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Disclaimer 

This report was prepared as an account of work sponsored by an agency of the United States Government. 
Neither the United States Government nor any agency thereof, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect 
those of the United States Government or any agency thereof. 
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Executive Summary 

Cobalt is a critical mineral as defined by the U.S. Department of the Interior in response to Executive 
Order 13817 (2017). Cobalt metal is used in superalloys required in the hot gas path of stationary gas 
turbines and jet engines, as well as in samarium cobalt magnets, the domestic production capability of 
which was found to be essential to the National Defense under Presidential Determination 2019-20. 
Cobalt compounds are used in lithium-ion batteries, as are manganese compounds. The Defense Industrial 
Base Report, in response to Executive Order 13806 (2017), expressed concerns regarding the U.S. supply 
chains for rechargeable batteries. The U.S. is import-reliant for cobalt. 

Cobalt production of Pennsylvania’s geologic resources dates back to the 1870’s. From 1941 to 1951, and 
again from 1959 to 1971, the Pennsylvania iron ore operations of Bethlehem Steel constituted the largest 
production in the U.S. of cobalt concentrates. Today, Pennsylvania is producing acid mine drainage 
treatment sludges, and the literature suggests that some of these, notably in the Anthracite Region, have 
significant contents of both cobalt and manganese. 

Data presented in this report suggest that there is significant cobalt potential in unconventional resources 
such as metal mine byproducts and acid mine drainage treatment sludges. A cobalt- and manganese-
bearing zone has been found in the coal measures of the Pennsylvania with a cobalt grade roughly 
equivalent to commercial ores. 

Opportunities exist to re-establish cobalt production in Pennsylvania. However, knowledge gaps must be 
filled in order to de-risk these types of activities before they can attract the required private investment. 

A first step toward filling these knowledge gaps will be a set of activities designed to build bases for 
private investment. These are as follows: 

1. Build an inventory of metal mine dumps in Pennsylvania . 
2. Develop an estimate of the potential AMD resource (cobalt and manganese), building on existing 

discharge information, and adding cobalt and manganese assays for water samples (where no 
treatment system is used) and sludge samples where treatment is in place. Given the current 
information, this would begin with the Pennsylvania Anthracite Region. 

3. Begin process development for production of salable cobalt and manganese commodities from 
currently produced AMD sludges. This would be followed by process development for selective 
precipitation of critical mineral commodities, which could be applied to new AMD treatment 
systems. 

4. Restart exploration activities in the Pennsylvania, focused on high cobalt- and manganese content 
zones in the coal measures, also including coal preparation byproducts. 
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1. Introduction 

In May, 2018, the U.S. Department of the Interior released a list of minerals “Deemed Critical to U.S. 
National Security and the Economy” (U.S. Department of the Interior, 2018). Included on that list is 
cobalt, which is used in the production of batteries and the superalloys required for hot gas path 
components in both stationary gas turbines (for power generation) and jet engines (Defense Logistics 
Agency, 2020). 

In 2005, worldwide cobalt consumption by end use included batteries (23%), superalloys (21%), catalysts 
(11%), and hard materials (11%), with hardfacing and other alloys, and magnets included among the 
applications accounting for the balance of global demand (Kapusta, 2006).  Since then, cobalt demand has 
grown significantly, largely driven by its application in batteries and as of 2017, battery applications 
accounted for over half of global cobalt consumption.  Cobalt demand for batteries alone, by 2027, could 
be double the total cobalt market in 2017 (Anonymous, 2018)., with the total 2027 market exceeding 
310,000 metric tons per year (MTPY). 

In 2019, U.S. net import reliance for cobalt materials was 78%. China was the world’s leading producer 
of refined cobalt, based mostly on feedstocks imported from the Democratic Republic of Congo (Shedd, 
2020). China was also the largest cobalt consumer, its rechargeable battery industry accounting for 80% 
of the country’s cobalt consumption. 

Cobalt applications include use in lithium-ion, nickel-cadmium, and nickel metal hydride batteries Slack 
et al., 2017). Lithium-ion batteries are of note, as the 2018 Defense Industrial Base Report (U.S. 
Department of Defense, 2018) noted that: 

“Asian markets dominate the rechargeable battery industry. Domestic rechargeable 
battery producers cannot compete in production volume and labor availability and cost. 
Most domestic lithium ion cell packagers rely on foreign commercial lithium ion cell 
suppliers from countries such as South Korea, China, and Taiwan. Cell availability for 
military battery packaging is a risk across the board for rechargeable batteries as 
commercial cell manufacturers, often foreign-owned, are unwilling to divert production 
from their commercial customers to U.S. military battery manufacturers.” 

