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VTO SYSTEMS-LEVEL R&D
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SMART MOBILITY CONSORTIUM

The SMART Mobility Consortium 
is a multi-year, multi-laboratory collaborative 
dedicated to further understanding the 
energy implications and opportunities 
of advanced mobility solutions.
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SMART MOBILITY 
MODELING WORKFLOW

By creating a multi-
fidelity end-to-end 
modeling workflow, 
SMART Mobility 
researchers advanced 
the state-of-the-art 
in transportation 
system modeling 
and simulation.

LAND
USE

PASSENGER
MOVEMENT

EV
CHARGING

GOODS
MOVEMENT

TRAVELER
BEHAVIOR

AGENT BASED
TRANSPORTATION

SYSTEM 
MODEL

VEHICLE MILES
TRAVELED (VMT)

ENERGY GREENHOUSE
GASES (GHG)CONGESTION COSTVEHICLE HOURS 

TRAVELLED (VHT)

CONTROL

9



MOBILITY FOR 
OPPORTUNITY

FOR MORE INFORMATION

David Anderson
Program Manager
Energy Efficient Mobility Systems (EEMS) 
Vehicle Technologies Office
U.S. Department of Energy
eems@ee.doe.gov 

10



OCTOBER 22, 2020

JOSHUA AULD
Technical Manager – Transportation Systems and Mobility
Vehicle and Mobility Systems Group
Argonne National Laboratory

APPLYING THE POLARIS SMART 
MOBILITY WORKFLOW TO CHICAGO



A COMPREHENSIVE APPROACH FOR 
COMPLEX QUESTIONS USING POLARIS

AGENT-BASED TRANSPORTATION SYSTEM 
MODELING
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WHY IS THE POLARIS WORKFLOW 
UNIQUE?

 Key modeling features:
– Full-featured activity-based model
– Includes freight shipments and 

local deliveries
– High-fidelity vehicle energy 

consumption
– Integrated demand, network 

assignment and traffic flow
– EV charging and grid integration
– Connection to UrbanSIM land use
– Traveler behavior impacts of VOTT

across many choices

Computational performance:
• Fully agent-based
• Integration with external optimization

solvers (CPLEX,  Gurobi, GLPK)
• High-performance C++ codebase
• Large-scale models with 100% of agents
• 4-6 hr runtime for up to 10 million agents
• Cross-platform implementation can run 

on Linux HPC clusters



POLARIS ABM HAS BEEN SUBSTANTIALLY 
ENHANCED TO ACCOUNT FOR FUTURE MOBILITY
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COMPREHENSIVE BASELINE 
VALIDATION
Matching vehicle movements and traffic counts
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Transit ∆ (2014-2018):
Observed: -7%
Simulated: -2% 

Taxi/TNC ∆ (2014-2018):
Observed: 261%
Simulated: 297% 

BACK-CAST VALIDATION 
FOR TNC
Ensure sensitivity of model and suitability for forecasting



SCENARIOS CONSIDERED
A world of

New technology enables people to 
significantly increase the use of transit, 
ride-hailing and multi-modal travel. 
Partial automation is introduced and is 
primarily used on the highway.

Technology has taken over our lives, 
enabling high usage of fully automated 
driverless vehicles, ride-hailing and 
multi-modal trips, which are convenient 
and inexpensive. As a result, private 
ownership has decreased 
and e-commerce has increased. 

Fully automated privately owned 
driverless vehicles dominate the 
market. The ability to own AVs leads 
to low ride-sharing and an expansion 
of urban/sub-urban boundaries, 
while e-commerce has increased.

LOW SHARING, 
HIGH AUTOMATION (Private-AV) 

HIGH SHARING, 
HIGH AUTOMATION (SAV) 

HIGH SHARING, 
PARTIAL AUTOMATION (Sharing) 

Present DayBASELINES

Base2 – Medium-Term, BAU Vehicles
Base3 – Medium-Term, Tech Success

Base5 – Long-Term Future, BAU Vehicles
Base6 – Long-Term Future, Tech Success



SHARED FLEET CAVS ENABLE 
HIGH SYSTEM EFFICIENCY
Compared to personally owned CAVs

CHICAGO
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OPERATIONAL DIFFERENCES BETWEEN 
SAV AND PRIVATE AV ARE KEY
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SHARING BENEFITS ENABLED BY 
EFFICIENT RIDE HAIL OPERATIONS
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INDIVIDUAL TRAVEL BEHAVIOR 
CHANGES ALSO DRIVE OUTCOMES

