/index.html
http://epistasislab.github.io/tpot/using/
http://www.tensorflow.org/
https://keras.io/
http://www.deeplearning.net/software/theano/
https://jupyter.org/
https://www.ansys.com/products/fluids/ansys-fluent
https://www.hpe.com/us/en/compute/hpc/hpc-software.html
https://www.cfdem.com/liggghts-open-source-discrete-element-method-particle-simulation-code
https://openfoam.com/
https://rocky.esss.co/software/
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o These codes are used to model structure behavior and fluid structure interaction in industrial 
equipment 

• Two software development efforts in the DOE system have upgrades toward exascale and high-
performance computing platforms 

o MFiX by the National Energy Technology Laboratory: CFD multiphase flow 

o MOOSE by Idaho National Laboratory: finite element model code.  

Bioenergy Applications 
Workshop attendees were also asked to identify where modeling could be utilized in bioenergy applications. 
The following summarizes their inputs: 

• The data required for developing fundamental models can be obtained by collaborating with equipment 
manufacturers, where they may be willing working with national labs to generate the required data 

• Operational data of pilot plants or commercial industries (AI could be very useful to adjust the 
parameters of simple models—often heat- and mass-transport coefficients in interphases) 

• Thermophysical property data for bio-derived oxygenated molecules to support process simulation 
calculations (i.e., energy balance and phase equilibrium) 

• Machine-learning models are being developed for BETO to predict performance of catalytic fast 
pyrolysis based upon mass spectral measurements of vapor-phase products 

• Reduced-order models are being used to perform sensitivity analysis of the complex multivariate nature 
of bioenergy processes  

• Feedstock supply models can feed conversion process models and/or TEA able to provide geospatial info 
on specific feedstock types, location, and lowest cost delivered to reactor throat 

• Solubility data and activity coefficient models for bio-derived oxygenated molecules for product 
separations. 

One approach that attendees suggested for using simple models is developing custom, “home-brewed” tools 
that can be used to quantify reactor data quality by leveraging existing literature criteria. Poor-quality data with 
issues like non-isothermal conditions result in poor models and surprises in scale-up. Correlations in the 
literature can be used to quantify these effects and ensure that the data are able to be leveraged for kinetic 
models. Important criteria to quantify include isothermal temperature, flow characteristics such as wall 
channeling during plug flow, uniform residence time distribution, and catalyst wetting. An open-source tool 
could be useful, as these correlations are hard to employ and result in inconsistent usage without a consistent 
tool or framework for researchers to use.  

Participants explained that distributed control system (DCS) data can be used in software provided by Pavilion, 
Emerson Neural Networks, and Allen Bradley to generate embedded machine learning. Operators have 
installed and serviced DCS for ethanol plants. This has been successful in controlling variables that have been 
illusive like moisture control in dried distillers’ grains on drum dryers, feed rate into distillation, and 
reflux. Participants also mentioned that they have been able to combine lab data with DCS data in real time to 
push alerts from automatically calculated data points that alert operators what to do in real time. Also, there are 
ways to make lab data push into DCS systems and control valves automatically, although workshop 
participants have only done it in the pilot phase. In particular, an advantage of this technology is the great 
amount of data generated by industry facilities that can feed these machine-learning techniques. For example, 

https://mfix.netl.doe.gov/
https://moose.inl.gov/SitePages/MOOSE%20TEAM.aspx?researcharea=*&organization=MOOSE
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data can be pulled every second from 3,000 tags. The data can be exported and pushed into other software in 
real time. 

Breakout session participants noted that implementing DCS-embedded machine learning can be expensive, 
especially for an entire plant. One stakeholder estimated that the cost ranged from $500,000 to $3 million to 
implement plantwide. For specific parts of the plant that have a particular business case (i.e., dryers), the cost 
could be as low as $50,000. Simply compiling and organizing the data could cost between $20,000 to $60,000. 
Participants noted that these types of projects can face significant resistance among facility decision makers, 
especially if the leadership does not have prior experience with these efforts. Generally, the industry is more 
concerned with basic automation rather than “nearly AI”—projects like sequencing, alarm management, and 
interlocks. Another participant commented that an added benefit of this type of project is that the data can be 
saved in the cloud and used for industrywide research. 

Best Practices for Developing or Updating Biotechnology Data Sets  
Response categories include developing data collection methods, data standardization, and data repositories; 
leveraging published data; and tool development.  

The top-ranked ideas from the aggregated input are listed in Table 1. The top-ranked ideas from each group 
include:  

• Design a comprehensive protocol and standard for data collection, documentation, and submission from 
different sources 

• Have an accessible repository of all available data 

• Establish an open/public database on unit operations data, especially data such as capital costs and 
operating costs. This could be a baseline for all the TEAs. 

• Have a consistent framework for reporting data to allow combining of data sets from various 
sources/experimental sets. 

