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Foreword 
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation 
(SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy 
Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle 
Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced 
mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 
2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision 
Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust 
integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new 
transportation technologies and services at scale. 

This report summarizes the work of the Connected and Automated Vehicles (CAVs) Pillar. This Pillar 
investigated the energy, technology, and usage implications of vehicle connectivity and automation and 
identified efficient CAV solutions. For information about the other Pillars and about the SMART Mobility 
Modeling Workflow, please refer to the relevant Pillar’s Capstone Report. 
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Abbreviations 
AADT  average annual daily traffic 
ABM agent-based -models 
ACC adaptive cruise control 
ADAS advanced driver-assistance system 
ADS automated driving system 
ADT average daily traffic 
AEO Annual Energy Outlook 
AES automated electric shuttle 
AEV automated electric vehicle 
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ASCM active safety control module 
ATM active traffic management 
AV automated vehicle 
 
BAU business-as-usual 
BEV battery electric vehicle 
 
CACC cooperative adaptive cruise control 
CAN control area network 
CAV connected and automated vehicle 
CC cruise control 
CGM central gateway module 
CMIP charging management and infrastructure planning 
C-rate charging rate 
CRM coordinated ramp metering 
 
DOE U.S. Department of Energy 
DSRC dedicated short range communication 
 
EAD eco-approach and departure 
E-CAV electrified connected and automated vehicles 
ECU engine control unit 
EIA Energy Information Administration 
EPA U.S. Environmental Protection Agency 
EV electric vehicle 
 
FHWA Federal Highway Administration 
FMVSS Federal Motor Vehicle Safety Standards 
 
GHG greenhouse gas 
GNSS Global Navigation Satellite System 
GPS Global Position System 
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HD heavy-duty 
HDCAV connected and automated heavy-duty vehicle 
HDV heavy-duty vehicle 
HEV hybrid electric vehicle 
HPMS Highway Performance Monitoring System 
HWFET Highway Fuel Economy Test 
 
I2V infrastructure-to-vehicle 
ICE internal combustion engine 
ICEV internal-combustion-engine vehicle 
 
KNN K-nearest neighbors  
 
LCV long combination vehicle 
LD light-duty 
LDCAV connected and automated light-duty vehicle 
LDV light-duty vehicle 
LRRM local responsive ramp metering 
 
MEP mobility energy productivity 
MiM man-in-the-middle 
MOE measure of effectiveness 
MPO Metropolitan Planning Organization 
MV manually driven vehicle 
MY model year 
 
NGSIM Next Generation Simulation 
NHTS national household travel survey 
NREL National Renewable Energy Laboratory 
 
ODD operational design domain 
 
PCM powertrain control module 
PEV plug-in electric vehicle 
PHEV plug-in hybrid electric vehicle  
PID proportional-integral-derivative controller 
PMT passenger-miles traveled 
 
RF random forest 
 
SAES shared automated electric shuttle 
SAEV shared automated electric vehicles 
SAVs shared automated vehicles 
SMART Systems and Modeling for Accelerated Research in Transportation 
SPaT signal phase and timing 
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TCO total cost of ownership 
TMC traffic management center 
TNC transportation network company 
TRR Transportation Research Record 
TSDC Transportation Secure Data Center 
TTD total travel distance 
TTT total travel time 
 
UDDS Urban Dynamometer Driving Schedule 
UMR Urban Mobility Report 
UMS Urban Mobility Scorecard 
U.S. United States 
 
V2I vehicle-to-infrastructure 
V2V vehicle-to-vehicle 
V2X vehicle-to-anything 
VMT vehicle miles traveled 
VOTT value of travel time 
VSL variable speed limit 
VSL/VSA variable speed limits/variable speed advisories 
 
ZOV zero occupancy vehicles 
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Executive Summary 
Connectivity and Automation Can Lead to Significant Changes to Both Overall Efficiency 
and Usage 

The continued growth of connected and automated vehicle (CAV) technologies is anticipated to significantly 
change the way vehicles move and the way travelers achieve mobility. This will have a significant impact on 
energy consumption, as well as many other facets of transportation, at scales ranging from the individual 
vehicle level to the transportation system level. CAV technologies are unique in that they can positively and 
negatively impact efficiency (both energy efficiency and passenger/freight efficiency) as well as vehicle miles 
traveled (VMT) and related metrics. In addition, the interactions between connectivity and automation-enabled 
technologies and the powertrain technologies to which they are applied will determine whether the impact of a 
particular technology solution (CAV or powertrain) will be positive or negative, based on the synergies 
between the new operating profile afforded by the connectivity and automation and the specific powertrain 
under analysis. For example, the energy benefits of regenerative braking in electrified powertrains are 
decreased in an environment where most vehicle transients are removed through improved vehicle cooperation 
and profile smoothing.  

Before the initiation of the DOE SMART Mobility Laboratory Consortium, the Department of Energy 
conducted a study to address the ranges (bounds) of potential effects of CAV technologies on VMT and 
vehicle fuel efficiency.1 That report laid the foundation for the subsequent SMART Consortium efforts 
discussed in this report and identified research gaps to be assessed in greater detail by the consortium’s efforts. 
Based on a review and synthesis of existing CAV literature, the bounding study concluded that there is 
enormous uncertainty about potential impacts on long-term VMT and efficiency if fully automated and highly 
connected vehicles replace nearly all light-duty passenger vehicles in the United States. (The bounding study 
used 100% penetration of new technologies for each assessment case.) Scenarios representing the lower and 
upper bounds of changes in fuel use for a national fleet of conventional powertrain vehicles were assessed, 
with projected energy consumption decreasing by as much as 60% of current U.S. light-duty vehicle (LDV) 
fuel consumption or increasing as much as two times (200%). The wide range between the lower and upper 
bounds of future vehicle energy use reflects the large uncertainties regarding ways that CAVs can potentially 
influence vehicle efficiency and use through changes in vehicle design, purpose of use, driving, travel 
behavior, management, and policies. The report grouped the factors impacting national-level fuel consumption 
into three primary categories: vehicle fuel consumption per mile, travel demand or VMT, and CAV adoption. 
Within these primary categories, the report also highlighted the most important data and knowledge gaps 
identified by the literature synthesis and impact analysis: 1) travel demand impacts due to automation and 
connectivity, 2) CAV adoption and market dynamics, 3) fuel (and energy) efficiency impacts due to 
connectivity and automation, and 4) connectivity and automation insights for heavy-duty vehicles. Aided by 
this foundational research work, the CAVs Pillar within DOE’s SMART Mobility Consortium investigated the 
above key research priorities while also understanding synergies with connectivity and automation for both 
conventional and electrified vehicles. 

U.S. Department of Energy’s Systems and Modeling for Accelerated Research in 
Transportation (SMART) Mobility Connected and Automated Vehicle Pillar 
CAV technologies offer the potential for improving vehicle efficiency and possibly reducing overall 
transportation energy use through improved control and optimization, from the vehicle level to the corridor 
level and up to the city/regional scale. Connectivity and automation may also stimulate further vehicle 
electrification due to more convenient, transparent, and informed BEV charging and usage. However, the 
various levers for increased vehicle and transportation efficiency are at risk of being negated by an increase in 
VMT, due to possible rebound effects (driving more because connectivity and/or automation makes it easier 
and/or cheaper) as well as new use cases. Therefore, a systems-centric research effort is necessary to more 
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comprehensively identify energy saving opportunities while developing strategies to mitigate operational 
inefficiencies to the largest degree possible.  

This work studies CAV technologies using reliable models, analytical methods, and experimentation to predict 
the energy and mobility implications of CAVs and their associated infrastructure components across a range of 
technology development, market penetration, and traveler behavior scenarios. More specifically, this work 
seeks to address three primary research questions:  

• How will connected and automated vehicles and systems behave in the real world? 
• What are the GHG, energy, technology and usage implications of connectivity, automation, and the 

combination of both technologies?  
• What is the best way to harness CAVs for reduced energy use and improved mobility in 

transportation? 
 

Key Findings 

CAV-Focused Experimental Research and Analysis 

Addressing the first research question regarding how CAV systems behave in the real world, the experimental 
focus of these efforts sought to create experimentally driven insights and validation data to act as a foundation 
and point-of-reference for subsequent simulation focused efforts. Specifically, the modeling and analytical 
techniques used to predict the vehicle-level, local, regional and national impacts of CAV systems depend 
heavily on real-world experimental data for validation. Fortunately, by leveraging available prototype and 
commercially available systems, effective CAV platforms for implementation of energy-saving control system 
designs were created and tested under a range of realistic conditions. The resulting behaviors and performance 
of these platforms were then used for updating simulation models and validating analytical assumptions, 
overcoming one of the most significant limitations to previous efforts to model the impacts of CAV systems.  

Heavy-Duty Truck Cooperative Adaptive Cruise Control (CACC) and Platooning Field Research 

• Combining the fuel savings potential demonstrated for truck platoons via comprehensive track-testing 
executed with a data-driven analysis of opportunities for Class 8 truck platooning, analysis done by 
the CAVs Pillar suggests that truck platooning could be an effective fuel saving strategy nationally. If 
the nation’s truck fleet were to save the demonstrated 6.4% of its fuel with conservatively spaced two-
truck platoon teams on 56% of its miles traveled (as estimated by the platoon opportunities study), the 
overall reduction in fuel consumption would be approximately 1.1 billion gallons of fuel per year 
(roughly 0.5% of U.S. transportation energy use in 2016), resulting in a 10.7 million metric tons 
reduction in CO2 emissions. Platoons of three close-following trucks achieving a combined 13% 
reduction in fuel consumption would save close to 2.1 billion gallons of fuel per year. 

While vehicle-to-vehicle (V2V)-based cooperative heavy-duty vehicle systems are nearing commercialization, 
there is a knowledge gap in terms of the performance, reliability, and resiliency of these systems. The CAVs 
Pillar studied the potential energy savings of such systems. This test track-based effort produced the most 
comprehensive set of platooning energy consumption test results to date. The findings confirmed some 
phenomena observed in previous tests and also produced new findings. The primary trends in energy 
consumption as a function of the gap size between the trucks are illustrated below, for each individual truck 
and for the two-truck and three-truck platoons as a whole.  
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Figure 1. Fuel Savings for Individual Trucks as a Function of Separation Distance (left) and Average Fuel Savings for Two- 

and Three-Truck Platoons (right). 

Figure 1 (left) above shows the fuel savings for each of the three trucks in a cooperative adaptive cruise control 
(CACC) platoon as a function of the separation distance (bottom scale) or time gap (top scale) at a speed of 
105 km/h. Note that the lead truck only saves significant energy at gaps of 18 m or less, but the middle and 
trailing trucks save 6% and 8% respectively even as far apart as 87 m. At gaps below 18 m, the relationships 
become more complicated, with the lead truck’s savings rising rapidly toward 10% as the gap decreases to 4 
m, and the middle truck’s savings rising rapidly toward 17% at the 4 m gap. In contrast, the trailing truck’s 
energy savings peak at about 13% in the 15 m range and then decline to 11% as the gap reduces to 4 m. These 
trends are the consequence of different aerodynamic phenomena at the front and rear of each truck. Figure 1 
(right) illustrates the average savings across the entire three-truck platoon, trending from about 5% at the 87 m 
gap up to 13% at the 4 m gap. It also shows a similar trend for a two-truck platoon, but with noticeably lower 
savings, ranging from about 2% less than the three-truck platoon at a 58 m gap to 5% less at a 6 m gap. 

While the fuel savings opportunities related to Class-8 truck platooning discussed above are promising for 
CACC-enabled close following/platooning vehicles operating in highway environments, many unknowns can 
influence the actual savings during real-world operation. Specific to this investigation were 1) time spent at 
speeds appropriate for observable aerodynamic benefits, and 2) the availability of a partner vehicle with which 
to platoon.  

A study in collaboration with Volvo Trucks North America analyzed a two-week period of Volvo Trucks’ 
telematics data from over 57,000 unique vehicles traveling more than 210 million miles, which included 11 
million GPS waypoints, during the summer of 2016. Telematics data from this study were used to identify 
opportunities in which both a partner vehicle and acceptable operating conditions were observed. The data also 
indicated that the East Coast, West Coast, and urban areas of the United States have higher temporal variability 
than the central part of the country. Analysis using a highway-speed-based cut-off to define platoonable miles 
(i.e., speeds at which platooning would be aerodynamically beneficial) suggested that 63% of total miles 
driven at known hourly average speeds may have potential for platooning.  