In addition to its use in superalloys and batteries, cobalt is also used in magnetic applications involving 
marine propulsion systems, missile guidance systems, and radar, and the U.S. import-dependence for 
cobalt (China as the leading source) has been noted elsewhere (Slack et al., 2017).  

2. Background 

Cobalt technology evolution has resulted in its current applications in jet engines, magnets and 
rechargeable batteries. Products that use cobalt are used in the defense sector, and activities that can 
support U.S. domestic cobalt production are responsive to several Federal policy drivers. 

2.1. Overview of Technology Drivers and the Cobalt Market 

The use of cobalt as a colorizing additive for glass and other ceramic products dates back over 4,000 year 
(Bilbrey, 1962, Shedd et al., 2017). The name “cobalt” derives from the 16th Century term “kobold”, 
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which referred to malicious gnomes that frequented mines in Saxony, also used to refer to sulfide ores 
that were difficult to smelt. These materials could, however, be processed with potash and silica to 
produce a blue glass (Carderelli, 2018). 

Cobalt metal was first produced by the Swede Georg Brandt in 1735, but the colorizing agent application 
remained to dominant market for cobalt prior to World War I. During the two and a half decades that 
preceding World War I, however, there was a significant amount of research dedicated to the use of 
nickel in alloys, notably for defense applications (Rozelle et al., 2019). In the U.S., Elwood Haynes had 
followed work on nickel alloy development with examination of cobalt alloys also containing chromium, 
molybdenum and tungsten (Haynes, 1913). Turbo-supercharger buckets were first produced from a 
cobalt-based alloy in 1941 (Bilbrey, 1962), and the subsequent introduction of the jet engine led to a 
continuous evolution of superalloys designed for the harsh environments found in both jet engines and 
gas turbines used for stationary power generation. It bears mention that the results of Haynes’ research 
were commercialized through Haynes International, which continues to produce nickel- and cobalt-based 
alloys. 

Magnet applications for cobalt date back to the introduction of the Alnico magnet in the 1930’s (Bilbrey, 
1962). More recently, the roots of the samarium cobalt permanent magnets date back to the 1960’s, and 
work at the U.S. Air Force Materials Research Laboratory (Lewis and Jimenez-Villacorta, 2013). More 
recently, while the U.S. has a significant import-dependence for cobalt, Presidential Determination 2019-
20, of July 22, 2019, found that “the domestic production of Samarium Cobalt Rare Earth Permanent 
Magnets is essential to the national defense” (Presidential Determination Pursuant to Section 303 of the 
Defense Production Act). 

Both recent and forecast growth in cobalt demand are driven by the rechargeable battery market. The 
potential for cobalt use in this application was reported by the Goodenough Laboratory in the United 
Kingdom in the early 1980’s (Mizushima et al., 1981), where transition metal lithium oxides (LiMO2) 
were being investigated for battery applications. Included among these was a material with an LiCoO2, 
composition, prepared from lithium carbonate and cobalt carbonate. This material was used in the 
lithium-ion batteries introduced by Sony Corporation in 1991 (Blomgren, 2017). Significantly, 
manganese is also currently used in cathodes for Li-ion batteries (Blomgran, 2017), and the potential for 
manganese recovery with cobalt production, from Pennsylvania resources, will be discussed in a 
subsequent section of this report. 

Application for cobalt products are included in the defense, medical products, transportation systems, and 
energy supply chains in the U.S. Key end uses include jet engines, magnets (notably found in electric 
motors) and cathodes found in batteries. Superalloy production requires cobalt metal, while growth in 
global cobalt demand is expected to be driven by the cobalt chemical (sulfate or oxide) needs of the Li-
ion battery industry (Anonymous, 2017). Production of SmCo magnet alloy can require cobalt metal 
(direct melting of alloy components or electrolysis using a cobalt anode), as well as cobalt compounds 
where co-reduction of alloying agent compounds is used (Krishnamurthy and Gupta, 2016). As such, the 
end use application will determine the form of cobalt required of a production operation and, hence, the 
type of processing equipment required to service a given cobalt application. 
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2.2. U.S. Policy Drivers Related to Cobalt 

In 2015, non-fuel minerals used by major industries that added $2.5 Trillion to the U.S. economy, but 
there were significant U.S. import-dependencies for numerous mineral commodities, including cobalt 
(U.S. Geological Survey, 2016).  