Table 1. Best Practices for Developing or Updating Biotechnology Data Sets 

1 Address limited existing data by developing an accessible repository of all available data 

2 
Develop a consistent framework for reporting data to allow combining of data sets from 
various sources/experimental sets (expand upon previous FCIC efforts).  

3 Identify and agree on key physical properties required for the scale-up 

4 Need better characterization of biomass with thermodynamically consistent components 

5 Support for high-throughput activities with standardized data-collection protocols 

6 Leverage the large amount of data from scientific publications 

7 Support data measurement independent of specific process applications 

8 
Work directly with experimentalists to design experiments and automated data acquisition 
systems to produce data sets that are readily applicable to ML methods 

9 Develop tools to rapidly obtain compositional data for biocrudes or biointermediate streams. 
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Trade-Offs in Tool Selection  
Breakout session participants discussed the pros and cons of simple and rigorous models. The input provided is 
listed in the following sections:  

Pros of Simple Models 
• Can be validated against experimental data 

• Accessible to broader range of users 

• Can be easier to understand by peers 

• Inexpensive  

• Relationships between model variables are clearly exposed 

• Can be used as building blocks for rigorous models 

• Provide insight for non-experts 

• Straightforward to develop and verify with experimental data 

• Easier to interpret 

• Quicker, easier to create and understand 

• Less computationally expensive 

• Takes less time and resources to develop (compared to rigorous models) 

• Less expensive to maintain and continually improve 

• Allow for screening of alternatives without excessive use of time and other resources 

• Can be applied to many applications (i.e., different industries) 

• Less-complex data may lead to the ability to use for multiple case applications 

• Less likely to overfit 

• Potential for high-throughput analysis/results 

• Great for exploration 

• Provides scientifically rigorous results 

• Collaboration: easy to share with others 

• Use across disciplines 

• Oftentimes the tools have wider access amongst collaborators 

• More likely to be used consistently across multiple entities 
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• Good when data or process uncertainty is such that use of a highly detailed model would give a false 
sense of the level of detail that is understood 

• Can provide better understanding of physics and chemistry 

• Can provide energy and mass balance 

• Easier to verify correctness 

• More robust/consistent 

• Can be more robust if one does not have all the information 

• Better scalability 

• Easy to use, fast 

• Interpretability 

• Easy to integrate as a submodel in a rigorous model 

• Repeatability 

• Can be used to model entire production process 

• Easy to identify limitations 

• Can be used capture key process fundamentals. 

 

Cons of Simple Models 
• May overlook important variables, parameters 

• Simplified model may miss crucial second- or third-order interactions 

• Gloss over complexity, inaccurate simplifications 

• Cannot recognize complex patterns 

• Difficult to remove dependencies related to complexity of application (not always useful) 

• If the data input and complexity is not sufficient, the result is useless 

• Accuracy may be limited 

• Can be dangerous because they are easy to misuse 

• May be too simple to capture the complexity of the system, leading to incorrect conclusions and actual 
implementations 

• Does not work well in integrated process 

• May not capture full physics/chemistry/biology 

• They oversimplify the chemistry or biology and are valid over limited range 
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• Sometimes neglect key physical phenomena 

• Typically, simple models do not account for critical material attributes like particle size, porosity, 
density, and their impacts on reactor size requirements 

• Often valid only for a small range of operating conditions 

• Limited ability to direct decision-making across large scales 

• Less detail means less-robust techno-economic analysis 

• Often not realistic to real systems 

• Can be very risky when extrapolating results to new systems or conditions 

• Potentially making the wrong simplifications 

• Limited applicability 

• May not scale 

• Big approximations, conclusions made without understanding the approximations and assumptions, can 
be very misleading, inflexible. 

 

Pros of Rigorous Models 
• Should be closest approximation of reality 

• May represent chemistry/biology more accurately 

• More likely to capture important phenomena 

• Could be applicable across a broader range of input parameters 

• More likely to be predictive rather than extrapolative 

• Could be used for unsteady processes 

• Can be incorporated in other rigorous models 

• Can provide “correct” results for use in process design and plant design 

• Can provide new insights into novel phenomena 

• Can be more readily validated against experiment because of capturing all of the physical phenomena 

• Suitable for integrated process 

• Can be used to develop low-order simple models 

• Account for critical material attributes and critical process parameters more accurately 

• Valid across a variety of operating conditions because they use physics-based predictive models 

• Higher accuracy and confidence with results 
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• Assuming your assumptions are correct, and robustness is built in, can be the most accurate at predicting  

• Can provide the understanding of mechanisms 

• Can be used to interrogate specific aspects of complex systems 

• Rigorous models tend to avoid more assumptions (than simple models) and are amenable to sensitivity 
analysis, which can enable the development of simple models 

• Can provide important information about connections between different systems 

• Can analyze systems across large scales (e.g., regions, supply chains) 