When the availability of nearby Volvo-only partner vehicles was considered, results indicate that 56% of all 
classifiable miles driven were platoonable, but the platooning opportunity potential could possibly be greater 
with inter-manufacturer platooning. Figure 2 highlights the spatial distribution of these partner-availability-
based platoonable observations for a single day snapshot. The highest regions of platoonability occur across 
major shipping corridors and interstate highways. Urban areas, particularly those in dense regions on the East 
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Coast, West Coast, and Great Lakes, appear to have fewer opportunities than West and Midwest regions 
though lower speed limits in west coast states were not taken into consideration.  

 
Figure 2. Snapshot of US platoonability based on partner analysis for a single day. Observations with speeds less than 30 

mph are omitted for clarity. 

Analysis of Class-8 Truck Platooning Dynamic Air Flow 

The heavy-duty CACC work described above has shown the promise of significant fuel-savings for a range of 
truck platooning configurations, but also raised questions about the air-flow effects of these strategies on 
aerodynamic drag and engine temperatures. To support research into these questions, additional onboard 
instrumentation was installed on the experimental vehicles to gain a deeper understanding of the air-flow 
dynamics and interactions between multiple vehicles. Using this supplemental instrumentation, with a goal of 
explaining the reduced savings at close following distances for the last vehicle in a platoon, detailed data 
analysis was performed for specific cases, including the air flow experienced by the trailing truck, along with 
turbulence changes at the close following distances where reduced trailing vehicle fuel savings were observed, 
and the impacts of platooning position on engine-cooling in different formations due to reduced airflow. 

Data analysis indicates non-linear patterns in the data trends for wind angle, wind speed, turbulence and 
temperatures for the closer following distances where a fuel savings decrease for the trailing vehicle was 
documented. Figure 3 illustrates the magnitude and angle of wind experienced by each truck in a three-truck 
platoon over a range of distances. Note that while the lead vehicle always has a mean wind speed of 29 m/s (65 
mph) the following trucks start to see significantly slower speeds and higher angles of wind when closer than 
35 m. At distances of 12 m and less the radar plots take on an arrowhead shape—indicating turbulence by high 
variability in both angle and speed—and this turbulence correlates with the distances at which following trucks 
exhibit a drop in fuel savings. 
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Figure 3. Magnitude and angle of wind radar plots. 

In-field Assessment of Large-Scale, Light-Duty Adaptive Cruise Control (ACC) Fleet Pilot Data — Methods to 
Quantify On-Road Efficiency Benefits 

• Analysis done by the CAVs Pillar using 18,590 trips from the Volvo Drive Me pilot study, operated in 
Gothenburg Sweden, showed that Adaptive Cruise Control has the potential to lower fuel 
consumption by 5%–7% at the individual vehicle level, compared to manually driven vehicles 
operating within the same study environment.  

Overall on-road fuel efficiency of CAV technologies can be difficult to quantify, as the fuel efficiency of a 
given CAV technology compared to a fully human-controlled vehicle can vary in different driving contexts. 
The CAVs Pillar developed a methodology that considers the difference in fuel efficiency between a CAV and 
manually driven vehicle in a wide array of driving conditions or contexts and quantifies the overall impact by 
weighting the specific driving-context fuel efficiency differences by the amount of driving that occurs in each 
context. In collaboration with Volvo Cars, this methodology was demonstrated in a partial automation 
technology context over a large on-road dataset of vehicles operating with and without adaptive cruise control 
(ACC). While many studies have identified fuel saving potential from ACC strategies, the literature remains 
limited in terms of real-world vehicle-level operational and energy consumption differences between this type 
of automated driving behavior and comparable manually driven vehicles under various driving conditions. The 
Volvo Cars collaboration helped to fill this information gap and explored the proposed methodology’s 
potential to quantify overall CAV technology on-road fuel efficiency— an objective of interest not only for 
ACC but also for higher-level CAV technologies. For this research, Volvo diesel automatic models (V70, 
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XC70, V60) were driven by Volvo Cars employees and family members on more than 18,590 trips over the 
“Drive Me” route in Gothenburg, Sweden, between 2010 and 2011. Vehicles were equipped with ACC, which 
used a radar sensor to detect the distance to the vehicle ahead and adjust the ACC-equipped vehicle’s speed to 
maintain a preferred gap between the vehicles. Fuel consumption data were collected from the vehicles’ data 
bus at a 10-Hz sampling rate. 

The figure below illustrates the estimated annual distribution of all vehicle travel that occurred on the 
designated driving network in each combination of traffic speed and road grade condition. The vehicle travel 
distance weighting and sensitivity scenario evaluation process revealed that, on an individual vehicle level, 
these ACC-operating vehicles consumed 5%–7% less fuel than the fully manually driven vehicles over the 
designated driving network. Other considerations for automated vehicle fuel use include their types/specific 
implementations and penetration levels into traffic. For instance, while the ACC vehicles in this Volvo Cars 
study operated mostly around other vehicles with the driver in complete control, other studies have shown that 
a large number of ACC vehicles operating together can make traffic worse, due to the lag for each vehicle to 
detect speed changes and other factors leading to amplification of disturbances. As will be discussed later in 
this report, it is possible for high automation penetration to improve rather than impair overall traffic flow if it 
includes vehicle-to-vehicle communication, enabling cooperative ACC (CACC).  

 
Figure 4. Variation in estimated overall annual vehicle travel on the designated driving network in Gothenburg (in millions 
of vehicle kilometers travelled) organized by speed and grade bins (high values in red/orange, moderate in yellow and low 

in green). 

The fuel economy calculation approach featured in this work can be applied to simulations of hypothetical 
future technology penetration scenarios as well as to data from the latest vehicle technologies operating in 
current traffic conditions. With automated vehicles possessing enhanced data collection and connectivity 
capabilities, the proposed approach could provide increased visibility into how on-road fuel economy evolves 
with changes in vehicle automation technology, penetration rates, and traffic impacts. Such transparency is 
important for stakeholders and policymakers who wish to measure technology impacts on transportation 
energy use and for automakers who wish to get credit for potential fuel-saving features of automated vehicle 
technologies. 
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Real-World Driving Data and Strategies for Green Routing Applications 

• Leveraging data on 45,000 actual trips, a large-scale green routing opportunity evaluation done by the 
CAVs Pillar found that a less energy-consuming route alternative existed for about one-third of the 
total trips. For routes where a lower energy alternative was identified, the average energy reduction 
benefit of following the “greenest” route was estimated to be 12%. Interestingly, roughly half of the 
“greenest” route alternatives in the study also had lower travel times, suggesting a “double win” of 
both faster and more efficient travel. 

Green-routing tools enable the selection of travel routes that minimize energy consumption and present an 
important fuel savings opportunity for CAV technologies. The CAVs Pillar developed, validated, and applied a 
methodology, called RouteE, that considers the relationship between driving conditions (road type, grade, 
traffic, etc.) and energy consumption for a given vehicle. The focused validation activity included collecting 
on-road fuel consumption data from identical pairs of conventional, hybrid, and plug-in hybrid electric 
vehicles driven along different routes between the same origins and destinations as well as analyzing the 
developed tool’s performance on a much larger scale real-world dataset. The validation effort successfully 
demonstrated the methodology’s ability to accurately predict which route alternative would be the “greenest” 
(i.e., consume the least amount of fuel), with actual energy consumption differences between the measured 
route pairs varying from roughly no difference to over 20% difference. 

A broader green routing opportunity analysis used a larger database of real-world routes provided by NREL’s 
Transportation Secure Data Center (TSDC) and compared the time and energy for alternative routes to the 
actual route chosen by drivers. Specifically, matched origin/destination pairs from 45,000 trips in the TSDC 
were fed into a routing application programming interface (API) from Google Maps, along with the day of 
week and time of day that the actual route was driven. Based on this information, the API returned the most 
viable route options between each origin/destination pair (along with their estimated travel times), and RouteE 
was used to estimate the energy consumption for each of the route options. The analysis found that for 
conventional vehicles a potentially less energy-consuming route alternative existed for 31% of these actual 
routes. Among this subset of trips with a fuel saving route alternative, the aggregate fuel consumption of the 
“greenest” routes was estimated to be 12% lower than that of the originally selected routes. When considering 
the travel time impacts of these alternative energy saving routes, it was found that about half of them resulted 
in shorter travel times as well as fuel savings, with the other half incurring a travel time penalty. The figure 
below shows the estimated energy savings and travel time impacts for the subset of real-world trips with 
energy savings potential. A promising finding in this combined assessment of fuel savings and travel time 
impacts is that “double win” routes (where both fuel and time savings occur) account for two-thirds of the 
overall energy savings—underscoring the substantive and potentially easy-to-achieve opportunity that green 
routing could provide for connectivity-enabled vehicle fuel savings. 
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Figure 5. Energy savings vs. time savings for alternative routes compared to actual routes. 

Accessory Loads and Sensitivities for Automated Vehicles 

• While the computational loads for fully automated vehicles are still highly uncertain, testing and 
analysis done within the CAVs Pillar has shown that certain automated eco-driving capabilities can be 
enabled at electrical loads much lower than the 2-4kW observed from recent fully-automated vehicle 
fleets. Field-testing of an automated vehicle prototype, provided by an industrial project partner, found 
automation loads ranging between 300W and 400W for functionalities including hands-free highway 
operation (L3) and fully self-driving operation and navigation at lower speeds (L4). Field-testing of a 
Cadillac CT6 with Super Cruise, a L2+ automation system, revealed automation-related loads of 
approximately 100 W. Furthermore, the Super Cruise’s automation loads changed minimally when the 
system was deactivated, suggesting that the true accessory load penalty for some lower-level 
automation capabilities may be minimal as these systems are already in-use for driver assistance and 
collision avoidance features. 

Vehicle automation, especially higher-level capabilities that require minimal input from the driver and allow 
for more efficient operation and coordination, have shown significant potential for decreased fuel/energy 
consumption. While the information, awareness, and capabilities attributed to these automation systems offer 
many potential strategies for efficient operation, the sensors, processing and actuation components required by 
these systems represent a new additional power load which can reduce or cancel out the benefits provided by 
these new eco-capabilities. In addition to a sensitivity analysis of current vehicles to accessory loads, this work 
focused on evaluating the loads associated with two automation systems (a production Cadillac CT6 with 
SuperCruise and an industrial partner-supplied CAV prototype platform based on a Ford Fusion hybrid) under 
real-world operating conditions using on-road field testing of instrumented vehicles. While not exhaustive, this 
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work utilized experimental data to identify trends, insights, and conclusions about the loads associated with 
automation systems and their impact on overall vehicle system efficiency. 

Freeway driving with Super Cruise system enabled resulted in an overall average measured automation-related 
power consumption of 101 W to 104 W. The sensors themselves consumed an average of 52 W, or roughly 
50% of the total system load. The engine control units (ECUs) and processing supporting the specific 
advanced driver-assistance systems (ADAS) features under review consumed 35 W, roughly 35% of the total 
consumption. The actuators (electric power steering and braking) consumed an average of 14 W over the 
course of testing. The consumption results were consistent regardless of environment or complexity of the 
driving situation. Surprisingly, the electrical loads of the vehicle’s ADAS related sensors and processing 
changed minimally when Super Cruise was deactivated. This is likely due to the processing system and sensors 
being used for other safety and convenience features even during normal operation, suggesting that for lower 
level automation capabilities, the true accessory load penalty for certain eco-behaviors may be minimal if these 
systems are already in use for safer driving. 

The CAV prototype vehicle was evaluated across two types of operation: 1) Highway Pilot, which allowed for 
hands-free highway operation requiring minimal driver attentiveness (similar to SAE L3), and 2) Urban Pilot, 
which allowed for driverless operation and navigation at lower speeds (similar to SAE L4). As shown in 
Figure 6, the overall automation system for the demonstrator vehicle consumed 315 W during Highway Pilot 
operation and 380 W during Urban Pilot operation. Also noteworthy is the processing loads of 236 W and 
257 W for Highway and Urban pilot assist respectively, a significant increase from the processing loads for the 
Cadillac Super Cruise (35 W). In contrast to the Super Cruise results, the processing loads now represent 70% 
to 75% of the overall automation system automation loads, providing support for the hypothesis that 
processing loads related to higher automation levels are responsible for the large in-field electrical loads seen 
in recent pilots (although loads for this testing are still well under the reported 2-4 kW levels). Given the much 
higher processing power levels, it also stands to reason that these systems will likely need supplemental 
cooling, which is supported by the additional fan loads observed during testing, on the order of 19 W to 55 W 
depending on the use case and prior operating conditions. 