In 2017, two Executive Orders were issued by the White House. The first, Executive Order 13806, 
resulted in the Defense Industrial Base Report (U.S. Department of Defense, 2018). That report noted 
U.S. supply chain concerns involving both magnets and rechargeable batteries. The second of these was 
Executive Order 13817, which resulted in the list of Critical Minerals released in 2018 by the U.S. 
Department of Interior (U.S. Department of Interior, 2018). Cobalt is among the commodities on the list. 
Executive Order 13817 also directed the Secretary of Commerce, in coordination with heads of selected 
executive branch agencies and offices, to submit a report, ““A Federal Strategy to Ensure Secure and 
Reliable Supplies of Critical Minerals”, which was released in 2019 (U.S. Department of Commerce, 
2019). Among the actions recommended by that report was 1.3: 

“Complete technical and economic feasibility studies of the production of critical 
minerals and related manufactured materials from secondary and unconventional 
sources (including coal-based resources, mine tailings, smelter slag, waste streams, end-
of-life products, and seawater deposits). (DOE, DOC (NOAA), DOD, DOI [United States 
Geological Survey (USGS)], and EPA; 1-2 years)” 

It bears mention that the U.S. Department of Energy is identified as the lead agency for this action. 

On July 22, 2019, a Presidential Determination (No. 2019-20) was issued by the White House, finding 
that under section 303 of the Defense Production Act of 1950, “the domestic production capability for 
Samarium Cobalt Rare Earth Permanent Magnets is essential to the national defense”, and that “Without 
Presidential action under section 303 of the Act, United States industry cannot reasonably be expected to 
provide the production capability for Samarium Cobalt Rare Earth Permanent Magnets adequately and in 
a timely manner.” 

In summary, work toward the production of cobalt products from domestically sourced resources is 
directly responsive to: 

 Concerns regarding the battery and magnet supply chains noted in the Defense Industrial Base 
Report. 

 The identified need for technical and economic feasibility studies for the production of a critical 
mineral (cobalt) and its related manufactured materials from secondary and unconventional 
sources, as noted in the Department of Commerce 2019 Report. 

 The finding in Presidential Determination No. 2019–20 of July 22, 2019, that the domestic 
production capability for Samarium Cobalt Rare Earth Permanent Magnets is essential to the 
national defense. 
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3. A Discussion of Commercial Cobalt Minerals 
3.1. The Byproduct Nature of Cobalt Production 

Nearly all of the global mine production of cobalt is as a byproduct of the production of other metal 
commodities (Slack, 2017). Primary products where cobalt is a byproduct include copper, such as the case 
of production in Congo, nickel from sulfide and laterite deposits, and platinum group metal production. 
The last of these includes the case of relative small production in the U.S., platinum group metal 
production (Slack, 2017).  

Modest amounts of cobalt have also been recovered from the processing of lead and zinc ores in the U.S., 
as discussed elsewhere (Vhay, 1979). 

A set of chemical formulae for the cobalt-bearing minerals to be discussed here appears in Table 1. 

Table 1: Cobalt-Bearing Minerals of Interest 

Mineral Formula Reference 

Asbolite (CoNi)0.2MnO2∙4H2O Peek et al., 2009 

Carrollite CuCo2S4 Peek et al., 2009 

Cobaltiferous Pyrite (FeCo)S2 Peek et al., 2009 

Cobaltite CoAsS Slack et al., 2017 

Linnaeite (CoCuNiFe)3S4 Peek et al., 2009 

Pentlandite (FeNiCo)9S8 Peek et al., 2009 

 

3.2. Copper Byproducts 

The majority of the global cobalt mine output is produced from sediment-hosted Cu-Co deposits, and 
those of the Central African Copperbelt (Congo and Zambia) have the most contained cobalt (Shedd et 
al., 2017). In 2019, Congo (Kinshasa) accounted for over 70% of world mine production of cobalt 
(Shedd, 2020). The cobalt-bearing minerals of interest are sulfides, including linnaeite and carrollite 
(Peek et al., 2009).  

3.3. Nickel Byproducts 

Magmatic Ni-Cu sulfide deposits are significant nickel producers, with the ores also including lesser 
concentrations of copper. Operations involved with deposits may also produce cobalt and platinum group 
elements (PGEs) as byproducts. Notable among these deposits, as byproduct cobalt producers, are the 
Sudbury District in Ontario and the Noril’sk Region in Russia (Slack et al., 2017). Cobalt production 
from these deposits is also derived from sulfide minerals: pentlandite and cobaltiferous pyrite (Peek et al., 
2009). 

Laterite deposits are significant producers of nickel, notably from Australia, New Caledonia, and Cuba. 
Cobalt is present in an oxide mineral, asbolite (Peek et al., 2009). 
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In 2019, the combined mine production of cobalt from Australia, Canada, Cuba, New Caledonia, and 
Russia was approximately 14% of the world cobalt total. 