• Can capture full detail for complex processes (even the complexity of biomass variability) 

• Can provide information that is more representative of real processes 

• Probably more inclusive and produce better results if done well 

• Enables specific design guidance for reactor design and process control 

• Provide more opportunity for transformative discovery, as opposed to incremental improvements 

• Address complexity when needed and valuable 

• The “computational cost issue” can be elegantly solved by multiscale models (macroscale simplifications 
supported by microscale behavior) 

• Can handle complex mathematical relationships 

• Can understand the phenomenon with details that cannot be observed or characterized 

• More accurate and reliable, based on fewer assumptions and approximations, assumptions and 
approximations are known, can be scaled reliably and understandably 

• Very helpful in scale-up 

• Can capture not-so-obvious patterns 

• Can be embedded into simpler frameworks for others to use 

• Once validated, rigorous models can be extrapolated to wider range 

• Easier to “lock” the tool because it takes expertise to use.  

 

Cons of Rigorous Models 
• Computationally expensive; cost increases with every additional equation and relationship 

• Expensive (time/cost) to develop, maintain, and improve 

• Limited to use by specialists 

• Requires expertise and deeper scientific knowledge to use correctly 
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• Too complex to understand by peers 

• Difficult to debug 

• Will require expensive high-performance computing 

• Can provide a false sense of security to users 

• May be more difficult to validate/verify correctness 

• Can require large data sets, which may not be available 

• Tend to be process-specific and not widely applicable 

• Tend to be more difficult and expensive to verify with experimental data 

• Can be difficult to integrate into TEA/life cycle analysis models 

• May require more data that are not available 

• Results are not always easy to interpret 

• May be challenging to replicate/reproduce 

• Can be difficult to set up; upfront analysis may be more labor-intensive than actual implementation 

• Confuse complexity for detail and accuracy 

• Longer run time required 

• Difficult to collect parameters for model 

• Can be more sensitive to boundary conditions 

• Can lose physical understanding 

• Resulting model may be limited to a single application 

• Potential waste of time and resources creating a rigorous model for a potentially useless situation 

• Too many parameters involved and are more interdependent to each other. A small variance could lead a 
big error in results.  

• Difficult to scale to process or system level 

• Can be challenging to debug, verify 

• Can be difficult to leverage model and share for collaboration 

• In the bioenergy space, the rigorous models are only as good as data sets used to validate the model 

• The prediction heavily relies on the constitutive laws 

• Some models rely on emerging technologies 

• Interpretability can be a challenge. 
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Best Practices for Developing Rigorous Models  
Breakout session participants discussed methods for developing rigorous models, as well as how to determine 
whether models should be developed utilizing industry learnings, past issues, and first principles. Response 
categories included assumptions, data needs, direct model integration, identifying failures, measurement 
methods, and validating models with data.  

Participants described their suggested best practices as the following:  

• Base models on data: Models are used successfully in control system algorithms, but these are for 
processes that are very well understood with a lot of prior data. 

• Improve solids models: Solids tracking in process models tend to be not as robust as those for liquids and 
gases.  

• Understand nonlinearity: Models have failed when phenomena are not well understood and when there 
is nonlinearity involved. 

• Understand outliers: Develop component-based characterization of biomass composition with broad 
applicability for process stimulation. It is the outliers that cause the problems.  

• Rely on first principles: Rigorous thermodynamics and kinetics properties can be developed from first-
principles quantum chemical calculations and molecular dynamics simulations using carefully 
benchmarked force fields. These properties can then be used in larger, more rigorous models for scale-
up.  

The top-ranked ideas among all breakout groups are listed in Table 2. The top-priority ideas identified by each 
group were: 

• Models are used successfully in control system algorithms, but these are for processes that are very well 
understood with a lot of prior data. These models can also fail in unsteady operations. 

• Bridge first-principles chemical kinetics to mesoscale processes like mass and heat transport. 

• Verify the model predictions with actual experimental data. 

• Identify the critical failure/reasons for biofuel industrial. 

Table 2. Best Practices for Developing Rigorous Models 

1 Identify the critical failure/reasons for biofuel industrial 

2 Validate first-principle methods with good industrial data 

3 Hybrid first-principles ML modeling instead of pure/blind ML modeling 

4 
Ensure that the data quality to build the model is good by developing tools 
to quantify reactor data quality, leveraging existing literature criteria 

5 Learn from past scale-up failures 

6 Solids tracking in some process models tend to be weak 
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7 
Do not assume lab results are necessarily representative of scaled-up 
systems 

8 
Better measurement methods and protocols for sampling materials at 
different stages in processing 

9 
Bridge first-principles chemical kinetics to mesoscale processes like mass 
and heat transport 

10 
Perform sensitivity analyses and/or uncertainty analyses as models are 
developed 

 

Tool Development and Paths Forward 
The second breakout session of the workshop began with an independent exercise for participants to compile 
examples of current models that have been developed utilizing (or in conjunction with) operational data from 
bench, pilot, and demonstration facilities to augment and accelerate scale-up and integration efforts (including 
related to biotechnology or outside of the field). The group then reviewed the list together and discussed the 
weaknesses and constraints of the various process-modeling tools. After prioritizing constraints based on 
impact and likelihood, each group discussed and prioritized strengths and benefits of current modeling tools.  