 

Figure 6. FEV Smart Demonstrator automation electrical loads during Highway Pilot and Urban Pilot operation on public 
roads (95% confidence interval shown in error bars). 
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While the 2-4 kW electrical loads observed in recent in-field AV trials may seem overly high based on this 
work, this report does not recommend applying the prototype vehicle’s much lower consumption loads across 
the board to represent driverless systems capable of operating across a much wider set of operational design 
domains (ODDs). In fact, in consultation with several industry experts, a contrary opinion arose that, for 
driverless systems capable of operating across a wide range of ODDs, the 2kW and above processing loads 
may not begin to decline as quickly as many think. This is in part due to a continued need for higher resolution 
imaging/processing systems and a general need for more sensors for highly detailed situational awareness. In 
addition, the frame rate at which this information needs to be acquired and processed contributes to elevated 
processing loads, as electrical load can be estimated as proportional to calculations or operations per second.  

 

CAV-Specific Modeling and Simulation Methodology and Approach Refinements 

In order to evaluate new transportation technologies such as connectivity, automation, sharing, and 
electrification at different levels of fidelity and scale (i.e., individual vehicles to entire metropolitan areas) 
multiple approaches and simulations were refined to comprehend the complex dynamic interactions and 
capabilities of CAV technologies. These refinements built upon DOE’s existing core capabilities related to 
advanced vehicle modeling and analysis. The specific CAV-centric modeling adaptations and evolutions 
developed in this effort included:  

• An environment for simulating and optimizing the controls of multiple proximate vehicles with full 
powertrain control while comprehending and incorporating (when applicable) the interactions between 
these vehicles and their environment (RoadRunner) 

• Improvements to traffic micro-simulation modeling tools to incorporate mixed fleets of manually and 
automatically driven vehicles within a particular traffic scenario or environment 

• CAV-specific refinements to regional-level modeling tools relating to traffic flow models, 
representation of vehicle agents, and implementation of resource allocation and optimization routines 
related to specific CAV technologies and capabilities. 

 

Corridor-to-Regional-to-National Level Impacts and Sensitivities of Connectivity and 
Automation 

These efforts address the second research question of this work: “What are the GHG, energy, technology, and 
usage implications of connectivity, automation, and the combination of both technologies?” There is 
significant uncertainty regarding the expected outcomes of widespread CAV introduction into today’s 
transportation systems and the dynamics of newly automated and/or connected vehicles operating in parallel 
with manually driven vehicles. These uncertainties lead to widely varying expectations for both the benefits 
and challenges associated with CAV introduction. The sensitivities and key assumptions of these expected 
impacts are also not widely established or documented. This work sought to fill these knowledge gaps with 
research focusing on the impacts of CAVs when introduced into current and near-term transportation systems, 
as well as develop tools and insights for future CAV deployment and transition dynamics and aggregation of 
results into a national-level impact assessment.  

Corridor Level Impacts of Connectivity and Automation 

• In contrast to the experimentally observed individual-level fuel savings benefits for ACC systems, 
corridor-level microsimulation modeling work done by the CAVs pillar showed that ACC systems 
decrease traffic throughput and increase overall energy consumption due to traffic instabilities created 
by the autonomously operating automation systems and the required following behaviors and 
distances associated with a lack of information from surrounding vehicles. At 100% ACC market 
penetration, fuel consumption within the study corridor increased by up to 60%. Contrasting these 
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impacts, Cooperative-ACC (CACC), ACC enhanced by vehicle-to-vehicle (V2V) communications, 
showed benefits to both congestion and consumption as market penetration increased above 40% and 
may ultimately remove traffic congestion at current demand levels with sufficient penetration. At 
penetrations lower than 40% CACC acted much like an ACC system; thus, without additional 
considerations or technologies, low penetrations of CACC vehicles will also lead to decreased 
throughput and increased consumption at the corridor level. 

To compare the impact of ACC (as a proxy for automation without connectivity) and CACC (a case of 
automation combined with connectivity) at different penetration levels on traffic within a corridor, the same 
calibrated baseline traffic car-following model was used for both cases. The models were calibrated with field-
collected data from several ACC and CACC vehicles driven in public traffic. These car-following models are 
intended to capture the dynamic interactions between manually driven vehicles and ACC and CACC vehicles. 

The combined figure below illustrates the contrast between the trends in achievable throughput per lane as the 
market penetration increases for (unconnected) ACC (left plot) and cooperative ACC (right plot) systems. The 
simulation scenario for these results was a section of four-lane freeway operating at its maximum achievable 
upstream throughput level, with a single exit ramp serving different exiting traffic volumes, ranging from 0% 
(the ideal case) to 25% of the mainline volume. The decline in achievable downstream throughput with 
increasing use of ACC is in distinct contrast to the increase in downstream throughput with increasing use of 
CACC. This occurs because the ACC destabilizes the vehicle-following control while the CACC stabilizes it 
and enables vehicles to be driven at shorter gaps due to the connectivity and information shared between 
vehicles. 

 
Figure 7. Corridor throughput versus ACC penetration level (left) and CACC penetration (right); the color codes represent the 

percent flow through the off-ramp with respect to the mainline volume. 

The effects of ACC and CACC on energy consumption can be visualized more clearly on contour plots for this 
simple scenario (the four-lane freeway section with a single on-ramp). The contour plot below shows fuel 
consumption for a 13.5 km corridor for one hour of operation. The vertical axis of each plot represents the 
location along the freeway, the horizontal scale represents the time, and the colors represent the traffic speeds. 
The results show that when all vehicles are using CACC, the impact of the on-ramp traffic is negligible, in 
contrast to when all vehicles are using “autonomous” ACC. In the latter case the fuel consumption increases 
significantly because of unstable vehicle following. 
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Figure 8. Fuel consumption rate (GPM - gallon per mile travelled) contour plot for 100% CACC driving (left) and 100% ACC 

driving (right) in response to a traffic disturbance caused by an on-ramp. 

Regional-Level Impacts of Connectivity and Automation 

• Regional-level modeling results for Bloomington, Il-based simulation and analysis done by the CAVs 
pillar have shown that by inducing additional travel demand and facilitating zero-occupancy vehicle 
(ZOV) travel, privately owned, driverless-capable automated vehicles have the potential to increase 
regional-level vehicle miles traveled (VMT) by 42%–63%. This increase in VMT can offset nearly all 
future vehicle efficiency improvements within the DOE’s 2040 technology portfolio, resulting in a 
50%–70% increase in total energy consumed versus a future scenario without the introduction of 
privately owned, driverless-capable automated vehicles. 

In the long term, fully automated, privately owned vehicles have the potential to substantially impact traffic 
and energy use by two factors: increased travel and zero occupancy vehicle (ZOV) capability. Using agent-
based modeling tools developed and refined in this effort, researchers conducted a case study investigating the 
impacts of privately owned (shared across household members) CAVs in the Bloomington, IL metropolitan 
area. The study employed a range of estimated CAV and powertrain technology demand scenarios, spanning 
2015 to 2040. Each model year assessed within the study included baseline, low, and high CAV penetration 
scenarios (determined by assumed marginal price of the CAV), low and high advanced vehicle powertrain 
adoption scenarios, and three CAV technology design scenarios related to automation electrical loads, market 
penetration of CAVs, and disincentives for ZOV operation. For 2040, the impact of two ZOV pricing scenarios 
was also assessed. The model results highlight the substantial impact on vehicle travel and energy consumption 
from increasing automation. The results indicate that the presence of a significant penetration of fully 
automated privately owned vehicles would induce a 27% to 39% increase in trips depending on penetration 
rate and cost. Combined with the effect of ZOV travel, this would increase system level VMT by 42% to 63%. 
When analyzing the energy consumption driven by this increase in VMT, overall fuel consumed across the 
2015 to 2040 timeline could increase by 50%–70%, possibly negating most of the gains in reduced fuel 
consumption due to improvements in vehicle powertrain technology over time. 
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Figure 9. Best and worst case performance metrics over time under privately owned, Level 4/5 CAV scenarios. 

National Level Impacts and Aggregation Techniques for CAV Behaviors and Technologies 

CAVs may significantly alter mobility, change the utility of travel, and result in large changes in transportation 
energy use. In SMART Mobility and related research efforts, these potential changes were studied using 
models and simulations, largely at a regional or local scale. The CAVs Pillar also explored methodologies for 
synthesizing regional, local, and vehicle-level results to a national level. The approach applied was split into 
three sections: methodologies to estimate changes in travel demand, techniques to aggregate vehicle fuel 
consumption, and insights into CAV technology adoption. The goal was to take results from regional 
simulations, vehicle simulations, and estimated market penetrations of CAVs and other vehicle technologies to 
calculate CAV related impacts and energy use under various national-level scenarios. The results provided fuel 
consumption aggregation techniques and CAV adoption projections that were used in other SMART Mobility 
tasks and provided insights into methods for modeling changes in travel behavior at the national level due to 
CAVs. Specific methodology highlights and findings from these efforts include:  

• Extrapolating the results of detailed, activity-based, transportation system simulations to other 
locations or other populations is challenging, especially for travel metrics such as VMT, since VMT 
depends not only on traveler characteristics but also on road network characteristics and other land use 
characteristics at local and regional geographic scales 

• Individual road-link and metropolitan-area energy consumption estimation roll-up techniques can also 
be successfully applied for national-level energy consumption estimates under a range of different 
scenarios 

• Highly automated vehicles are expected to become a large portion of projected future personal and/or 
shared-mobility fleet vehicle sales, given that they offer significant consumer benefits, including 
reduced travel time costs through more productive use of travel time, as enabled by a reliable 
automation system 
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• In addition to reduced travel time costs, highly automated vehicles are also valuable for limited-range 
BEVs, since the gain in energy efficiency (due to more efficient vehicle driving dynamics and routing) 
results in valuable extended range and reduced range anxiety 

• Highly automated vehicles may increase personal vehicle ownership if first adopted as personal 
vehicles or decrease personal vehicle ownership if they are first adopted as shared TNC vehicles at a 
significant scale. 

 

Harnessing Connectivity and Automation for Improved Energy Outcomes and 
Coordination 

Results discussed in this section worked to address the third research question posed in these efforts: “What is 
the best way to harness CAVs for reduced energy use and improved mobility in transportation?” Efforts in this 
section focused directly on the new control and coordination capabilities afforded to CAVs through improved 
situational awareness, controllability, automation, and connectivity. Results from this research quantify the 
possible traffic flow and efficiency benefits of CAVs in multiple scenarios for an individual vehicle, corridor, 
region, or city, including sensitivities due to different penetration levels and varying degrees of automation. 
Broadly speaking, this section seeks to investigate how one can combine driver feedback systems, improved 
controls, situational awareness, and other strategies to better control connected, non-automated vehicles as well 
as connected and automated vehicles for less energy intensive and higher roadway throughput outcomes. 

Eco-Driving: Energy-Focused CAV Control Development Using Powertrain and Longitudinal Speed Control 

• By adapting to the road, surrounding vehicles, and the green/red sequencing of traffic lights, SMART 
Mobility consortium researchers developed control algorithms for individual automated vehicles with 
intelligent powertrain and speed control. These algorithms can reduce energy/fuel consumption up to 
15% alone, and up to 22% when integrated with Vehicle-to-Infrastructure communication of traffic 
signal information. Large-scale simulation studies applying the algorithms have shown these benefits 
vary significantly depending on scenario and powertrain technology, with BEVs showing up to 7% 
reduction in consumption. 

A single vehicle intelligent powertrain and speed control algorithm developed by the SMART Mobility 
Consortium was shown to reduce energy consumption up to 22% (depending on powertrain and road type) in 
real-world driving conditions by adapting to the road topography, surrounding vehicles, and the sequencing of 
traffic lights. Energy savings vary significantly depending on the scenario: 

• Eco-driving saves more in city driving (up to 22%) than in highway driving (up to 6%) 
• Speed+powertrain eco-driving often saves more than the speed-only eco-driving, between 4 and 9 

percentage points more, by considering the best operating points for a specific powertrain. For 
example, the speed+powertrain strategy enables the engine to operate at more efficient loads through 
stronger accelerations, resulting in 2 percentage points higher average engine efficiency.  

• V2I-enabled traffic light eco-approach increases eco-driving energy savings, especially for speed-only 
eco-driving (up to 10 percentage points more relative to non-connected vehicles).  

• While energy savings are greater for the lead vehicle than for a following vehicle without eco-driving 
controls, non-equipped vehicles can also reduce their energy consumption up to 8% when they follow 
a vehicle equipped with eco-driving. 