Lancaster County, Pa. also is home to a sulfide deposit (Vhay, 1979) that was has produced both nickel- 
and copper ores. In the early 1860’s Joseph Wharton acquired the property at Gap, Pa. primarily for 
nickel production, and co-produced both cobalt and copper compounds (Yates, 1977). Wharton’s 
operation supplied both nickel and cobalt to the U.S. market from 1860 to 1893 (Vhay, 1979). 

3.4. Platinum Group Metal Byproducts 

Sulfide ore mining operations in some cases produce PGE-enriched concentrates, the PGE concentrations 
occurring in PGE mineral grains, as well as through PGE substitution in pentlandite. Operations in both 
South Africa and Russia produce PGEs, also including cobalt, nickel and copper as byproducts 
(Grundwell et al., 2011). Small amounts of byproduct cobalt have been produced at the Stillwater PGE 
smelter in Montana (Slack et al., 2017). 

In this type of operation, cobalt is enriched in flotation concentrate, and further enriched in the converter 
matte (Grundwell, 2011), the latter being an operation that selectively removes iron and sulfur (Rozelle et 
al., 2019). 

3.5. Iron Ore Byproducts 

Magnetite skarn deposits in Pennsylvania were worked by Bethlehem Steel for iron ore production during 
the 20th Century, at the Cornwall and Grace operations (Robinson, Jr., 1988). In addition to iron ore 
(beneficiated magnetite), byproduct cobalt was produced from these operations, and the Cornwall mine 
also produced gold and silver (Lapham and Gray, 1973). The byproduct metals, occurring in sulfide 
minerals (Robinson, Jr., 1988), were recovered from iron ore beneficiation tailings. Sulfide recovery from 
these tailings will be discussed in a subsequent Section. Cobalt-bearing sulfide concentrates were roasted 
and leached for cobalt recovery, also to be discussed subsequently. 

These operations produced byproduct cobalt from 1941 to 1971, during 1941-1950 and from 1960 to 
1971, Bethlehem Steel at these operations was the largest U.S. domestic producer of mined cobalt, as was 
Pennsylvania (U.S. Bureau of Mines, 1942-1972). 

3.6. Stand-Alone Cobalt Production Operations 

Cobalt has been produced as the primary product from a metasedimentary resource in Idaho (the 
Blackbird District). The cobalt bearing minerals have been identified as cobaltite and cobaltiferous pyrites 
(Nash et al., 1988). The Howe Sound Mining Company began exploration of the property in 1942 (Reed 
and Herdlick, 1947)), was contracted by the Federal Government to supply cobalt in 1951 Bilbrey, Jr., 
(1962), and the operations were idled when that contract concluded in 1959 (Bilbrey and McDougal, 
1960). 

It bears mention that, between 1951 and 1959, Bethlehem Steel was displaced by the Howe Sound 
subsidiary Calera Mining as the largest cobalt producer in the U.S. 
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4. Overview of Cobalt Process Technology 

As discussed in Section 2, the production of cobalt for markets associated with key policy drivers can 
require the production of either cobalt metal of cobalt compounds. Feedstocks largely derive from sulfide 
minerals, and either arsenide (cobaltite) or oxide ores associated with laterite nickel deposits, such as 
asbolite. As most cobalt production is derived from the production of other metals, these minerals have 
been transformed into byproducts of pyrometallurgical or hydrometallurgical processes, now serving as 
feedstocks for cobalt production. 

Production of cobalt from African ores currently dominates the global market, and an example flowsheet 
is shown in Figure 1. The process involves leaching of ground ore in sulfuric acid with sulfur dioxide 
added to the process. Following purification of the leach solution, solvent extraction removes copper from 
the solution. Following additional purification of the aqueous phase, magnesium oxide is added to 
produce a high-purity cobalt hydroxide product (Grundwell et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Example Flowsheet for the Recovery of Byproduct Cobalt from African Copper Ore, 
from Grundwell et al., 2011. 
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Cobalt recovery from nickel sulfide ores is driven by the process used for nickel production, and this 
typically involved successive pyrometallurgy steps where a nickel sulfide matte is produced and purified 
through removal of iron, sulfur, and other gangue elements.  

An example flowsheet is shown in Figure 2, where a pentlandite physical concentrate is roasted, smelted, 
and converted to produce the nickel-bearing matte. The first step removes sulfur and oxidizes iron 
species. The second removes sulfur and iron, the latter being removed in a silicate slag through the 
addition of a siliceous flux, and the last step, converting, further reduces the iron and sulfur contents 
(Boldt, 1967). 