Current Process Modeling Tool Constraints 
Response categories included “upgrading” (advancing or improving) models, accurate model development, 
data accuracy, standardization, validation, data availability, measuring key parameters, and model 
development. The challenges were summarized in the session recap as follows: 

• Lack of data: ML and AI require a lot of consistent training data sets 

• Not based on first principles: Not reliable outside of the narrow range of input parameters on which 
models are trained 

• Difficult to use: ML and AI systems require expertise beyond that of typical process engineers 

• Complex kinetics: Bio-deconstruction kinetics may be difficult to represent in any mode other than batch 

• Uncertainty: Challenge of incorporating uncertainty into ML systems. 

The top-ranked ideas among all breakout groups are listed in Table 3. The top-priority ideas identified by each 
group were: 

• Integrated biorefinery (IBR) inputs (feedstocks) and outputs (products) are different depending on the 
process and models do not always capture these complexities 

• In general, the industry lacks commercial validation data 

• Data quality impacts the model usefulness 

• Developing suitable kinetic models for process modeling is very challenging and requires a large, 
coordinated experimental effort. This can be especially burdensome to experimentalists, whose charter is 
often to achieve certain productivity metrics rather than produce a data set amenable to kinetic parameter 
extraction. 
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Table 3. Current Process Modeling Tool Constraints 

1 
Development of suitable kinetic models for process modeling requires a 
large, coordinated experimental effort 

2 Lack of validation data 

3 Data quality impacts the model usefulness 

4 Interpretability 

5 

Some key parameters that are critical to models can be difficult to 
measure accurately; having to make assumptions or rely on secondary 
measurements (e.g., pressure drop) to validate the model is 
challenging. 

 

Current Process Modeling Tool Strengths and Benefits  
Regarding the strengths and benefits of current process modeling tools, workshop breakout session participants 
mentioned ideas related to challenge identification, process improvement, data quality, model/data utilization, 
process improvements, and subject-matter expert engagement. The top-ranked ideas among all breakout 
groups are listed in Table 4. The top-priority ideas identified by each group were: 

• Identifying bottlenecks to direct research 

• At commercial scale, investigating and de-risking new processes, or even existing processes, with new 
feedstocks or operating conditions is much faster, cheaper, and less risky in silico 

o However, this requires a very robust and well-validated modeling framework to be useful 

• Using cross-scale validated process models as design tools 

• Improving process control 

o AI teaches the control system in a plant how to improve process by taking real-time data and 
combining them with legacy data to improve process control. 

Table 4. Current Process Modeling Tool Strengths and Benefits 

1 Cross-scale validated process models can be used as design tools 

2 Improved process control 

3 Good quality process models could lead to more credible TEAs 

4 Engage the subject-matter experts who developed the model(s) 

5 
Integration of traditional models into a single workflow exposes and improves 
relationships between linked processes 

6 Improved input data for process models 
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7 Identifying bottlenecks to direct research 

8 Incorporation of domain physics to improve accuracy 

9 Eliminating unfeasible designs such as reactors with impossible mass transfer at scale 

10 Identification of most-impactful physical factors for process intensification. 

Challenges Related to Developing New Models 
Breakout session groups pivoted from prioritizing the constraints and strengths of current modeling tools 
towards challenges related to developing new models. During this discussion, workshop participants provided 
input related to bridging rigorous and simple models, collaboration, data availability, data quality, funding, and 
model validation.  

One participant described the primary barrier as quantity and quality of data, which requires measurements of 
input parameters for a process and the output. Machine learning connects the two and builds a model to predict 
output, given input values. The input in a reactor could be such variables as flow rates, temperatures, and 
composition. Output could include such variables as yield of biofuels or selectivity of products. 

The top-ranked ideas among all breakout groups are listed in Table 5. The top-priority ideas identified by each 
group highlighted the need for interdisciplinary research teams and physical property input data. The four 
groups voted the following challenges as the highest combined likelihood of overcoming and impact to 
advancing the industry: 

• Greater collaboration between rigorous modelers, process modelers, and experimentalists 

• Bringing together teams of researchers with different skill and knowledge sets 

• In bioenergy, with every new feedstock or new catalyst, there is typically a lack of the kinetic rate 
information or other critical data on which to build the model. The complexity is a challenge. 

• Lack of physical property data. 