• Combined with technologies to increase engine efficiency at low loads (2025 VTO targeted efficiency 
goals), the developed eco-driving strategies show up to 6 extra percentage points of energy 
consumption savings for the 2025 target compared to the current baseline. 
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Figure 10. Energy consumption savings compared to baseline control for a vehicle in the lead position, with current 
powertrain technology, for various powertrains. 

The control algorithms were developed using RoadRunner, a new simulation tool for energy-aware CAV 
control development. Multiple scenarios were considered to quantify the energy impact, including: 

• A large number of real-world routes covering different terrain and road types (highway, suburban, 
urban only and mixed)  

• Multiple vehicle powertrains (conventional engine-powered vehicle, hybrid electric vehicle, and 
battery electric vehicle) along with two component technology scenarios (current term scenario, and 
the short-term future “high” case representing 2025 U.S. DOE VTO technical targets) 

• Two types of eco-driving controllers: EcoDrv Spd/Accel, which optimizes vehicle speed vehicle 
independently of the powertrain, and EcoDrv PT+Spd) which optimizes vehicle speed and powertrain 
simultaneously. Both controllers can utilize V2I information to receive traffic light signal information.  

Active Traffic Management Strategies for Corridor-Level Traffic Improvements 

• Corridor-level simulations done by the CAVs Pillar showed that overall corridor traffic throughput 
improvements are possible when vehicles with automated longitudinal controls (i.e. ACC) are 
equipped with supplementary vehicle-to-infrastructure (V2I) communication capabilities allowing 
them to follow variable speed limit/advisories (VSL/VSA) broadcast within the corridor and be 
responsive to dynamic traffic conditions. For penetrations of 10-30% ACC+V2I equipped vehicles 
within the simulated corridor the following improvements were observed:  

o Total travel time (TTT) could be reduced by 6-7% 
o Speed variation could be reduced by 8% 
o Total delay could be reduced by 9-11%. 

As discussed in this report and several other studies, an increase in ACC market penetration (i.e., automated 
but non-connected vehicles) can aggravate traffic and lead to more energy consumption since ACC, as a 
longitudinal autonomous driving mode, has inferior performance compared to experienced drivers when 
following vehicles. Although CAVs (with V2V) can effectively avoid these deficiencies and improve traffic 
mobility and safety, low market penetration of CAVs will not bring many opportunities for CACC/platooning 
capable vehicles to create strings in the near-term. Therefore, most CAVs will have to be operated in an 
autonomous only mode until there is a higher penetration of CAVs enabled with CACC. In this context, our 
investigation was intended to improve traffic mobility, safety, and energy consumption using V2I based 
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information. The results showed that although ACC will have longer (time) gaps between vehicles, which is 
detrimental to traffic, V2I types of VSL/VSA could compensate for this by increasing overall performance at 
the system level. 

The investigative approach adopted a VSL strategy to optimize the downstream bottleneck flow within the 
study corridor. It was assumed that all the automated or partially automated vehicles operating in the study 
corridor have vehicle-to-infrastructure connectivity, but not vehicle-to-vehicle connections. With these V2I 
connections, the VSL determined by the traffic management center (TMC) can be passed to the vehicles and 
used as the set-speed of the vehicle’s ACC system, or be displayed to the driver, via connectivity. For 
evaluation and development of the proposed algorithms, a well-calibrated Aimsun microscopic traffic 
simulation model of eastbound I-66 inside the Washington D.C. beltway was used. 

Table 1 shows the percentage change in mobility performance metrics, compared to the baseline traffic, for the 
developed algorithms applied to the study corridor. Numbers in green indicate traffic improvement and 
numbers in red indicate traffic deterioration. The results of the DC corridor study showed an improvement in 
all mobility metrics (total travel time [TTT], total travel distance [TTD], total delay [TD], speed variation, 
number of stops) even with 10% penetration of ACC vehicles, and confirm the benefits of improved traffic 
through V2I-based VSL guidance, even for relatively low penetrations of ACC or CACC vehicles. This 
approach uses currently available road traffic detector information and vehicle longitudinal control capabilities 
(supplemented with V2I communications) to calculate, provide, and follow VSL guidance for small sections of 
the freeway corridor, showing promise to improve traffic even when the penetration of CAVs is low. 

Table 1. Averaged performance parameter improvements for each penetration level of ACC vehicles over 10 replications. 

Market Penetration TTT (%) TTD (%) TD (%) Spd. 
Var. (%) 

Ave. # of 
Stops (%) 

Flow@Syc. 
(%) 

Flow@ 
Merge (%) 

10% -6.0 0.8 -9.4 -8.4 -3.5 1.8 -0.2 

30% -7.0 1.3 -11.0 -8.3 -4.2 2.4 -0.1 

50% -8.9 1.4 -13.7 -9.3 -4.9 2.2 -0.1 

Mean -7.3 1.2 -11.4 -8.7 -4.2 2.1 -0.1 

 

CAV-Enabled Optimal Coordination Strategies and Impacts for Highlighted Traffic Scenarios 

The CAVs pillar developed an optimization and simulation framework to optimally coordinate CAVs across a 
range of traffic scenarios and varying penetration levels of automated and manually driven vehicles showed 
significant opportunities for reduced congestion and reduced corridor-level energy consumption. Highlighted 
benefits include: 

• With partial penetration of CAVs and a heterogeneous fleet (different vehicle classes from light-duty 
to heavy duty), the optimal coordination framework developed by the SMART Consortium can 
provide fuel savings of 3% to 30% for a highlighted freeway merging scenario under moderate to 
heavy traffic. 

• With full penetration of CAVs, the optimal coordination framework developed by the SMART 
Consortium, enables the vehicles crossing a roundabout to save up to 27% of fuel and between 3% 
and 49% of travel time depending on the traffic conditions. 

• In a simplified highway corridor at full penetration of CAVs, the developed optimal coordination 
strategy mitigates traffic jam propagation, leading to travel time savings of up to 40% and 
improvements in fuel economy of up to 55% compared to the non-coordinated scenario. 
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• For a longer, real-world corridor, even at lower CAV penetration levels, the developed coordination 
framework still achieves a significant overall corridor fuel consumption reduction. For example, at 
20% CAV penetration, a benefit of 4% is achieved. 

Much of the current research related to control and coordination of CAVs (external to DOE efforts) has been 
focused on safety and travel time. Several studies have attempted to quantify the energy implications of 
proposed control and coordination strategies considering full penetration of CAVs, however, the implications 
of partial penetration of CAVs on energy and travel time have been an under-explored aspect within the 
research community. The CAVs Pillar explored the impacts of an optimal coordination framework for CAVs 
in the presence and absence of interactions with human-driven vehicles, i.e., considering partial and full 
penetration rates of optimally coordinated CAVs under different traffic conditions. The main focus areas of 
this work are: 1) the development and expansion of a simulation framework to capture the interaction of CAVs 
with human-driven vehicles under different traffic volumes for a range of traffic scenarios, and 2) the analysis 
of the impact that different penetrations of CAVs have on fuel consumption, travel time and traffic flow when 
the optimal coordination framework is applied. While this work assessed a wide range of traffic scenarios and 
CAV penetration scenarios, key insights include the following. 

Vehicle Merging at a Highway On-Ramp — Mixed Penetration of CAVs 
With partial penetration of CAVs and a heterogeneous fleet (i.e., different vehicle classes from light-duty to 
heavy duty), the optimal coordination framework for CAV merging developed by the SMART Consortium can 
provide 3% to 30% fuel savings for a freeway merging scenario under moderate to heavy traffic. The results in 
the figure below show that the benefits are sensitive to traffic demand. The higher benefits in terms of average 
fuel consumption savings occur in scenarios with moderate congestion (e.g., 2000 veh/h) since the vehicles 
will still have some freedom to accelerate and decelerate in an optimal way. At lower traffic demands (e.g., 
1800 veh/h), the reduced traffic on the main road allows more human drivers to merge without conflicts in the 
baseline scenario, avoiding significant acceleration/deceleration changes. This results in smoother travel 
patterns than in moderate baseline traffic and thus reduced opportunities for improvement via optimal 
coordination. However, the fuel saving benefits at lower traffic volumes still exceed 10%. In heavy traffic, the 
vehicles are more constrained in their responses due to the smaller headways, and the idling condition starts 
dominating, reducing the potential to save fuel and improve the average fuel economy. Still, the average fuel 
savings in heavier traffic vary between 2% and 17%. Notably, at lower penetration rates for all the simulated 
traffic demands, there is increased uncertainty and performance variability regarding the fuel consumption 
savings. This result suggests that low market penetration scenarios will probably also see higher variability in 
performance in the real world as well. As CAV penetration increases, more vehicles will attempt to 
communicate and merge in a coordinated way; however, they will still be constrained by the unknown 
behavior of human drivers and the lack of accurate information about their decisions and intentions. In these 
mixed partial penetration scenarios, CAVs need to rely on their own estimations (through sensors) to ensure 
collision-free trajectories. Thus, CAV efficiency will be adversely affected by non-smooth and often 
unpredictable human-driven vehicles when attempting to merge, and they will be required to perform harder 
accelerations/decelerations and stopping maneuvers to ensure safety, which will affect downstream traffic. 
These erratic maneuvers result in the variable fuel consumption trends observed in the figure below. 
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Figure 11. Average fuel consumption, driving distance, and fuel economy with respect to baseline for three traffic 
demands, i.e., 1800 veh/h, 2000 veh/h and 2200 veh/h (60% - 40% split between the main and ramp roads) with various 

CAVs market penetration rates (numbers in the legend identify the percentage of light-duty CAVs and the percentages of 
heavy duty CAVs respectively).  
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Roundabout Coordination — Full Penetration of CAVs 

With full penetration of CAVs, the optimal coordination framework for roundabout coordination enables the 
vehicles passing through a roundabout to reduce fuel consumption up to 27% fuel and travel time between 3% 
and 49%, depending on the traffic conditions. This work simulated a simple roundabout network in two 
scenarios: 1) a network with 0% CAVs penetration (baseline), and 2) a network with 100% CAVs penetration. 
In addition to the penetration scenarios, to test control effectiveness under different traffic conditions, east and 
west entry volumes varied from 300 veh/h to 1000 veh/h. At low traffic volumes, the headways between 
westbound vehicles were generally large enough that few eastbound vehicles needed to stop to get into the 
roundabout. In the baseline scenario, as entry volume increased, it was harder for eastbound traffic to find 
proper gaps into which to merge, resulting in a queue buildup. With the proposed control algorithm, the 
network throughput was improved, and the eastbound vehicles were able to merge into the roundabout without 
stopping, even with high circulating flow. Therefore, the total number of vehicles exiting the roundabout in a 
given time period increases, leading to improved roundabout capacity (e.g., 25% improvement with 1000 
veh/h per lane entry volume) as well as reduced travel times due to the lack of queue buildup. By eliminating 
stop-and-go driving for eastbound traffic, vehicle transients are minimized, leading to direct fuel consumption 
savings of roughly 27%.  

Simple Highway Corridor — Full Penetration of CAVs 

For a simplified highway corridor, at full penetration of CAVs, the developed optimal coordination mitigates 
traffic jam propagation, leading to travel time savings of up to 40% and improvements in fuel economy of up 
to 55% over the non-coordinated scenario. The effectiveness of the proposed optimal coordination framework 
was assessed on a simplified highway corridor (length 2.5 km) with two on-ramps and one off-ramp. The 
optimal coordination framework was implemented and simulated for the corridor at 0% (baseline) and 100% 
(optimal) CAVs market penetration. By following the optimal control inputs, the vehicles followed smoother 
acceleration patterns and avoided stop-and-go driving commonly observed in the baseline scenarios when the 
on-ramp vehicles attempted to merge onto the main road.  

Optimal Coordination for a Real-World Corridor Segment (I75 Corridor) — Mixed 
Penetration of CAVs 

In a longer real-world corridor, at lower CAV penetration levels, the developed coordination framework still 
achieved significant overall corridor fuel consumption savings for a range of mixed traffic scenarios (all 
heavy-duty vehicles were assumed to be automated for all scenarios). For example, at 20% light-duty CAV 
penetration, a benefit of 4% was achieved. As can be seen in the figure below, the fuel savings trend increased 
steadily with increased light-duty CAV penetration when more than 10% of the vehicles on the road were 
CAVs, and reached a maximum of about 7% at full CAV penetration (i.e., 100% CAVs). 

 

Figure 12. Average fuel economy and travel time results for the simulated highway corridor (2.5 km). 
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Table 2. Market penetration rates considered for longer real-world corridor assessment. 

Scenario: Base Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

% Light-Duty CAVs 0 0 5 10 20 50 80 100 

% Heavy-Duty CAVs 0 100 100 100 100 100 100 100 

Figure 13. Fuel consumption results for longer real-world corridor assessment. 