Figure 2: Nickel Sulfide Smelter Flowsheet with Cobalt Recovery, from Grundwell et al., 2011. 

The converting step separates iron and sulfur from the matte through partitioning to other phases (slag and 
gas, respectively). Conditions required to achieve this involve those that promote oxidation of iron from 
the sulfide matte, while maintaining nickel as a sulfide. The free energies of iron, nickel, and cobalt 
sulfides under converter conditions are shown in Figure 3. Over the range of conditions required to 
maintain iron oxide and nickel sulfide as the stable species, cobalt may be present as either sulfide or 
oxide. As such, cobalt may partition between the converter matte and slag phases to a lesser extent 
compared with nickel or iron (Grundwell et al., 2011). Process options for cobalt recovery from leach 
solutions, derived from sulfide ore processing, include electrowinning and hydrogen reduction 
(Grundwell et al., 2011). 

Fluid bed sulfation roasting has been applied to cobalt bearing pyrite concentrates, as will be discussed 
with respect to Pennsylvania’s cobalt resources. Sulfation roasting involves the conversion of a metal 
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sulfide to a soluble metal sulfate, with exothermic sulfide oxidation supplying both process energy and 
the gaseous sulfur dioxide required for sulfate formation. Reactions involving cobalt are as follows: 

CoS + 1.5 O2 → CoO + O2 (1) 
 

CoO + 0.5 O2 + SO2 → CoSO4  (2) 
 

Laterite ores may be smelted to produce ferronickel or a nickel matte, the latter involving sulfur addition 
to the process. Where ferronickel is produced, contained cobalt in the product is not considered to be of 
economic value to the users (Grundwell et al., 2011). Where a nickel sulfide matte is produced, further 
hydrometallurgical processing can recover high-purity cobalt (Grundwell, 2011). Processing of limonitic 
laterite ores typically involves hot sulfuric acid leaching, and cobalt can be recovered from the purified 
leach solutions through hydrogen reduction or electrowinning (Grundwell et al., 2011). 

 

Figure 3: Free Energies of Reaction for the Oxidation of Selected Sulfides, from Rozelle et al., 2019. 

 

Cobalt can also be recovered from byproduct nickel-bearing leach solutions produced at operations where 
platinum group metals are the primary products (Grundwell et al., 2011). 
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an area that had been mined for copper production (Yates, 1977). Intermittent attempts were made to 
produce nickel from this property, in Lancaster County, prior to the acquisition of its controlling interest 
by Joseph Wharton in 1863. This acquisition included an associated refining facility built in Camden, 

-270,000

-250,000

-230,000

-210,000

-190,000

-170,000

-150,000

1200 1300 1400 1500 1600

D
G

0 R
ea

ct
io

n,
 j/

m
ol

e

T, K



9 
 

New Jersey (Yates, 1977). Initially selling matte to European refiners, Wharton commenced both process 
and product research and development activities, and marketing of nickel metal products that included 
displays at international exhibitions such as those at Vienna (1873), Philadelphia (1876), and Paris 
(1878). This research and marketing effort contributed to the longer term viability of the Gap operations. 
The Gap sulfide ore also contains elevated concentrations of cobalt, and cobalt oxides was also produced 
by Wharton’s company until 1899 (Vhay, 1979), while the Gap mining operations closed in 1894 
(Matousek and Chadwick, 2005). 

The physical concentration system at Gap used a hand sorting and jig process to produce concentrate, and 
smelting operations used roasting and smelting for the hand-sorted larger size fractions, while the finer jig 
product was fed directly to the smelting step, which produced a matte for shipment to the refinery in New 
Jersey. Slag samples at Gap have assayed at 200-300 ppm cobalt (Matousek and Chadwick, 2005).  

5.2. Iron Ore Byproducts 

As mentioned, the largest source of cobalt production in the U.S. during 1941-1950 and 1960-1971 was 
the set of Bethlehem Steel iron ore operations in Pennsylvania. This production came from the Cornwall 
and Grace mines, with a combined cumulative production of 150 million tons from magnetite skarn 
deposits (Robinson, 1988).  

Iron ore production at Cornwall, in Lebanon County, began in 1942 and continued for 230 years 
(Anonymous, 1972). In addition to iron ore, the operation produced byproduct cobalt, silver and gold. 
Iron ore was first produced at the Grace mine, in Berks County, in 1958 (Sims, 1968), and production 
continued until 1977 (Anonymous, 1977).   