Table 5. Challenges Related to Developing New Models 

1 
Collaboration between teams of researchers with different skill and 
knowledge sets 

2 Funding for model development 

3 Poor quality or incomplete bench-scale experimental data 

4 Lack of physical property data 

5 
Lack of the kinetic rate information or other critical data for new feedstocks 
and catalysts on which to build the model 

6 Lack of physical understanding of pathways and processes 

7 
Develop translational methodology to capture rigorous high-performance 
computing models in simpler models accessible to practitioners 
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8 Funding to do experiments to generate needed data 

9 Model calibration and validation 

10 Integration of new tools and approaches into commercial software. 

 

Using Models and Operations Data to Predict Scale-Up Requirements  
Workshop participants provided input to assist BETO with understanding how models in concert with 
operations data can be utilized to predict scale-up requirements to move to the next scale. Breakout session 
groups discussed various approaches, including full-spectrum improvements, identifying focus areas, model 
development, model improvements, model validation, and process improvements. 

One participant explained that it is critical for the industry to have appropriate physical models for transport of 
material, wear and tear on equipment, and more robust and better measurements for control. These models 
could serve to address “the most important failure in biomass conversion processes when scaling-up, [which] 
is material handling, transport, and particle size reduction.” In this stakeholder’s experience, the 
uniformization, pretreatment, handling of the material, and its variability at the beginning of the process does 
not scale with wear and tear on equipment, and these impacts are not yet accurately captured by models.  

Similarly, another participant suggested that many biomass processing failures were using material handling 
and process technologies that worked for other materials. Many times, this may have been done as a cost-
saving approach. Potentially, revisiting the physics and science behind the primary designs and inputting 
better-modeled parameters of the new biomass materials could provide guidance about what interventions are 
necessary for robust control.  

The top-ranked ideas among all breakout groups are listed in Table 6. The top-priority ideas identified by each 
group were: 

• Incorporate “lessons learned” into models to account for differences between bench-scale data and 
observations at large scale. Support with first-principle science. 

• Use data from bench scale to develop models for pilot and demonstration facilities. 

• The models can be used to increase confidence for commercial decisions. Extending from experimental 
data, a model that shows the fundamentals behind the experiment results can give confidence to moving 
forward with a technology to the next step. 

• Modeling suggests what data collection is important, operations feeds back data that validates and 
improves models, then better models provide better designs. 

Table 6. Using Models and Operations Data to Predict Scale-Up Requirements 

1 
Modeling suggests what data collection is important, operations feeds back data that 
validates and improves models, then better models provide better designs. 

2 Use data from bench scale to develop models for pilot and demonstration facilities. 

3 
Capturing key process parameters/variables from operational data to facilitate predicting 
scale-up parameters via a model. 
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4 
The models can be used to increase confidence for commercial decisions. Extending from 
experimental data, a model that shows the fundamentals behind the experiment results can 
give confidence to moving forward with a technology to the next step. 

5 
Build leverageable toolbox of model frameworks for standard kinetic model development to 
accelerate consistent kinetic-model development (e.g., fixed bed, pore diffusion framework). 

6 
Understanding mechanics of various reactor designs, models can be used to predict reactor 
performance to identify correct reactor type at scale-up. 

7 Sensitivity analysis can help identify where experimentation can be the most impactful. 

8 
All operating conditions and feedstock characterizations need to be preserved to be used as 
boundary conditions and validation for models. 

9 
Modeling can be used to help experimentalists determine operating conditions and reduce 
experimental time. 

10 
Models are better if based in first principles and physically meaningful parameters are fit by 
appropriate data from operations. 

 

Best Practices for Combining Multiple-Scale Models  
As a final topic for the second breakout session, workshop participants discussed their experience with creating 
a fully modeled biotechnology process combining electro-, nano-, meso-, and CFD-scale models. While 
providing input regarding the level of combination that modelers can reasonably expect, participants discussed 
the importance of collaboration, coupling smaller-scale data to larger-scale properties, identifying challenges, 
integrating models to fill gaps and weaknesses, integrating multiple models, linking experiments and models, 
linking models based on common properties and interactions, model improvements, training data, and using 
experimental data to link models. 

One participant remarked that connecting software models is not the biggest challenge, but rather the industry 
should be dedicating resources toward further developing the theory of upscaling. While discussing the critical 
consistency between scales, another attendee mentioned that “integrated designs require consistency between 
the parts, but they also tend to require higher funding levels. A balanced approach between smaller, medium, 
and larger funding opportunity options is critical.” 

The top-ranked ideas among all breakout groups are listed in Table 7. The top-priority ideas identified by each 
group were: 

• At each scale, find critical parameters and properties, then apply those lessons in the next lower- or 
higher-scale system. Validation is necessary at each scale. 

• Use physics-based insight to couple the relevant physics between different models. 

• Handle feedstock complexity at the particle/mesoscale and couple that to bulk hydrodynamics at the 
reactor scale. 