Regional Level Strategies for CAV Impact Mitigation 

• CAVs Pillar modeling results from Bloomington- and Chicago-based studies have shown that fleets of 
shared, ride-hailing based (versus privately owned) automated vehicles have the potential to reduce 
zero occupancy miles, mitigating some of the increased VMT and energy consumption impacts due to 
certain CAVs technologies. In addition to the vehicle-level and corridor-level consumption and 
congestion reduction strategies discussed above, other promising regional-level mitigation strategies 
identified included low-cost TNC access to transit and zero occupancy vehicle pricing optimization.  

As discussed earlier, high levels of vehicle automation can possibly lead to elevated overall energy 
consumption within a region due to significantly elevated VMT and possibly more congestion due to the 
overall number of additional trips facilitated by automation. This section seeks to highlight some of the 
regional level strategies investigated to mitigate some of the less desirable aspects of certain future highly 
automated vehicle use cases. The study results shown below are not intended to cover all possible mitigation 
strategies, rather highlight some of the promising options uncovered and evaluated within these efforts. 

Impacts of Automated SAVs on Energy and VMT 

Given the dramatic impacts that privately owned automated vehicles were observed to produce, especially the 
possibility of increased energy use as well as significantly increased VMT and VHT, one additional possibility 
considered in this research is the use of shared automated vehicles (SAVs), i.e., automated vehicles operated 
by TNCs. A case study, highlighted in this document and discussed in much greater detail in the companion 
SMART Mobility Modeling Workflow Capstone Report, was performed using the POLARIS model of 
Chicago that, among other scenarios, investigated the impacts of ride-hailing versus privately owned fully 
automated vehicles. While only the highlights of the results are presented in this document, this work shows 
some important considerations and impacts related to ride-hailing and privately owned fleets of highly 
automated vehicles. Specifically, due to zero occupancy miles, privately owned automated vehicles are much 
less efficient, on an energy use per traveler mile basis, than shared fleets of automated vehicles.  
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Many of the relevant issues leading to this lack of efficiency can be observed in the figure below, which 
compares a scenario with high ride-hailing use and no private AVs to a scenario with high private AV 
ownership and low ride-hailing usage for the Chicago area. While both scenarios see significant use of shared 
vehicle assets (i.e., ride-hailing/SAV usage in the shared fleet case and intra-household AV sharing in the 
privately owned case), there are still significant advantages to be had through usage of ride-hail fleets of 
automated vehicles. ZOV trips for personally owned vehicles related to repositioning and other behaviors lead 
to a significant increase in overall travel, as these vehicles do not achieve the higher efficiencies associated 
with larger-scale ride-hailing SAV automation, which allows for more productive use of the vehicle assets 
(less empty travel). Compared with the Chicago metropolitan region baseline case for this study, a significant 
(52%) penetration of privately owned AVs would lead to a 42% increase in VMT, a 62% increase in VHT, and 
a 12% decrease in average vehicle travel speed. 

 
Figure 14. Private AV vs. shared AV million travel hours per hour. 

Low-Cost TNC Access to Transit 

This work investigated into the impacts of providing very low/no cost ride-hailing trips to public transit 
stops/terminals to help facilitate transit access for travelers. Utilizing Bloomington, Illinois and its 
metropolitan area, this study investigated the regional changes when ride-hailing drop-offs at bus stops were 
provided at zero cost. In this scenario, overall transit ridership increased by 11% with a resulting 1.4% 
decrease in overall VMT and a 1.1% decrease in overall fuel use, suggesting that providing low cost transit 
access (likely enabled by CAV technologies) can provide some regional benefits relative to overall energy use. 
Additionally, these near-free transit-access rides appear to offer some travelers in outlying regions increased 
access to transit, with additional benefits related to overall productivity and access to jobs. 

Zero Occupancy Vehicle Pricing 

Given that zero occupancy vehicle (ZOV) operation was found to be one of the primary drivers of the elevated 
VMT in several of the highly automated future scenarios investigated for this work, a strategy of pricing zero 
occupancy vehicle miles traveled was investigated as a possible lever to reduce some of the increased VMT. 
The study, again based in Bloomington, Il., showed that depending on the penetration of AVs, a $0.33/mile 
ZOV charge showed a very significant—approximately 25%—reduction in ZOV miles traveled for both high 
(65%) and low (37%) AV penetration scenarios run for the Bloomington study. This ZOV VMT reduction 
corresponds to an overall reduction in VMT of up to 4%. 

  

Shared AV Fleet Private AVs 
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1 Introduction 
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation 
(SMART) Mobility Consortium is a multi-year, multi-laboratory collaborative dedicated to further 
understanding the energy implications and opportunities of advanced mobility technologies and services. The 
SMART Mobility Consortium consists of five pillars of research: 

• Connected and Automated Vehicles (CAVs): Identifying the energy, technology, and usage 
implications of connectivity and automation and identifying efficient CAV solutions. 

• Mobility Decision Science (MDS): Understanding the human role in the mobility system, including 
travel decision-making and technology adoption in the context of future mobility. 

• Multi-Modal Freight (MMF): Evaluating the evolution of freight movement and understanding the 
impacts of new modes for long-distance goods transport and last-mile package delivery. 

• Urban Science (US): Understanding the linkages between transportation networks and the built 
environment and identifying the potential to enhance access to economic opportunity. 

• Advanced Fueling Infrastructure (AFI): Understanding the costs, benefits, and requirements for 
fueling/charging infrastructure to support energy-efficient future mobility systems. 

The SMART Mobility Consortium creates tools and generates knowledge about how future mobility systems 
may evolve and identifies ways to improve their mobility energy productivity (MEP).i The consortium also 
identifies R&D gaps that the Energy Efficient Mobility Systems (EEMS) Program may address through its 
advanced research portfolio and generates insights that will be shared with mobility stakeholders. 

1.1 Overview of Connected and Automated Vehicle Technologies, Use Cases, and 
External Influences 

The continued growth of CAV technologies is anticipated to significantly change the way vehicles move and 
the way travelers achieve mobility. This will have a significant impact on energy consumption as well as many 
other facets of transportation at scales ranging from the individual vehicle level to the system level. CAV 
technologies are unique in that they can positively and negatively impact efficiency (both energy efficiency 
and passenger/freight efficiency) as well as vehicle miles traveled (VMT) and related metrics. Additionally, 
due to interactions between connectivity/automation enabled technologies and the particular powertrain 
technology onto which it is applied, the benefits of a particular technology (CAV or powertrain) will increase 
or decrease due to synergies between the new operating profile and the specific powertrain under analysis. For 
example, the benefits of regenerative braking are decreased in an environment where most vehicle transients 
are removed through improved vehicle cooperation and profile smoothing. 

CAV technologies are highly diverse, and disaggregating this broad spectrum of technologies into specific 
system operating concepts is often helpful in framing a more detailed research and analysis discussion. Based 
on the discussion in a research report developed under the SMART Consortium,2 the following sub-sections 
define a limited number of discrete CAV concepts that represent a wide range of automation levels, 
connectivity and use cases. While not intended to be all-encompassing, the technologies and strategies 
discussed in the following sections will aid the reader in understanding the breadth and complexity of the 
connected and automated vehicle space.  

1.1.1 Vehicle Connectivity Only (Without Automation) 

Since connectivity features are generally independent, and their impacts are largely decoupled from each other, 
connectivity features can be treated as independent features that can be combined as desired. Within this 

                                                     
i MEP: A DOE-developed, multi-modal measure that quantifies the effectiveness of mobility in a region, while taking energy and 

affordability aspects into consideration. 
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discussion, connectivity may include vehicle-to-vehicle (V2V) communication, infrastructure-to-vehicle (I2V) 
communication, vehicle-to-infrastructure (V2I) communication, or generalized vehicle-to-anything (V2X) 
communication. Use cases include the following: 

• Cooperative collision warning systems (V2V, I2V) — These systems use wireless communication to 
enable vehicles to broadcast information about their motion to all other vehicles and vulnerable road 
users. Trajectory information and other vital information about vehicle size and class can be used to 
predict potential collisions and to issue warnings to drivers to help them avoid crashes, injury and loss 
of life. Since crashes are responsible for about a quarter of the congestion on U.S. roadways, 
reductions in crashes could also help reduce the frequency and severity of congestion as well as the 
related wasted energy.  

• V2V cooperative driving/maneuvering enhancements — One of the main triggers of traffic congestion 
on controlled access highways is lane changing maneuvers by drivers entering the highway from on-
ramps, changing lanes at lane reduction locations, or engaging in weaving maneuvers to gain an 
expected travel time advantage or to get to the exit lane at a destination. Lane-changing drivers and 
the drivers of the other vehicles in their immediate vicinity have primitive ways of communicating 
their intentions and preferences today (hand gestures or turn signals, which are not always used), but 
with V2V communications those intentions can be displayed directly on the instrument panels of other 
drivers, and it becomes possible to negotiate cooperative maneuvers earlier and more smoothly than 
today, reducing some of the congestion disturbances and facilitating more efficient operation. 

• V2I/I2V route planning, parking information and reservations (eco-trip planning and routing) — 
Drivers currently choose their routes based on limited knowledge about the road network and the 
traffic conditions between their origin and destination. More complete information about real-time 
traffic congestion, traffic signal phase and timing, and availability of parking can be provided using 
I2V communications so that drivers will be better able to avoid the worst traffic conditions, minimize 
their stops and idle times at red traffic signals, and find available parking spaces without excessive 
search time. With the addition of V2I communications, they can also request a reservation for a 
parking space based on a real-time anticipated arrival time to further reduce VMT waste in the search 
for parking spaces. 

• V2I/I2V based variable speed limit/advisory (VSL/VSA) — V2I/I2V technology makes highway and 
arterial corridor traffic speed control more convenient and efficient by providing speed limit and other 
advisory information to vehicles and drivers. Enabled by connectivity, the connected vehicles behave 
like moving sensors, which can greatly enhance the traffic detection of roadside sensors, and roadside 
decisions such as variable speed limits/variable speed advisories (VSL/VSA) from the TMC (Traffic 
Management Center) can be passed to vehicles for the drivers to follow. This is particularly effective 
for mobility and safety improvement if the downstream traffic is congested. 

• Local Signal Phase and Timing (SPaT) information to support eco-driving and eco-signal control — 
Traffic signals that broadcast their real-time SPaT information can help drivers save energy that would 
otherwise be wasted by excessive frequency and severity of stop-start cycles. Broadcasted SPaT data 
can be used by in-vehicle systems to display recommended speed changes, allowing drivers to get 
through a green signal before it turns red or to coast down to a slower speed approaching a red signal 
without stopping if that signal will soon be turning green. The V2I communications in the opposite 
direction can be used to generate signal priority requests or simply to inform the signal controller of 
the arrival of a vehicle that is waiting for a green phase (which could be provided with a minimum 
delay if other vehicles are not making a conflicting movement).  

1.1.2 Vehicle Automation 

These attributes are not generally independent because of their close coupling with each other, which makes it 
difficult to limit the dimensions of the alternatives that need to be considered. When several coupled variables 
influence the energy saving potential of an automated vehicle, it can be difficult to determine how much of that 
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energy saving is attributable to each variable. The primary relevant attributes of automated vehicles that need 
to be considered are: 

• Connected vs. unconnected (autonomous) implementation — This is one of the most important 
classification attributes for considering the energy impacts of any AV (automated vehicle) system, 
because the unconnected version of an AV could produce significant negative impacts while the 
connected version of the same AV could produce significant positive impacts. For example, the use of 
V2V information communicated from other vehicles makes it possible to reduce traffic flow 
disturbances and drive AVs closer together, with smoother speed profiles and reduced aerodynamic 
drag. Without V2V information, the gaps between AVs will likely have to be larger than current gaps, 
reducing roadway capacity, amplifying disturbances, and resulting in excess acceleration and braking 
cycles.  