Magnetic separation was used at both the Cornwall and Grace operations for the concentration to produce 
the beneficiated magnetite product (Moyer and Schumacher, 1966, Cochran, 1969). Magnetic separation 
tailings included pyrites, which were recovered by flotation as seen in Figure 4. 

Pyrite concentrates were processed for cobalt recovery at the Pyrites Company facility in Wilmington, 
Delaware (Davis, 1942). The process used for cobalt recovery is presented in Figure 5. The pyrite 
concentrate was first roasted, followed by high temperature chloridizing prior to a water leach. Following 
solution purification, a cobalt product was precipitated and calcined. The calcined product was either sent 
to cobalt oxide production or fed to a kiln with charcoal for reduction to cobalt metal (Anonymous, 1951). 

By the early 1950’s, Bethlehem Steel’s mill at Sparrows Point Maryland was its largest, and pickling 
operations there required significant quantities of sulfuric acid. The company built a sulfuric acid plant at 
the mill, and sulfuric acid production operations commenced in 1953. The sulfur dioxide feed to the acid 
plant was generated by a pyrite-fed fluid bed roasting system, shown in Figure 6. The system included 
three 18 ft diameter fluid bed reactors, cyclones for removal of solids from the offgas which then was 
routed to the acid plant. Solids feed involved addition of water to the pyrite materials, to make up a slurry 
that was pumped to the reactors. Where the pyrites were those produced as byproduct at Bethlehem’s 
Pennsylvania ore operations, the reactor temperatures were maintained at a lower temperature (873 K) 
with some sacrifice in sulfur conversation to sulfur dioxide. Other (non cobalt-bearing) pyrites were also 
used at the plant for SO2 production, and a higher reactor temperature (1073 K) was used to maximize 
sulfur conversion to sulfur dioxide (Scharf and Dominguez, 1956). 
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The roasted solids resultant from the fluid bed roasting process at Sparrows point contained over 1% 
cobalt, and could be water leached for cobalt recovery without the need for the chloridizing step seen in 
Figure 5, (Scharf and Dominguez, 1956). The destination of the roasted solids was the Pyrites Company 
in Wilmington, for production of cobalt products including metal (Davis and Buck, 1957). 

Domestic production of the cobalt-bearing pyrite concentrates ceased at the end of 1971 (Corrick, 1973), 
although Bethlehem Steel’s iron ore production continued from the magnetite deposits after this date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Grace Mine Concentrator Flowsheet, from Cochran (1969) 
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for the Grace Operation (from Cochran, 1968). Given the amount of ore that was produced in each case, 
tailings production for the operations was in the millions of tons. Both operations were equipped to 
produce a pyrite fraction (i.e. recover cobalt). However, closure of the pyrite roasting system at Sparrows 
point occurred prior to the closure of, notably, the Grace operation. The concentrator there was capable of 
producing 900,000 tons per year of tailings, and recovery of cobalt could provide an economic incentive 
should any environmental cleanup of the tailings from that operation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Flowsheet for Cobalt Recovery from Pyrite Concentrate, The Pyrites Company, 
Wilmington, Delaware, from Anonymous, 1951. 
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5.3. Coal Byproducts- Acid Mine Drainage Sludges 

Acid mine drainage (AMD) from abandoned mine properties, in 2004, had degraded over 3,000 miles of 
streams in the Commonwealth of Pennsylvania. One loss due to this environmental damage was that due 
to the fact that these streams could not support recreational fishing. The cost of remediation of acid mine 
drainage and reclamation of abandoned mine lands, in Pennsylvania, was estimated to be between $5 
billion and $15 billion in 2002 (Cravotta, 2008). 

 

Figure 6: Fluidized Bed Roasting for Cobalt Recovery at the Bethlehem Steel Sparrows Point Mill, 
from Scharf and Dominguez, 1956. 

The passage of water through the coal measures can result in the oxidation of sulfides in the rock and the 
result is the production of sulfuric acid and dissolved iron (Stauffer and Lovell, 1968). The reduced pH of 
the water in contact with the rock can essentially result in a hydrometallurgical extraction of many species 
into solution, including those that are considered critical mineral commodities. 

Two elements found in AMD that have received significant attention in the literature, dating back over 
five decades, are cobalt and manganese. These two elements, as seen in Section 2.1, are used in 
rechargeable batteries. AMD neutralization processes create sludges consisting of elements that have 
precipitated through the pH change. Where solid manganese oxide phases are present in the precipitate, 
cobalt has been found to preferentially sorb on them. 
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Figure 7 presents manganese and cobalt contents for thirty five AMD sludge analyses, from three 
literature sources. A broad correlation is evident, and notably where manganese contents exceed 1 wt%, 
cobalt contents exceed 600 ppm. It also bears mention that the majority of the high manganese and cobalt 
content sludges were produced from AMD in the Pennsylvania anthracite field. However, Penn State has 
more recently found AMD sludges from the bituminous coal field in Pennsylvania with cobalt grades in 
the 1,200 to 1,800 ppm range. 