 Transit use grows from 6% 
to 12% mode share as HH 
dispose vehicles
 Private-AV encourage 

additional SOV trips
 Urban households shift to 

transit, suburban shift to 
TNC if disposing vehicle
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HOUSEHOLDS WITH AV BEHAVE 
MUCH DIFFERENTLY
Up to 82% VMT increase in households owning an AV

 Discretionary activity trips 
3-6 miles longer (+30%)

 Additional trips 
concentrated in PM peak

 Persons with AV spend up 
to 30 minutes more in 
travel per day

 Consistent with (limited) 
empirical studies

Driven by increased travel to 
discretionary activities
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TRANSIT AND RIDE-HAIL CAN BE  
COMPLEMENTARY
Transit is key mobility in urban core, TNC serves suburbs

Transit ridership grows 
as vehicle disposal 
rate increases
 Increase in transit 

along hub and spoke 
lines, even as TNC 
increases
Limited increase in 

TNC use in high-
quality transit areas

Transit Mode Share change TNC Mode share change



HIGH LEVEL SCENARIO RESULTS
Mobility and Energy Impact
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SAVSharing Private-AV

Factor BAU3 VTO4 BAU3 VTO4 BAU3 VTO4

VMT -12% -12% -18% -18% 4% 25%
PMT1 -1% -1% -2% 0% -1% 7%
Avg. Speed2 11% 12% 16% 17% -1% -16%
Vehicle Energy -12% -13% -18% -23% 2% 22%
MEP 34% 34% 51% 76% 23% 10%
1. Productive miles of travel:  Auto drive miles + passenger miles (by all modes) + freight miles – unloaded vehicle miles
2. Proxy measure for congestions; 3. PEV: Plug-in Electric Vehicles (PHEV + BEV) – Scenario Inputs
3. Business-as-usual vehicle technology development
4. DOE VTO program success vehicle technology development
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WHY MODEL FUTURE 
TRANSPORTATION SYSTEMS?

What is the problem?
 Automation, electrification, and other changes will 

transform transportation systems
 Behavioral change will be just as important 

 how do they interact?
What is needed?
 Decisions must be made, despite uncertainty
 Technologies being developed now will be used in a 

world that is very different from today
– Differences in context can be as or more important 

than differences in performance

30



MODELING TRANSPORT SYSTEMS

Supply
 What are the travel speeds on the 

road network?
 How crowded are the buses?
 What are wait times for TNCs?
 How plentiful are empty parking 

spaces?

31

Demand
 How many trips do people take?
 What mode do they use?
 What route do they take?
 What vehicle types are purchased?
 Where do businesses locate?

What are the important factors to consider?

 Needed for understanding big changes to the transportation system
 Allows for feedbacks, where supply and demand interact

– Induced demand, land use change, new technologies and mobility services



MODELING ACROSS TIME SCALES

Long term Day to day Second by second

Scenario generation

Land use

Vehicle fleet

Charging 
infrastructure

Mode choice

Fleet behavior

Traffic patterns

Energy use

Vehicle interactions

Scenario evaluation
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MODELING ACROSS TIME SCALES

Long term Day to day Second by second

Whole Traveler / POLARIS coordination

UrbanSim

ADOPT

EVI-Pro, FCSPlan

Mode choice

Fleet behavior

Traffic patterns

Route-E / FastSim

AIMSUN

MEP
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BEAM RESOURCE MARKETS

 Demand:
– Mode Choice
– Route Choice
– Rerouting
– Park Choice
– Refuel Choice

 Road Capacity
 Vehicle Capacity

 Supply:
– Ride Hail 
– Vehicle sharing 
– Driving
– Transit
– Parking
– Charging Infrastructure
– Biking, Walking

C
os

t &
 T

im
e

 Ride Hail Availability
 Parking/Refueling Access
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BEHAVIORAL MODELING IN BEAM

Hybrid of before-day 
and within-day 
planning.  