• SAE levels of automation: Levels 0–5 (6 levels) — The dominant characteristic used to distinguish 
among different automation systems is the level of automation, as defined by SAE J3016.3 These 
levels specify the functionality that is implemented by the driving automation system and the 
functionality that is retained by the driver, regardless of the specific technological implementations 
that different manufacturers may choose (such as types of sensors or actuators). Simplified definitions 
are provided below:  

o Level 0: No Driving Automation — Safety warning or intermittent control intervention 
systems could be implemented at this level, since they do not change the driver’s role in any 
meaningful way. 

o Level 1: Driver Assistance — Either lateral or longitudinal control of the vehicle is automated 
under some conditions (within a specified operational design domain or ODD), while the 
driver performs the other control functions and continuously monitors the driving 
environment for hazards. (Example: adaptive cruise control.4) 

o Level 2: Partial Automation — Both lateral and longitudinal control of the vehicle is 
automated within a specified ODD, while the driver continuously monitors the driving 
environment for hazards. (Examples: current highway driving systems offered by Tesla,5 
Mercedes6, Volvo7, and others.) 

o Level 3: Conditional Automation — Both lateral and longitudinal control of the vehicle is 
automated within a specified ODD without continuous driver monitoring but depends on the 
driver to provide a “fallback” intervention on short notice to maintain safety when the system 
requests help in managing a hazardous situation that it cannot handle itself. (Example: Audi 
in non-U.S. market).8) 

o Level 4: High Automation (Select Driving Tasks) — The complete dynamic driving task is 
automated within a specified ODD, with enough fallback capability engineered into the 
system that it can guarantee transitioning the vehicle to a minimal risk condition regardless of 
the hazard encountered. (Examples: automated people movers on segregated guideways9, 
prototype driverless low-speed shuttle vehicles10, heavy trucks in fenced-off mines11, and 
many vehicles that developers are attempting to develop that will provide driverless taxi-like 
services within highly constrained ODDs.) 

o Level 5: High Automation (All Tasks) — Similar to Level 4 systems, but Level 5 CAV 
systems are able to perform all dynamic driving tasks in the full range of roadway, traffic, 
weather and environmental conditions in which humans are able to drive. 
Note: The definitions of automation levels provided above focus on the role of the driver, 
but the developers of more highly automated systems are also defining roles for remote 
supervisors or dispatchers who could intervene to assist some Level 4 vehicles without 
drivers when they get in trouble. 
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• Operational design domain (ODD) — An ODD is the specific conditions under which a given driving 
automation system is designed to function, including driving modes. An ODD may include 
geographic, roadway, environmental, traffic, speed and/or temporal limitations. The driving modes 
could include fully access-controlled highways in either low-speed or high-speed driving conditions, 
or low-speed urban driving in sites that are protected from intrusions by most other vehicles. It is 
essential for the designer of the system (and the assessor of its impacts) to precisely specify the ODD. 
Representative examples of the attributes are provided below, but there is no expectation that these 
would be modeled explicitly. Rather, they can be used to support estimates of the percentage of all 
driving that could be done by any specific driving automation system to be studied. ODD attributes to 
be considered for an automation system include: 

o Roadway type (expressway/freeway,ii rural highway, suburban arterials, urban streets, 
suburban residential streets, pedestrian zones, bicycle paths, segregated paths, etc.) 

o Traffic conditions/speed range (freeway at free flow, congested freeway, high-speed arterial, 
medium speed arterial, low-speed city streets, low-speed residential streets, walking/running 
speed with pedestrians, low-speed parking lots, etc.)  

o Geographical boundaries (city neighborhood, college campus, office park, retirement 
community, resort community, public park, etc.) 

o Weather and lighting constraints (rain, snow, fog, dust, wind, low sun angles, nighttime 
darkness, etc.) 

o Roadway anomalies (work zones, emergency responders, erratic drivers, animals, road debris, 
etc.) 

o Supporting infrastructure (pavement markings, signage, street lighting, physical segregation 
by curbs or barriers, cooperative traffic signal control, etc.) 

1.1.2.1 Confusion in Concepts Related to Connected and Automated Vehicles versus “Autonomous” 
Vehicles 

SAE J3016 includes detailed explanations about why terms such as “driverless,” “self-driving,” and 
“autonomous” should generally be avoided, because of the confusion that they create when they are applied 
indiscriminately to wide ranges of driving automation systems. Most of these systems are indeed NOT 
“driverless,” but they change the role of the driver. There is one limited class of vehicle, referred to as 
“automated driving system (ADS)-dedicated vehicles,” that is designed to operate without any in-vehicle 
driver controls, and those are the only ones that should be considered “driverless.” Problems with 
“autonomous” and “autonomy” are even more severe and widespread because these terms have been used as 
synonyms for “automated” and “automation” respectively, but their meanings are in fact very different. 
“Autonomy” refers to independence and self-sufficiency rather than replacing humans, and “autonomous” is a 
modifier that should be applied only to the limited subset of automation systems that are designed to operate 
self-sufficiently, without benefit of V2V or V2I communication or cooperation. “Automation” refers to the 
substitution of electronic and/or mechanical systems for human labor, which is indeed the central concept most 
of the time. With this distinction in mind, many of the technologies discussed in this report should be 
considered connected and automated vehicles (CAVs) since they typically rely on both automated controls of 
some degree as well as information provided via connectivity. 

  

                                                     
ii High-speed controlled access highways are called by different names in different parts of the U.S. This report will use 

“freeway” to refer to them. 
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1.1.3 CAV Emerging Business Models and Utilization Scenarios 

Descriptors of vehicle operations are largely decoupled from the previous descriptors of connectivity and 
automation; thus different levels of connectivity and automation can be applied to vehicles characterized by the 
business/utilization scenarios discussed below with relatively limited consideration of coupling effects. 

• Private use — Conventional, privately owned and operated vehicles. 
• Car-share — In this vehicle business model, drivers are able to use a pool of vehicles a short distance 

from their home or office for limited-duration trips. Unlike traditional car rental companies that charge 
by the day and typically require substantial transaction time, this approach is designed for rapid, 
seamless access with use times as small as a few minutes. One-way car-sharing adds flexibility by 
freeing drivers from having to return cars to the same location; a variant on this idea is free-floating 
car-sharing, in which vehicles can be left in any legal parking space anywhere within a defined region.  

• Ride-sourcing — Unlike car-sharing, ride-sourcing or ride-hailing provides “drivers” and can offer 
door-to-door service. Recent innovation has allowed anyone with a smartphone app to hail a ride and 
anyone with a vehicle to become a driver; the ride-matching process has become an automated process 
facilitated by advances in routing technology. Pooled ride-hailing trips are also becoming a popular 
way to save consumers money while enhancing vehicle utilization, and are possible because of 
sophisticated routing algorithms. Companies providing these services are now referred to as 
transportation network companies (TNCs). 

• Public transit-like — Traditional public transit operates fleets of dedicated large-capacity vehicles, 
sometimes in dedicated corridors (e.g., bus lanes, rails) according to a predefined schedule. 
Combining this type of service with TNC approaches and low-speed automated shuttles could allow 
for synchronization of first- and last-mile transport within transit corridors, either with the same or 
different vehicles, and provide service to routes not typically served by public transit. Schedule 
flexibility may also become possible if the transit service can coordinate the itineraries of all riders, so 
that vehicles leave right after customers arrive, rather than at predefined times. 

• Private goods delivery — On-demand transport of goods looks much like the transport of people using 
ride-hailing. These are to be distinguished from technology designed to operate exclusively on 
sidewalks, which falls outside of the scope of current research discussed in this report. In addition to 
traditional take-out food delivery services, TNCs are now embracing this business model and are also 
expanding delivery to other items, such as groceries. Brick-and-mortar stores as well as online 
retailers now offer delivery of any item in stock within a few hours, and many companies are 
exploring non-traditional vehicles (e.g., aerial drones) to enhance efficiency.12 

• Common carrier goods delivery — Traditional and express mail delivery (U.S. Postal Service, UPS, 
FedEx, etc.) is now being complemented by new entrants offering faster, more flexible services, 
perhaps most visibly led by Amazon. The line between private and common carrier goods delivery is 
blurring, with more companies offering rapid delivery services as commerce moves online. 

1.1.4 External Influences (Infrastructure and Transportation Policies) 

CAV systems do not often operate in isolation; rather, they rely on roadway infrastructure as their runway, and 
their usage is governed by transportation policies created at the local, state, or federal level. These external 
factors can have significant influence on how CAV systems operate and on their contributions toward 
transportation energy consumption (or savings).  

• Roadway infrastructure changes that could influence CAV usage include:  

o Construction of new roadway infrastructure in established corridors or as a way of stimulating 
development in new corridors, with a specific intent to support CAV features or operational 
constraints 
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o Segregation of roadway infrastructure for connected vs. unconnected or automated vs. 
manually driven or freight vs. passenger vehicles, simplifying the operating environment for 
CAV systems 

o Widespread implementation of I2V and V2I communication systems throughout the roadway 
infrastructure, supporting CAV applications 

o Upgrades to roadway infrastructure signage, markings and geometry to make roads friendlier 
for automated vehicle operations and to enable higher levels of automation to be deployed 
earlier 

• Transportation policy changes that could interact with CAV system usage include:  
o Roadway usage pricing based on measures other than fuel consumption, such as mileage-

based fees or peak-period congestion charges 
o Changes in the gasoline tax at federal and/or state levels 
o Pricing or traffic priority policies to encourage shared vehicle occupancy 
o Restrictions on availability of parking or pricing mechanisms that influence parking location 
o Insurance pricing regulations that consider technologies such as collision warning and 

avoidance or automated driving systems 
o Federal Motor Vehicle Safety Standards (FMVSS) or other regulations specific to higher 

levels of automation in new vehicles 
o Incorporation of CAV features into fuel economy standards  

 

1.2 Overview of Preliminary CAV Bounding Study Analysis and Identified Research 
Gaps 

Before creating the DOE SMART research consortium, DOE performed a study to address the ranges (bounds) 
of potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT) 
and vehicle fuel efficiency.13 The report from this study (generally referred to as the “Bounding Study”) was 
instrumental in setting the foundation for subsequent SMART consortium efforts, as well as identifying 
research gaps to be assessed in greater detail by the consortium, and thus provides a starting point for the 
consortium’s research goals and objectives. 

The Bounding Study, based on a review and synthesis of existing CAV literature, made it clear that there is 
enormous uncertainty about the potential long-term impacts if fully automated and highly connected vehicles 
replace nearly all light-duty passenger vehicles in the United States (the Bounding Study used 100% 
penetration of new technologies for each assessment case). Scenarios representing lower and upper bounds of 
changes in fuel use for a national fleet of conventional powertrain vehicles were assessed, with projected 
energy use reductions of as much as 60% of current U.S. light-duty vehicle (LDV) fuel consumption to an 
increase as high as two times (200%) the current level of U.S. LDV fuel consumption. The wide range between 
the lower and upper bounds of future vehicle energy use reflects the large uncertainties about ways that CAVs 
can potentially influence vehicle efficiency and use through changes in vehicle design, purpose of use, driving, 
travel behavior, management and policies. In addition, significant uncertainty exists about future CAV 
technology adoption rates. Use of alternative powertrain technologies such as vehicle electrification will be 
expected to reduce both the upper and lower bounds of fuel consumption for the scenarios examined in the 
Bounding Study. However, the relative impact of different CAV features on advanced powertrains is expected 
to be different from the corresponding impact on conventional vehicles, so future work should more rigorously 
explore the combined impacts of advanced powertrain and CAV technologies. 
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1.2.1 Bounding Study — CAV Impact Factors Affecting Light-Duty National-Level Fuel Consumption 

Generally, the factors impacting national-level fuel consumption as identified in the bounding report can be 
grouped into three categories: those that influence: (1) vehicle fuel consumption per mile, (2) travel demand or 
VMT, and (3) CAV adoption. Of the fuel efficiency impacts considered in the bounding study, 
vehicle/powertrain resizing offered the largest potential decrease in energy consumption per mile, albeit based 
on assumptions of radical downsizing. The potential reduction in fuel consumption by changing drive profiles 
and smoothing traffic flow is also large. Most of the vehicle-centric factors identified and considered in the 
bounding study can potentially decrease fuel consumption per mile with the exception of higher speed travel.  

The potential influence of CAVs on travel demand was found to be quite large, with possible increases due to 
easier travel being the largest component. Repositioning of empty CAVs could increase VMT, but few 
estimates of this increase were found in the literature, and these estimates were small (a few percent). 
Increased ride-pooling could decrease VMT, but adoption of ridesharing is very uncertain.  

While current driver assistance technology is being adopted at some level, the future adoption levels of 
advanced CAV technologies are highly uncertain. Costs for such technologies are currently quite high 
compared to the cost of a conventional vehicle, but are decreasing rapidly with technology development and 
are expected to decrease much more if produced at large volumes. However, consumer attitudes and 
preferences for CAVs are not well understood.  

1.2.2 Bounding Study Identified Uncertainties and Research Gaps  

As discussed above, the most significant drivers of national-level LD fuel use changes were identified for the 
three factors examined in the Bounding Study. In addition, important data and knowledge gaps for each of 
these factors were also assessed and prioritized. Based on each factor’s importance to estimating future energy 
impacts and the tractability of addressing the knowledge gaps, the following were identified as priorities. 