Figure 7: Correlation of Cobalt and Manganese Contents, Northern Appalachian AMD Sludges, 
Data from Sibrell et al., 2010, Kairies et al, 2005, and Cravotta, 2007. 

As will be discussed subsequently, some of the cobalt contents seen in Figure 7 approach the ore grades 
of deposits that are commercial cobalt producers worldwide. Additionally, manganese contents for these 
materials are substantial, and including manganese recovery with cobalt production could substantially 
improve the economic viability of the overall process.  

The sludge analyses found in Figure 7 represent sludges from existing AMD treatment systems. For the 
treatment of currently untreated discharges, there are opportunities for process design that could further 
improve the grades of recovered solids. As an example, work from the 1970’s examined the removal of 
manganese separately from iron (Rozelle and Swain, 1974). This could result in a recovered precipitate 
with a considerably higher critical mineral ore grade. 
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It also bears mention that, while some sludges have significant ore grades when considered as cobalt and 
manganese resources, these species can be expected to be largely precipitated from solution. As such, 
leaching from a mineral concentrate, an expensive extractive metallurgy requirement, is not required. This 
can significantly improve the economics associated with cobalt and manganese production from these 
materials. Given the scope and cost challenges associated with the restoration of streams that have been 
degraded by acid mine drainage in Pennsylvania, the sale of cobalt and manganese concentrates generated 
from AMD treatment systems could also significantly improve the economics associated with the 
installation of new treatment facilities. As is the case with reclamation of iron ore tailings, this could 
provide both domestic critical mineral resources and co-current environmental restoration activities. 

5.4. Coal Byproducts- Cobalt in the Coal Measures 

Following erosion, most cobalt is thought to reach areas of sedimentation in solution, where it is 
deposited mainly with clay materials or iron or manganese oxides. Normal shales exhibit cobalt contents 
in the 8 ppm range, in black shales cobalt content ranges from 5 to 50 ppm, and in carbonaceous shales 
the cobalt content is around 14 ppm (Vhay, 1977). Data are available for the cobalt contents of both coal 
and associated rock, and these contents are typically low. With respect to coal itself, a search of the U.S. 
Geological Survey database (Pennsylvania anthracite and bituminous fields) yielded no samples with 
grades of over 500 ppm cobalt.  

However, higher cobalt contents can be found in iron-rich sediments, up to 300 ppm (Vhay, 1977). Iron-
rich zones are found in the coal measures in Pennsylvania, and have been sources of commercial iron ore 
production (McGuire, 2012). 

While the coal measures in Pennsylvania have been shown to produce AMD sludges with elevated cobalt 
contents, the rocks themselves have been the subject of little exploration. An exception has been the 
Office of Fossil Energy/National Energy Technology Laboratory sampling and analysis program that took 
place from 2014 to 2016. Results of the work included both manganese and cobalt assays. One result 
from that work was the analysis of a sample from the Pennsylvania anthracite field, the highest assay 
found in the NETL EDX database. That sample, N-213, analyzed at 1,140 ppm (dry basis) cobalt and 
16,238 ppm (dry basis) manganese. This material, as will be presented, compares favorably with the ore 
grades of commercial cobalt deposits, and, like AMD sludges from the anthracite region, also contains 
significant amounts of manganese.  

Given the elevated cobalt levels found in some AMD treatment sludges, finding elevated cobalt 
concentrations in the Pennsylvania coal measures is not unexpected. Initial results from the Office of 
Fossil Energy National Energy Technology Laboratory exploration program can provide an initial basis 
for further exploration along these lines. 

6. Summary 
6.1. Pennsylvania Opportunities Compared with Commercial Ores 

Pennsylvania has been a significant source of cobalt with respect to U.S. domestic production, leading the 
nation from 1941 to 1951 and from 1959 to 1971. Cobalt concentrates have been produced from nickel-
bearing sulfide ores and as pyrite concentrates that were byproducts of iron ore (magnetite) production. 
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Table 2: Example Cobalt Ore Grades for Worldwide Commercial Deposits and Resources in 
Pennsylvania 

†Ore Types: 

1. Stratiform sediment-hosted Cu-Co deposit 
2. Ni-Co laterite 
3. Magmatic Ni-Cu (-Co-PGE) sulfide 
4. Underclay 
5. Commercially produced magnetite deposit, 5a is ore and 5b is a pyrite concentrate recovered at 

the Bethlehem Steel Grace Mine. 
6. Acid mine drainage sludge, 6a covers precipitates at field AMD treatment sites, 6b was produced 

in the laboratory from mine water. 