Mode, trip, and route 
planning dynamic (on-
the-fly)… enabling 
faster convergence 
toward user 
equilibrium.
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SCENARIOS

Medium-Term Future

A2 - Business-as-usual vehicles
A3 - DOE vehicle technology success

Long-Term Future

B5 - Business-as-usual vehicles
B6 - DOE vehicle technology success

Long-Term Future

C5 - Business-as-usual vehicles
C6 - DOE vehicle technology success

LOW SHARING, 
HIGH AUTOMATION (Private AV) 

HIGH SHARING, 
HIGH AUTOMATION (SAV) 

HIGH SHARING, 
PARTIAL AUTOMATION (Sharing) 

Base0 – Present DayBASELINES

Base2 – Medium-Term, BAU Vehicles
Base3 – Medium-Term, Tech Success

Base5 – Long-Term Future, BAU Vehicles
Base6 – Long-Term Future, Tech Success
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Household vehicle 
ownership 
assumptions and 
different valuations of 
travel time are main 
drivers of variation in 
commuting mode 
share across 
scenarios; changes to 
both are required to 
replace private car 
travel

MODAL SPLITS

Modal Market Shares for commute in San Francisco Bay Area across Scenarios
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Advanced powertrain 
technologies, 
including 
electrification, remain 
the primary factor 
influencing future 
transportation energy 
use, having a greater 
impact than either 
vehicle sharing or 
automation

LIGHT DUTY VEHICLE ENERGY

Per capita light duty vehicle energy consumption 
by fuel type for the San Francisco Bay Area 38
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Neither preference for 
walking, biking, and 
shared modes (Shared) 
nor moderate personal 
vehicle retirement rates 
(Private AV) replace 
personal car travel as 
majority commute mode 
(including transit which 
is not shown here)

VEHICLE MILES TRAVELED (VMT)

Total light duty vehicle miles traveled for commuting by mode for the 
San Francisco Bay Area.

Empty
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Increasing ride hail 
occupancy while 
maintaining high 
enough quality 
service to attract 
travelers is a 
fundamentally 
difficult problem. 

RIDE HAIL VMT

Vehicle miles traveled by ride hail for the San Francisco Bay Area, differentiating 
between empty vehicle (hatched) and multiple passengers (purple) miles

Empty
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RIDE HAIL FLEET OPERATIONS
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RIDE HAIL SENSITIVITY ANALYSIS
Assumptions about ride hail fleet operations are very important

 Empty VMT from 
ride hailing drove 
major differences 
between scenarios
 Assumptions about 

fleet size and 
repositioning are 
important
 Reveals important 

trade-offs in fleet 
management
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				Wait Time		VMT		PMT		Occupancy		Total Trips		Trips per Vehicle

		Base		7.5329987457		139.896743596		134.1827113759		0.9591553594		8.1134547284		270.4484909457

		Low Fleet		7.4994355221		126.8223622751		127.1384422039		1.0024923044		7.5796247485		315.8176978538

		High Fleet		7.1739576034		153.9513858936		135.64392176		0.8810828235		8.4998008048		236.1055779119

		Low Fleet High Repos		7.2628799046		131.6424365843		126.9011004014		0.9639832238		7.5940955734		316.4206488934

		High Fleet Low Repos		7.0808405193		143.0166322958		135.2543959704		0.9457249398		8.5094376258		236.3732673821

				Wait Time		VMT		PMT		Occupancy		Total Trips		Rides / Vehicle

		Fleet Size		0.02		0.41		0.22		-0.17		0.28		-0.57

		Repositioning		-0.13		0.15		-0.01		-0.15		0.01		0.01



		From High:

		Fleet Size		-0.30		0.55		0.06		-0.53		0.27		-0.87

		Repositioning		0.05		0.28		0.01		-0.29		-0.00		-0.00

				Wait Time		VMT		PMT		Occupancy		Total Trips		Rides / Vehicle

		Fleet Size		-0.14		0.48		0.14		-0.35		0.28		-0.72

		Repositioning		-0.04		0.22		0.00		-0.22		0.002		0.002







MEP scores are higher 
than baseline for 
shared mobility 
scenarios (Sharing and 
&SAV), but are lower 
for the privately owned 
automobile scenario 
(Private AV); suggests 
that shared mobility 
can augment vehicle 
technology 
improvement

MOBILITY ENERGY PRODUCTIVITY

SF Bay Area MEP values across the workflow scenarios 43
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LONG TERM VISION
Next steps for BEAM

44

 Fuller representation of all the actors in the transportation system
– Freight and deliveries
– Curb space use and management

 Consistent representation of agents and decisions across time scales
– More model sensitivity and predictive power

 Modeling process that is responsive and accessible to stakeholders
– More modularity  meet interested parties where they are
– Faster model  more runs and full exploration of parameter space
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