• Incorporate or translate multiple-scale models as plug-and-play submodels inside commercial process 
simulators. 
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Table 7. Best Practices for Combining Multiple-Scale Models 

1 Incorporate useful training data 

2 Involve experts from different disciplines to connect models at different scales 

3 Incorporate or translate multiple-scale models as plug-and-play submodels inside commercial 
process simulators 

4 Handle feedstock complexity at the particle/mesoscale and couple that to bulk hydrodynamics at 
the reactor scale 

5 Use physics-based insight to couple the relevant physics between different models 

6 Associate well-defined experimental conditions metadata with actual data 

7 Use links between single-scale models and other scale models to address missing pieces and 
weaknesses 

8 Use direct simulations of experiments to improve experiment–model connections 

9 Develop subroutines within a multiscale framework that evaluate models at specific scales when 
the global model encounters an uncertainty. 

10 Use machine-learning/AI approaches to decide what areas can benefit from extra detail. 

 

Collaboration Considerations 
During the third breakout session, workshop participants provided their input to identify which bioenergy 
technologies have well-developed process models, determine if a library of models/“modeling toolbox” would 
be useful and achievable, and make suggestions regarding how a potential toolbox could be created. 

Throughout the workshop, breakout groups commented about the importance of involving interdisciplinary 
experts for modeling efforts, including experimental researchers, first-principle scientists, and modelers. The 
collaboration discussed in the third breakout session explored approaches for encouraging this type of team 
building and covered collaboration between researchers and commercial enterprises as well as the government 
and industry in general.  

To begin this breakout session, participants were asked to vote on whether a public biotechnology process 
modeling toolbox should be created to allow for speedier model development. The unanimous response was 
“yes, it should be created.” 

Technologies and Unit Operations with Well-Developed Process Models 
During an independent activity, workshop participants provided their input about what well-developed process 
models exist in the bioenergy industry.  

One participant noted that most major chemical-producing chemical companies have proprietary well-
developed process models that they have used to design and operate their plants. Examples of these models can 
be found in Hewlett Packard’s Cray computer literature from the 1980s and 1990s, when the first HPC 
applications for process modeling were done.  

Participants also suggested that almost all biochemical and thermochemical process models are still 
“primitive.” This may be due to using models from other fields that are not applicable and usually just plain 
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wrong. BETO consortia (CCPC and FCIC) are funding model development, and as these efforts make 
progress, it becomes even more clear how much work is still needed and how inapplicable other models were. 
This participant went on to explain that the existing funding “has gone a long way to take us from the models 
that are in the literature and used by other industries to models that are more applicable and more predictive for 
biomass-related processes.” 

Further, participants noted that the DOE Advanced Manufacturing Office’s RAPID Institute, which is focused 
on modular chemical process intensification, has a project (Project 2.7) to develop an Aspen+ process model 
for an autothermal biomass fast pyrolysis process. The work is in progress for the fluidized bed reactor.  

The participants consider the following technologies and unit operations to have well-developed process 
models: 

• Gas-phase catalytic upgrading 

• Gas to ethanol (process commercialized by LanzaTech)  

• Dry and wet mill starch-based ethanol processes 

• Metabolic modeling (process commercialized by Zymergen) 

• Cellulosic biomass conversion: ethanol, drop-in fuels 

• Biomass pyrolysis/bio-oil upgrading (however, there are still important knowledge gaps) 

• Biopower energy plants (electrical production) 

• Fast pyrolysis for some range of variability of biomass feedstocks (particularly at the research level and 
with respect to the size and shape of pine) 

• Fixed-bed and riser-type catalytic upgrading unit ops for thermochemical process (at the research level 
and limited to catalysts for which there are kinetics available) 

• Syngas to products (in general, there are good models for technologies that are similar to more 
conventional processes; they are often intermediates to products) 

• Enzymatic hydrolysis models (reasonably predictive, but largely based on correlations rather than first 
principles) 

• Pretreatment models for existing methods are reasonable 

• Thermochemical conversion models are reasonable (in some cases). 

Technologies and Unit Operations That Need Further Process Model Development 
After developing an inventory of technologies and unit operations with well-developed process models, 
workshop participants provided their input on where further efforts should be focused. This list identifies 
potential areas for improvement in process modeling.  

One participant remarked that all of the existing models should be developed further, explaining that “none of 
the models in the biomass area are good enough because of our lack of understanding of biomass chemistry.” 
Another attendee commented that in general, the bioenergy industry needs to dedicate more effort into 
improved validation and experimental theory/computation coupling. Yet another stakeholder suggested that the 
industry needs to define how ML/AI tools can be applied across modeling spaces, further explaining that 
successes for ML/AI have been positive but generally more so within one unit operation or one technical step, 
while it is still unclear how to effectively implement across operations. Lastly, participants generally indicated 

https://www.aiche.org/rapid
https://www.lanzatech.com/
https://www.zymergen.com/
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the importance of developing models that may be leveraged by others so that the research community can use 
the models for their specific process (this could potentially be achieved with model “hooks”). 