 

 

Location Type† Cobalt Grade, PPM Reference 

Congo 1 600-11,200 Slack et al. (2017) 

Russia 2 100-1,000 Slack et al. (2017) 

Russia 3 140-2,300 Slack et al. (2017) 

Australia 1 500-1,200 Slack et al. (2017) 

Australia 2 270-800 Slack et al. (2017) 

Australia 3 140-2,000 Slack et al. (2017) 

Philippines 2 600-1,160 Slack et al. (2017) 

Cuba 2 1,000-1,800 Slack et al. (2017) 

Madagascar 2 910-1,040 Slack et al. (2017) 

Papua New Guinea 2 600-1,000 Slack et al. (2017) 

Canada 3 100-900 Slack et al. (2017) 

Pennsylvania Coal Measures 4 1,140 FE-NETL (NETL EDX Database) 

Pennsylvania (Iron Ore) 5a 200 Sims (1968) 

Pennsylvania (Sulfide Concentrate) 5b 6,800 Sims (1968) 

Pennsylvania (AMD Sludge) 6a 1,030-1,485 Sibrell et al. (2010) 

Pennsylvania (AMD Precipitate) 6b 2,500 Burgos et al. (2012) 
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The legacy of mine production in Pennsylvania, involving both metal- and coal production, offers 
opportunities for re-establishment of domestic cobalt production in the Commonwealth. Several of these 
opportunities can also result in environmental restoration, involving reclamation of metal mine tailings 
dumps and installation of AMD treatment systems that can eliminate sources of acid pollution, while 
recovering both cobalt and manganese. 

This White Paper has discussed metal mine byproducts, acid mine drainage sludges, and a prospect in the 
Pennsylvania coal measures as potential cobalt resources in Pennsylvania. Table 2 presents a list of ore 
grades found in commercial cobalt deposits worldwide, in comparison with cobalt grades found in the 
Pennsylvania materials discussed here. 

With respect to ore grade, the Pennsylvania products presented in Table 2 compare favorably with the 
commercial deposits. The exception is the (run of mine) iron ore, the pyrite concentrate produced from 
the ore, however, was in the range of the best commercial ore grades found in the table. 

While most of the cobalt production from the commercial deposits is byproduct in nature, the 
Pennsylvania resources also offer multiple product opportunities. The sludges that contain elevated cobalt 
contents also have high manganese contents. Both are considered to be critical minerals. Cobalt-bearing 
pyrite concentrates that were produced at the Bethlehem Steel operations also produced other 
commodities such as gold and silver. Reclaiming tailings from those operations could also offer multiple 
product opportunities. 

6.2. Suggestions for Further Work 

Results that have been presented here suggest significant opportunities to develop U.S. domestic cobalt 
production from Pennsylvania mineral resources. Some of these also offer co-production of manganese. 

These results suggest that private capital could be attracted to the development of commercial production 
activities. An additional benefit to this would be that, notably in the case of AMD remediation, this 
private investment would also result in significant restoration of past environmental damage from mining 
activities. However, knowledge gaps must be filled in order to de-risk these types of activities before they 
can attract the required investment. 

A first step toward filling these knowledge gaps will be a set of activities designed to build bases for 
private investment. These are as follows: 

1. Build an inventory of metal mine dumps in Pennsylvania that operated in sulfide ores and the 
magnetite skarn deposits that were worked by Bethlehem Steel. While achieving smaller 
production, other mines operated in those deposits (Robinson and Sears, 1992), and any mine 
dumps, while smaller, could offer both reclamation and cobalt production opportunities.  

2. Develop an estimate of the potential AMD resource (cobalt and manganese), building on existing 
discharge information, and adding cobalt and manganese assays for water samples (where no 
treatment system is used) and sludge samples where treatment is in place. Given the current 
information, this would begin with the Pennsylvania Anthracite Region which covers 480 square 
miles and is well characterized with respect to acidic discharges. 

3. Begin process development for production of salable cobalt and manganese commodities from 
currently produced AMD sludges. This would be followed by process development for selective 
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precipitation of critical mineral commodities, which could be applied to new AMD treatment 
systems, an example of which was discussed in Rozelle and Swain (1974). 

4. Restart exploration activities in the Pennsylvania, focused on high cobalt- and manganese content 
zones in the coal measures, also including coal preparation byproducts. 
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