1.2.2.1 Travel Demand Impact 

Analyzing potential changes in travel demand, vehicle use, mode choice, etc., in large-scale simulations with 
CAVs, and simulating traveler behaviors in appropriate contexts, such as large metropolitan areas or corridors, 
is necessary to analyze how travel behavior and vehicle use might change with CAVs in different conditions 
and with new operating capabilities (i.e., zero occupancy vehicles, ZOVs). Ways to expand the results of these 
simulations to the national scale will also be needed, since high-fidelity national level simulations will not be 
computationally feasible. 

1.2.2.2 CAV Adoption 

The impact of CAVs will clearly depend on how many are on the road. Consumer choice models need to be 
extended to include choices such as whether to buy a vehicle or use an individual vehicle sharing service or 
ride-hailing, and whether to buy a vehicle with CAV capabilities as well as other attributes (e.g., powertrain 
type). Results of projected adoption levels will be needed in travel behavior simulations and energy analyses. 
More data on consumer preferences for CAV features will be needed. 

1.2.2.3 Vehicle Fuel Efficiency Impacts and Redesign 

While a number of vehicle-level studies have provided important results on potential influences of CAV 
technologies on vehicle efficiency, much work remains in analyzing efficiency effects under a wider range of 
conditions and for more powertrain types. In the long term, because CAVs may be designed much differently 
from current LDVs with drastic downsizing, less crash protection, different performance characteristics, and 
other changes, energy consumption needs to be analyzed for a wide range of vehicle configurations. Methods 
will be needed to map the vehicle-level analysis results to the entire U.S. on-road fleet under relevant 
conditions. 

1.2.2.4 Heavy-Duty CAVs 
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For a range of CAV capabilities, potential adoption levels and impacts on operation and the resulting energy 
use for heavy-duty vehicles need to be assessed. In particular, the Bounding Study identified that more work is 
needed to estimate the fraction of VMT that could be driven by long-haul freight trucks in platoons and the 
potential energy savings of the vehicles operating within the platoon — something that both the SMART 
Mobility Consortium Multi-Modal/Freight Pillar as well as the SMART Mobility Consortium CAVs Pillar 
subsequently investigated in their respective research plans. 

 

1.3 CAV Pillar Research Focus Areas 
Through control and optimization, CAV technologies offer the potential for improving vehicle efficiency and 
possibly reducing overall transportation energy usage from the vehicle level to the corridor level and the 
regional level. Furthermore, connectivity and automation may also promote further vehicle electrification due 
to more convenient, transparent and informed BEV charging and usage. However, increased vehicle and 
transportation efficiency are at risk of being negated by an increase in vehicle miles traveled (VMT) due to due 
to possible rebound effects (driving more because connectivity and/or automation makes it easier and/or 
cheaper) as well as new vehicle usage cases. Therefore, a systems-centric research effort is necessary to better 
identify energy saving opportunities while identifying strategies to discourage detrimental operations to the 
largest degree possible.  

This work seeks to study CAV technologies using reliable models, analytical methods and experimentation to 
predict the greenhouse gas (GHG)/energy/cost implications of CAVs and their associated infrastructure 
components across a range of technology development, market penetration and traveler behavior scenarios. 
More specifically, this work seeks to address three primary research questions:  

1) How will connected and automated vehicles and systems behave in the real world? 
2) What are the GHG, energy, technology and usage implications of connectivity, automation, and the 

combination of both technologies?  
3) What is the best way to harness CAVs for reduced energy use and improved mobility in transportation?  

 

1.4 Overview of Capstone Report Layout and Findings 
The remainder of this work seeks to describe the approaches, findings, and relevance of the research efforts 
associated with the CAVs Pillar of DOE’s SMART Mobility research consortium: 

• Section 2 National-Level Connected and Automated Vehicle Impact Synthesis provides an overview 
of a national-level CAV outcomes and scenario synthesis report to reassess and expand the 
preliminary analysis of the Bounding Study regarding the impacts of CAVs, utilizing the SMART 
consortium’s and others’ recent research findings related to connected and automated vehicles.  

• Section 3 Research Findings discusses the focus areas and research results of these efforts. The four 
primary research thrusts for this work are: 1) data-driven experimentation and validation of CAVs 
concepts (Section 3.1), 2) adapting simulation methods and models to more accurately and robustly 
incorporate CAV technologies and behaviors (Section 3.2), 3) corridor-to-regional-to-national level 
impacts and sensitivities of connectivity and automation (Section 3.3), and 4) harnessing enhanced 
connectivity and automation enabled controls for improved energy outcomes and coordination 
(Section 3.4). 
While thrusts 3 and 4 are closely related, research thrust 3 specifically focuses on understanding what 
happens when CAV technologies are introduced at a range of scales (e.g., vehicle, corridor, region), 
while thrust 4 focuses on enhanced controls and methodologies to leverage the new information and 
controllability provided by CAV technologies to improve efficiency and congestion.  
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• Section 5 Summary and Conclusions synthesizes the research findings from the earlier sections and 
provides high-level answers to the research questions proposed above. Research and data gaps 
identified though the research performed in this works are also identified and prioritized.  
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2 National-Level Connected and Automated Vehicle 
Impact Synthesis Study 

As discussed in the Introduction (Section 1.2), a high-level national-scale analysis of the potential impacts of 
CAVs, the Bounding Study, was published in 2016.14 That analysis found that energy consumed by light-duty 
vehicles may decrease by 60% or increase by 200% if there is 100% penetration of CAV technologies. The 
report also identified key questions for future research. In 2019, the original Bounding Study was revisited 
using an improved methodology and updated research from the past three years, from throughout the SMART 
Mobility Consortium and from other researchers. Key findings from the updated CAVs study, the Synthesis 
Study, are the following: 

• On average, energy use increases by approximately 10%, but with a wide distribution of possible 
cases.  

• 60% of cases lead to an increase in energy consumption, and 90% of cases are between -40% and 
+70% energy change.  

• 90% of scenarios show an increase in VMT, with a mean increase of 40%, while the mean 
improvement in fuel economy is a 20% reduction in fuel consumption.  

• The top factors leading to an increase in energy usage are additional travel as it becomes easier and 
cheaper, repositioning of empty vehicles, and on-vehicle electronics power draw, while the largest 
potential levers for reducing fuel consumption are vehicle rightsizing, ride-pooling, and drive 
smoothing. 

Like its predecessor, the CAVs Synthesis Study continues to highlight factors that change travel demand or 
change vehicle operational efficiency, but it provides a more complex analysis than a simple bound on the 
change in energy consumption. On the travel demand side, the factors are grouped into three major classes of 
changes in LDV travel patterns: (1) changes in personal mobility, where people make trips that they would not 
have made in the absence of CAVs, (2) changes in on-road travel, where VMT may change but individuals’ 
origins and destinations remain the same, and (3) changes in commercial-based household travel activity, for 
trips that are directly impacted by the advent of CAV technologies. These factors were explored to ultimately 
answer one question: Will connected and automated cars be driven more (or less) than today’s vehicles? For 
changes in vehicle efficiency, three major classes of changes due to CAVs are: (1) how the vehicle operates, 
(2) how the vehicle is electronically connected to external nodes, and (3) how a connected and automated 
vehicle is designed. The factors described here address a second question: Will connected and automated cars 
be more (or less) efficient than today’s vehicles?  

The factors in each class are described in more detail below. Each factor is informed by the latest available 
research from the SMART Mobility Consortium and elsewhere and is quantified as the percentage change 
compared with a world without automated vehicles. This includes direct changes (for example, improvements 
to fuel economy from more steady acceleration) and induced changes (such as changes in traveler behavior, 
including changes in commuting patterns and ride-pooling, because CAVs are cheaper to operate than human-
driven vehicles). In the CAVs Synthesis Study, both direct and induced changes are attributed to connectivity 
and automation, as they are enabled by CAV technologies. Figure 2-1 shows the twenty-four factors that the 
CAVs Synthesis Study considered when calculating the impact of CAV technologies on national-scale VMT 
and energy consumption. The text that follows describes each factor and how it may change with CAV 
adoption. Note that these narratives are representative of specific scenarios, and individual factors may actually 
change in the opposite direction of the most commonly presented narrative. 
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Figure 2-1. Factors leading to demand and efficiency changes for light-duty CAVs, including notation of which factors were 

not included in the 2016 CAVs Bounding Study. 

Changes in personal mobility: 
• Shifting travel patterns due to sprawl is frequently cited as one of the major levers for changes in 

VMT due to connected and automated vehicles, as automated vehicles may make traveling much 
easier. If the burden of travel is reduced, perhaps people will live further away from their jobs and 
urban areas, leading to increases in VMT. 

• At the same time, automated vehicles may minimize sprawl by making urban travel less burdensome 
and more attractive. Shifting travel patterns due to increased urbanization may arise due to easier 
driving and parking of CAVs, along with opportunities for transportation as a service to replace 
personally owned vehicles.  

• Currently underserved populations (e.g., the elderly, disabled, poor, young) may greatly increase their 
travel if automated vehicle travel is cheaper or easier than today’s available transportation options. 

• Leisure travel for shopping, entertainment, and dining may increase due to minimized travel costs and 
the reduced burden of travel. 

Changes in on-road travel: 
• Mode shift to and from alternative modes of transportation (e.g., public transit, biking, airplanes) was 

found to be a relatively small component, but will still be included in this study. 
• For connected vehicles, knowledge of traffic conditions could lead to eco-routing to minimize fuel use 

by avoiding congested areas. Eco-routing involves taking an alternate route to minimize fuel 
consumption, though potentially at the expense of additional VMT. Rerouting could potentially 
increase fuel consumption if the traveler views time as more important than fuel use. 

• Ride-pooling is defined as multiple passengers from nearby locations traveling the same route in the 
same vehicle for the majority of their travel. The size of changes in VMT from ride-pooling will be 
notably different depending on ownership paradigms.  

• Empty miles traveled will occur when a vehicle is traveling from the passenger’s final destination to 
the next location for the vehicle, be it a personal garage, a parking space, or, for shared vehicles, to 
pick up the next passenger. 

• Changes in when and how fueling trips are made for self-driving vehicles could occur if passengers 
expect vehicles to refuel or recharge when they are not in the vehicle. Since a majority of refueling 
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trips today are pass-by trips, this change in fueling trips could result in an increase in vehicle miles 
traveled.  

Changes in commercially linked household travel: 
• The energy use and emissions from vehicles searching for parking can be high in urban centers. 

CAVs may have foreknowledge of the availability of parking, or eliminate the need for parking in 
congested areas altogether. 

• CAV technologies may cause reduced or increased shopping trips. Shopping trips make up nearly 
15% of household travel, according to the most recent National Household Travel Survey.15 In a 
highly automated world, automated package delivery may be cost effective and convenient, reducing 
household vehicle travel while perhaps increasing delivery trips by other vehicles outside of the light-
duty vehicle segment.  

• In sponsored travel, a company will pay for some portion of a trip, either to present advertising to the 
rider or to bring customers to a specific shopping or tourist destination. This reduction in cost may add 
passenger travel. 

Changes in operational vehicle fuel consumption: 
• Reduced congestion because of fewer accidents and improved vehicle operation will help traffic flow 

and may impact energy consumption, but may also lead to increased travel. 
• Improved vehicle safety is potentially one of the large benefits of vehicle automation. With reduced 

risk of accidents, vehicles can potentially travel faster than typical highway speeds of today. 

• Drive smoothing due to automated vehicles can save energy. This factor includes both conventional 
and cooperative adaptive cruise control systems. Automated vehicles will be able to drive more 
smoothly than human drivers, yielding more efficient acceleration and deceleration profiles, though 
interaction with other vehicles may reduce or negate vehicle- and system-level benefits. Additionally, 
with knowledge of upcoming energy needs beyond instantaneous power loads, engines can be 
optimized to operate in their most efficient modes, as is being studied in ARPA-E’s NEXTCAR 
projects16, which aim to reduce energy consumption by 20% or more. 

Changes in energy consumption caused through connectivity: 
• Platooning of close-following vehicles can reduce aerodynamic drag and minimize fuel consumption. 
• Intersection management is related to drive smoothing but focuses solely on improving the efficiency 

of the acceleration and deceleration inherent to signalized intersections and highway on-ramps.  
• Energy consumption for telecommunications and data processing can potentially be large. This energy 

is supplied by electricity, rather than motor fuel, but does scale with vehicle demand, and is treated 
similarly in this analysis.  