• Continuous operation of nonlinear reaction systems such as biomass deconstruction 

• In-line measurements informing PDU models in the national labs (potentially with guidance from 
industry) 

• Enzymatic or organism-based processing (rather than just new chemical approaches to conversion of 
biomass) 

• Waste plastic digestion models 

• Capture impacts of non-homogeneity in large-scale fermentation systems 

• Incorporate genomics and metabolomics modeling into bioprocessing, especially given the large 
amounts of data being generated for these areas 

• Separations: solid–liquid, liquid–liquid, multiple phases (e.g., solid, liquid, vapor, and gas) 

• Catalyst performance, including heat and mass transfer and momentum transport impacts on conversion 

• Multiple-phase transport 

• High-solid mixing, heat, and mass transfer 

• Slurry-phase and bubble-phase reactor modeling 

• Combining dynamic physical and mechanical properties and chemical reactions in biomass size 
reduction  

• Biomass particle attrition at various process conditions (e.g., initial particle size, moisture, anatomical 
components, chemical composition) 

• Linking processing modeling tools for operations within other models needed to determine viability, 
such as life cycle assessment and techno-economic assessments 

• Linking available tools to help give a complete view of a process (e.g., combining tools for identifying 
feedstocks, scale-up, performance, cost, and environmental impact) 

• Downstream operations from conversion 

• Feedstock (biomass) characterization 

• Co-feeding biomass and biocrude into existing refinery infrastructure  

• Multiscale models that increase accuracy, especially as processes change and can predict outside known 
parameter space 

• ML/AI-assisted design of experiments, as well as connection between scales 

• Biomass to intermediates via most thermochemical or biochemical routes 

• Separations process modeling 

• Feedstock feeding and handling models are needed 
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• Reactive comminution pretreatments for biochemical conversion (e.g., deacetylation with mechanical 
refining) 

• Scaling-up and scaling-down bioreactors and biorefineries (including collection and transport of biomass 
as well as economics of scaling of biorefineries) 

• Biological transformations in pilot/demo/commercial bioreactors 

• Higher-fidelity multiphysics models for all operations using HPC to accommodate increased 
computational cost 

• ML methods for underlying physics so expensive calculations are not repeated 

• Model integration, model calibration/validation, system-level multiphysics models connecting process 
and natural resources to address environmental impact 

• Thermophysical properties for bio-derived molecules 

• Phase equilibrium modeling for systems involving oxygenated molecules (abundant in biotechnology 
processes and relatively few in chemical processes) 

• Intensified separation models for adsorption equilibria (gas or liquid) and membrane-based separation  

• Translational technology to reduce rigorous reaction kinetics models to simple reaction kinetics models 

• Time-domain-specific models (e.g., aging, degradation, time-dependent properties, degree of reuse for 
recycled stocks). 

Creating a Library of Validated Mathematical Models and Software Tools 
This discussion focused on the potential role for BETO in supporting the creation of a library of validated 
mathematical models and software tools relevant to biorefinery and manufacturing operations. Participants 
provided input related to consortia, data availability, development of interchangeable unit operations 
framework, encouraging collaboration, funding, and making information available publicly.  

One participant commented that “BETO should require project performers to explicitly discuss their plans for 
validating their individual models, and the integration thereof (hierarchically) across scales. This should also 
include basic operational tactics like version controlling their model components.” Another attendee noted that 
it would be beneficial to engage with commercial developers such as AspenTech, Siemens, AVEVA, and 
Chemstations. They explained that this approach would have the potential of being relatively accessible to the 
research community, compared to high-fidelity models that require supercomputers. 

The top-ranked ideas among all breakout groups are listed in Table 8. The top-priority ideas identified by each 
group were: 

• Gather and release current and future biotech models built within the national labs for public access—
much like NREL’s TEA models 

• Host a website listing available tools/models and links/contact info for accessing them 

• Establish consortia for continued development, update, maintenance, support, training, etc. of any tools. 
It is critical that these efforts are long-term and not just one-time sharing. 

