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Solar Flux as a Thermal Energy Input

 Motivation
• Decarbonizing industrial processes such as steel, ore refining, 

cement, fuel or chemical production, and food products 
• Can provide both heat and electricity for processing
• Ability to achieve high temperatures

 Key Considerations
• Intermittency
• Integration into existing technology?
• On-site production vs. transportation costs

◦ Point of production does not always equal point of use
• Location
• Scale
• Cost

 I will address some of these considerations in the context of 
solar thermal production of ammonia 
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Sustainable pasta production; Mmmm, 
pasta. (DLR/Barilla)

Solar fuels (Synhelion.com)

Steel production



Deep decarbonization

 Ammonia (NH3) is an energy-dense chemical and a vital component of 
fertilizer, hydrogen carrier, and energy supplier

 NH3 synthesized via the Haber-Bosch process
• Requires high pressures (15-25 MPa) and temperatures (400-500 ⁰C)

• Consumes > 1% of global energy use

• Heat, power, and hydrogen are all sourced from hydrocarbons

 Process including H2 production generates about 2.3 t of fossil-derived 
CO2 per t of NH3, and is responsible for ~1.4% of global CO2 emissions

 Steam reforming of natural gas for H2 generation accounts for 84% of 
req’d energy
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Example: Ammonia Production

Can NH3 be synthesized via a renewable, carbon-neutral technology powered 
by concentrating solar ?

Schematic diagram of a typical conventional 
methane-fed Haber Bosch process (Energy 
Environ. Sci., 2020,13, 331-344.)



Solar Thermal Ammonia Production (STAP)
An advanced solar thermochemical looping technology to produce and store nitrogen (N2) 

from air for the subsequent production of ammonia (NH3) via an advanced two-stage 
process
 Inputs are sunlight, air, and hydrogen; the output is 

ammonia
 Significantly lower pressures than Haber-Bosch
 Greatly decreases or eliminates carbon footprint
 The process consumes neither the oxide nor the 

nitride particles, which actively participate cyclically
 The project consists of four thrusts:

◦ N2 production via air separation
◦ NH3 production via a cyclic nitride reaction
◦ Reactor modeling and design
◦ Systems analysis

 Low TRL
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Materials

 Materials must be carefully and comprehensively characterized 
• Reactivity
• Durability: is structural integrity maintained
• Thermodynamics: enthalpy, reactivity, reaction temperature
• Kinetics: does the reaction proceed quickly (determines time 

on-sun)
• Cyclability: can they be cycled repeatedly with no loss of 

performance
• Particle size: affects kinetics, heat and mass transfer
• Chemical stability: no undesired phase changes, deactivation 

 Economic considerations
• Synthesis: an they be easily synthesized and scaled up?
• Cost/Availability: avoid critical elements
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Materials choice influences every aspect of system design

Metal oxide for air separation

TGA showing redox capacity and cyclability



Intermittency

 A feature of CSP is the ability to store heat for off-sun 
operation or electricity generation
• Storage can be sensible (molten salt, particles), latent

(phase change), or thermochemical (sensible + reaction 
enthalpy)

• Solids are generally easier to store– they are dense, do not 
require compression, noncorrosive, stable at T > 1100 °C, 
and are amenable to multiple scales
◦ Thermochemical materials have added benefit of storing 

energy in the form of chemical bonds, irrespective of 
storage temperature

 H2 generated on-site via solar thermochemical water splitting 
can also act as a chemical storage material, in addition to as a 
feedstock for chemical processes, e.g., ammonia production 
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To maximize productivity, a plant must be able to operate 24/7

PROMOTES: High Performance 
Reduction/Oxidation Metal Oxides for 

Thermochemical Energy Storage



Intermittency (cont’d)

 Process can be decoupled:

• High temperature cycle, e.g., air separation, 
can be performed on-sun

• Resulting N2 can be stored as compressed 
gas or chemically, as the nitride (MNy)

• Ammonolysis can be run off-sun or evening 
utilizing recuperated or stored heat

 Similar decoupling can apply to other chemical 
processes
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To maximize productivity, a plant must be able to operate 24/7



New vs. Existing Plants

 Co-locate CSP plant with existing Haber-Bosch infrastructure
• Hybrid model: CSP replaces methane reforming to synthesize H2 for H-B process via 

thermochemical water splitting
• Retains H-B infrastructure; no need to build new plant or transportation lines
• Not completely green
• Can be a bridge to fully green process
• Also an option (or necessity) for processes such as steel production, ore refining, food 

processing

 Construct new plant for renewable NH3 synthesis utilizing alternative process, e.g. STAP
• Large up-front CapEx
• Complete decarbonization of process – both environmentally sound and fiscally beneficial in 

case of carbon tax
• Potential savings in long run due to less expensive, cyclable materials, lower temperatures and 

pressures
• Consider smaller, distributed plants
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Receiver/Reactors
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 Many considerations: 
• Direct or indirect irradiation? 
• Temperature requirements? 
• Size? 
• Window or windowless receiver? 
• Particle or monolith working material? 
• Batch or moving particle reactor? 
• Sweep gas or pumping?

 Requires combination of experiment and modeling
• Decisions will be informed by properties of reactive 

material
◦ In the case of STAP, oxide and nitride particles

• Heat and mass transfer modeling, supported by 
experimental data, will inform scale and design

Design and scale of receiver/reactor must be assessed early in the process



Receiver Designs 
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From material implications and 
system modeling, best estimate for 
receiver conditions is a 
temperature rise of 200-500 °C 
and scale <100 MW

Falling Particle Receiver 
(SNL)

Fluidized Bed Receiver
(PROMES-CNRS)

Centrifugal Receiver
(DLR)

Ad
va

nt
ag

es
• Direct irradiance can lead to high 

efficiency
• No high-cost nickel materials
• Demonstrated at 1MW scale with 

significant operational experience

• Direct control over residence time 
and temperature rise

• Possible to control oxygen partial 
pressure with enclosed tubed

• Particle loss can be controlled

• Direct irradiance leads to high 
efficiency

• Direct control over residence time 
and temperature rise

• Particle loss can be controlled
• Low particle velocity and nod 

angle minimizes advective loss 

D
is

ad
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• Advective loss is sensitivity to 
particle and wind velocity

• Particle loss is an economic 
concern

• Requires face-down configuration 
at 100 MW scale (taller tower)

• Difficult to achieve curtain opacity 
with high temperature rise

• Tube bundles have flux limitations, 
which reduces efficiency

• Fluidization gas is an energy 
parasitic

• Limited experience with scaling or 
multi tube receivers 

• Commercial scale size limits (~10 
MW)

• Requires multiple apertures for 
surround field



Techno-economics and Systems Analyses 
 To attract industry and investment, it’s essential to model systems and techno-economics from the 

beginning of a project
 Continuously refine model as data is collected
 Techno-economic considerations:

• CAPEX (infrastructure, construction costs, raw materials, labor…)
• Capacity
• Energy inputs/outputs
• O&M
• Lifecycle
• Return on investment

 Systems analysis:
• Solar input
• Balance of plant
• Scale
• Operating conditions
• Efficiency
• Are there any show-stoppers?
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System description of air separation 
cycle

System description of ammonia 
synthesis cycle
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