• Develop and publish a conceptual framework for process modeling and scale-up for biotechnology 
processes such that modelers can connect their models into that framework. 
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Table 8. Creating a Library of Validated Mathematical Models and Software Tools: Potential Role for BETO 

1 Gather and release current and future biotech models built within the national 
labs for public access 

2 Establish long-term consortia for continued development, update, maintenance, 
support, training, etc. of any tools.  

3 Pilot efforts to demonstrate a framework that can organize and easily swap 
in/out unit operations 

4 Host a website listing available tools/models and links/contact info for 
accessing them 

5 Develop and publish a conceptual framework for process modeling and scale-up 
for biotechnology processes such that modelers can connect their models into 
that framework 

6 Interface with corporate experts (i.e., bring companies like Aspen to the table) 

7 Facilitate the implementation of web application programming interfaces and 
web apps 

8 Providing a funding opportunity dedicated to this goal 

9 Use DOE genome and other centers to provide data for development of bio-
based models 

10 Incentivize data-sharing from experimentalists/pilot plants, modeler-led. 

Existing Modeling Collaborations 
This discussion focused on establishing a baseline collaboration among model developers, process flow 
sheeting vendors, and other stakeholders.  

• AspenTech works very closely with industry and used to work very closely with HPC vendors. 

• DOE consortia, user facilities, manufacturing institutes, and other initiatives (e.g., CCPC, Co-
Optimization of Engines and Fuels, Advanced Biofuels and Bioproducts Process Developing Unit, 
RAPID) encourage collaboration between industry and national laboratories.  

o CCPC is a successful collaboration that is multi-lab and multiscale (atomic-, meso-, and reactor-
scale); they are trying to improve industry engagement. There is a lot of collaboration among 
modelers in bioenergy in the CCPC and this includes collaboration with other BETO 
experimentalists. Some collaboration has occurred with industry, and industry advisory panels 
have been used to guide the direction.  

o The RAPID Institute has sponsored multiple process intensification projects in which model 
developers, software vendors, and experimentalists are working together to develop, evaluate, and 
raise technology readiness levels for various intensified processes including multiple 
biotechnology processes. 

https://www.energy.gov/eere/bioenergy/co-optimization-fuels-engines
https://www.energy.gov/eere/bioenergy/co-optimization-fuels-engines
https://abpdu.lbl.gov/
https://www.energy.gov/eere/amo/rapid-advancement-process-intensification-deployment-rapid-institute
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• Stakeholders share data with model developers so that models can be constructed based on actual 
conditions. For example, a machine-learning laboratory research project has collaboration between the 
modeler and the subject-matter expert. 

• Researchers often take process flow modeling software from the petroleum industry (e.g., Aspen) and 
build their own in-house biotechnology functionality into them. 

• Process flow sheeting vendors are generally only involved when operations are scaling-up from bench to 
pilot. 

• R&D projects done by universities and national laboratories (including those funded by BETO) often 
receive in-kind licenses from vendors, and industry often participates in an advisory capacity.  

Identifying Opportunities for Collaboration 
Breakout session participants were asked to provide input related to potential opportunities to improve and 
enable relationships between modeling efforts, model developers, scientists, engineers, and other bioenergy 
stakeholders. Discussions covered topics related to interagency collaboration, Funding Opportunity 
Announcement (FOA) requirements, user facilities, working groups, workshops, and data collection.  

The top-ranked ideas among all breakout groups are listed in Table 9. The top-priority ideas identified by each 
group were: 

• Create a user facility focused on model development and published code 

• Funding opportunities that include labs, developers, and commercial modelers (i.e., Aspen) that 
emphasize collaboration and minimize matching funds. 

• Funding with conditions: require partnership including targeted groups (researchers, industry, software, 
and modelers) in order to consider proposals 

• Working groups (specific topics as well as integration efforts). 

Table 9. Identifying Opportunities for Collaboration 

1 Funding with conditions: require partnership including targeted groups 
(researchers, industry, software, and modelers) in order to consider proposals 

2 Further fund successful inter-lab consortia like CCPC and allow for more 
academia involvement through Funding Opportunity Announcements 

3 Sponsor workshops and symposia 

4 Create a user facility focused on model development and published code 

5 Facilitate linkages between different DOE programs to garner expertise from 
various domains 

6 Look at published code in a similar way as we look at a published manuscript 
(as a deliverable for project funding) 

7 Provide a list of existing models and capabilities and highlight needs for future 
model development 

8 Engage with software vendors beyond the common request for cost-share 
contributions of in-kind licenses. 



Predictive Models and High-Performance Computing as Tools To Accelerate the Scaling-Up of New Bio-Based Fuels 

Workshop: Summary Report 

32 

 

International Lessons Learned 
The closing workshop discussion focused on what the United States could potentially learn from international 
efforts on model development.  

Some participants noted that other countries have placed a greater emphasis on workforce development, 
especially training scientists to develop software for leading-edge computing (both HPC and web). One 
attendee suggested that 20+ years ago, the United States was the unquestioned leader in model development, 
but funding for model development was reduced and universities deemphasized programming for getting a 
science degree. At the same time, scientists in the United States put an overreliance on commercial software 
rather than custom-built models.  

Attendees also noted that the European Union was proactive in policy guidance related to AI. Also, in 
biotechnology, the European Union has several multi-institutional collaborative efforts that involve both 
national labs, academia, and industry that span for years. 
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