Changes in vehicle design: 
• The power draw of automated vehicle machinery and electronics will add an accessory load that 

hinders fuel economy. The accessory load from running dedicated computers and sensors for 
automated driving can potentially increase energy consumption by a third. 

• Test vehicles currently have large sensor equipment which increases the aerodynamic drag of CAVs. 
Similarly, CAVs may be able to be designed in a way to minimize drag forces, for example, by 
removing side-view mirrors.  

• CAVs have the opportunity for engine downsizing. CAVs will have less need for high rates of 
acceleration, so vehicle performance can be de-emphasized in favor of fuel economy.  

• Vehicle resizing was previously identified as having a significant impact on total energy consumption. 
One common narrative is that since most travel is solo travel, very small cars can be used instead of 
larger cars to improve fuel economy.  
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• For fully driverless CAVs, features such as steering wheels can be removed from the car, yielding fuel 
economy improvements from vehicle lightweighting. If CAVs are considered safe enough, and there is 
100% penetration of CAVs, safety features such as airbags and reinforced frames can possibly be 
removed from vehicles as well. 

• This analysis also explored the possibility of larger vehicles with increased seating capacity or a more 
feature-rich interior.  

In the CAVs Synthesis Study, it is assumed that the technology has 100% market penetration. The change in 
total VMT is calculated by taking the multiplicative product of the changes due to each of the 12 travel 
demand factors, and the change in average vehicle fuel consumption is the product of the changes due to the 12 
energy efficiency factors. The total change in energy due to light-duty CAVs is the product of all 24 factors. 
The values for each of these factors were derived from a thorough literature review, exploring over 500 peer-
reviewed journal articles, technical reports, white papers, press releases, and other literature. Rather than using 
a single value to describe each factor, as in the 2016 CAVs Bounding Study, the CAVs Synthesis Study 
compiles results from multiple relevant studies to generate triangular distributions for each factor and uses 
Monte Carlo simulations to quantify changes in total energy consumption and VMT. The upper and lower 
bounds of each distribution are simply the largest and smallest values from the literature for each of the factors. 
The peak of the triangular distribution for each factor is generated by a weighted average of the total change in 
energy consumption or VMT due to that factor, as identified in the literature, giving more weight to more 
rigorous and analytical research and less weight to studies where assumptions and methodology were unclear. 
Using a triangular distribution includes all scenarios relevant to estimating changes due to CAVs, while not 
giving undue weight to extreme values as would happen with a uniform distribution.  

The six-step calculation methodology is summarized in Figure 2-2, where each step of the quantification is 
color-coded. In this figure, the red triangles represent sample triangular distributions, green dots represent 
single values selected at random from each triangular distribution for each factor, purple arrows show 
adjustments made due to interactions across factors, and the orange dot shows total changes across all factors 
for a single Monte Carlo simulation. Thousands of simulations are aggregated, resulting in the histograms for 
energy and VMT shown in blue. 
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Figure 2-2. Analytical framework for CAVs Synthesis Study. 

Within each iteration of the Monte Carlo simulation, values are randomly selected for each factor from its 
respective triangular distribution. Using a multiplicative product of the different factors to calculate total 
changes in VMT and energy consumption is, strictly speaking, only correct if each factor is independent from 
each other factor. Since these factors are intertwined, each factor is adjusted based upon the values of the other 
factors to account for interdependencies. For example, it is perhaps infeasible for a vehicle to be drastically 
downsized if it is going to be used for ride-pooling. Therefore, if a simulation calls for a high degree of pooled 
rides, the value for vehicle resizing will be adjusted. Similarly, if a simulation assumes major vehicle 
downsizing, then ride-pooling will be minimized.  

Vehicles have different travel behaviors and different fuel economies on different road types, and each of these 
factors may have different impacts on different road types. For instance, platooning and high-speed travel are 
relevant factors for free-flow highway driving, while efficient parking is relevant for low-speed, congested city 
driving. Therefore each Monte Carlo simulation treats these road types separately, partitioning travel into city 
travel and highway travel, and further partitioning these trips into peak (i.e., congested) and non-peak (i.e., 
free-flow) travel, as was done in the original CAVs Bounding Study. In this analysis, each factor has a 
triangular distribution for each of the four road types. Fifty-seven percent of baseline travel is assumed to be 
city travel, matching the mix used by the U.S. Environmental Protection Agency (EPA) for calculating vehicle 
fuel economy, and 35% of all travel is assumed to be at peak travel times, using results from Chen et al. 17 
Finally, VMT and energy consumption across road types are aggregated to find national-scale impacts of CAV 
technologies. 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

15 

Figure 2-3 shows the ranges from the literature of the total changes in travel demand and vehicle fuel 
efficiency for each of the 24 factors, across all road types. The lowest and highest values from the literature are 
the bottom and top of each bar, respectively. Within the bar there are two markers. The horizontal line 
represents the peak of the triangular distribution, determined through weighting each value found in the 
literature. The small X on each bar represents the mean value when pulling a number from this distribution.  
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Figure 2-3. Literature results of potential changes in different factors impacting CAV travel demand and fuel consumption 

rates. 
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Figure 2-3 shows that the top factors leading to an increase in energy usage are induced travel due to easier and 
cheaper travel (both additional travel by today’s travelers and new travel by the currently underserved), 
repositioning of empty vehicles, and on-vehicle electronics power draw, while the largest potential levers for 
reducing fuel consumption are vehicle rightsizing, pooled ride-hailing, and drive smoothing. No single factor 
is estimated to change energy consumption by more than a factor of two, though 9 of 24 factors are estimated 
to change total energy consumption by more than 10%. Factors such as ride-pooling have large variations due 
to considering different scenarios with widely different futures, with most of the highest potential for VMT 
reductions coming from scenarios with centrally owned vehicle fleets. Other factors have a large range of 
potential outcomes within the same scenarios, such as electronics power draw, with considerable uncertainty in 
the size of typical auxiliary electrical loads for CAV hardware.  

Figure 2-4 shows histograms representing the distributions for changes in VMT, changes in fuel consumption 
rate, and changes in total energy consumption for 100,000 simulations. (Note that the total energy distribution 
is not simply the product of the travel demand and fuel consumption distributions, as these factors are adjusted 
within each simulation.) The average change for these metrics across all 100,000 simulations is a 40% increase 
in VMT, a 10% decrease in the fuel consumption rate, and a 10% increase in total energy consumption, though 
these distributions have very long tails. While in general travel increases and fuel consumption decreases, in 
10% of the scenarios total travel decreases, and in 10% the fuel consumption rate increases. The minimum and 
maximum values are far removed from the majority of all simulations, as can be seen in the figures above. 

Results from this project show that while the overall bounds describing the maximum and minimum energy 
consumption are driven by outliers for each factor, allowing for uncertainty in the calculations will lead to 
much more modest impacts. The previous CAVs Bounding Study noted the potential for fuel economy to 
increase fuel consumption by 200% or decrease it by 60%. This highlighted the potential uncertainty in energy 
consumption when many factors work in concert with each other. However, this range was driven by unlikely 
outlier points and not representative of any plausible scenario. Reproducing this methodology using the 
expanded the set of explored factors and new literature from the last three years yields expanded bounds of -
96% to +1500%. It should be noted that these values are the extremes, which by definition have an 
infinitesimal probability. As can be seen in the distributions shown in Figure 2-4, these bounds are well outside 
the ranges where combinations of factors are remotely probable, hence it is inappropriate to use these bounds 
to estimate VMT, fuel economy, or total energy consumption.  

 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

18 

 
Figure 2-4. Histograms for potential changes in VMT, fuel consumption rate, and energy consumption due to CAV 

technologies. 
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The broad distributions in Figure 2-4 arise from many different possible futures. The CAVs Synthesis Study 
explored specific scenarios to determine factors that drive changes in energy consumption and VMT. For 
example, the CAVs Synthesis Study examined two scenarios related to vehicle ownership. One of the 
prevailing themes discussed in white papers describing new mobility is the possibility of wholesale changes in 
vehicle ownership.18 The general idea is that if there are no drivers to be paid, fleet-owned vehicles used for 
ride-hailing can become incredibly inexpensive on a per-mile basis compared to the status quo. The first of the 
ownership scenarios generates triangular distributions for each factor based on a down-selection of the 
literature, using results for a fleet of vehicles that are essentially entirely privately owned, as in today's 
ownership paradigm. The second ownership scenario is one in which vehicles are almost entirely fleet-owned, 
and operations are entirely fleet-managed. Figure 2-5 and Figure 2-6 show distributions for VMT, fuel 
efficiency, and fleet-wide energy consumption for these two scenarios. 

  
Figure 2-5. Histograms for potential changes in VMT, fuel consumption rate, and energy consumption due to CAV 

technologies; privately owned vehicle scenario. 

 

 
Figure 2-6. Histograms for potential changes in VMT, fuel consumption rate, and energy consumption due to CAV 

technologies; fleet-owned vehicle scenario. 

These figures show that the total energy consumption is higher in the privately owned scenarios, due to relative 
increases in both travel demand and fuel consumption rates. Total fuel consumption increases by 5% in the 
fleet-owned scenario and by 30% in the privately owned scenario. The average VMT increases by 40% in the 
fleet-owned scenario and by nearly 60% in the privately owned scenario. The privately owned scenario has a 
higher overall VMT than the fleet-owned scenario due to a much lower incidence of ride-pooling. Vehicle 
efficiency is improved in the fleet-owned scenario because vehicle rightsizing is more prominent in that 
scenario. Most of the other individual factors have similar results in both of the scenarios. Notably, empty 
VMT is similar in the two scenarios, though with different interpretations: In the privately owned scenario, this 
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describes vehicles returning to their homes to wait for their owners, while in the fleet-owned scenario, 
deadheading represents vehicles traveling to their next rider.  

In summary, the CAVs Synthesis Study builds upon the previous CAVs Bounding Study by incorporating a 
larger pool of research, especially results found through the SMART Mobility Consortium, and by improving 
methodology to allow for distributions of each factor and more thorough scenario analysis. On average, this 
analysis finds that light-duty energy consumption increases by approximately 10% due to CAV technologies, 
and 90% of simulations are within the range of -40% to +70%. The top factors leading to increases in energy 
usage are induced travel from easier and cheaper travel, repositioning of empty vehicles, and on-vehicle 
electronics power draw, while the largest potential levers for reducing fuel consumption are vehicle 
rightsizing, ride-pooling, and drive smoothing. 
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3 Research Findings 
Building upon the research questions and focus areas described in the introduction, this section provides 
insights and results from across the various projects and themes investigated in the SMART Consortium CAV 
Pillar’s research efforts.  

Section 3.1 discusses the wide-ranging experimental research undertaken to answer the question “How will 
connected and automated vehicles and systems behave in the real world?” Experimental results and 
insights span both heavy-duty and light-duty vehicles and employ a mix of laboratory, track, in-field, and 
large-scale fleet data collection and experiments. 

Based on the insights and data in Section 3.1 Experimental Research and Analysis, Section 3.2 discusses the 
CAV-specific modeling adaptations, methodologies, and approaches utilized in these efforts to better model 
the impacts of CAV technologies and strategies. Building on more than 15 years of modeling and simulation 
expertise, the methods applied in this section integrate DOE’s high-fidelity and validated modeling tools and 
approaches with state-of-the-art CAV data, capabilities, and controls. Highly integrated tools at various 
analysis levels (e.g. vehicle-specific, corridor, and regional) are critical for accurately and robustly 
understanding the impacts of CAV technologies, especially across the entire range of conventional and 
electrified powertrains in DOE’s technology portfolio.  

Utilizing the methods and tools developed in the previous section, Section 3.3 discusses a range of case studies 
that investigate the second research focus of this work: “What are the GHG, energy, technology and usage 
implications of connectivity, automation and connectivity?” More specifically, these efforts investigate the 
vehicle-level, corridor-level, regional-level, and national-level implications and sensitivities related to 
introducing CAV technologies into a transportation system. Section 3.3 explores the question “what if CAVs 
show up with minimal energy-centric behaviors and controls?” and builds the foundation and baseline for 
Section 3.4, which directly leverages the new information and controllability afforded by CAV technologies 
for improved outcomes related to reduced energy consumption, improved traffic flow, and reduced congestion. 

While Section 3.3 seeks to investigate the “what if” questions related to CAV technologies, Section 3.4 
investigates the opportunities to harness connectivity and automation for improved energy and productivity 
outcomes. Specifically, this section discusses the third primarily research focus of this work: “3) What is the 
best way to harness CAVs for reduced energy use and improved mobility in transportation?” This 
section provides insights and analysis related to how CAV technologies, controls and high-level coordination 
strategies can improve traffic flow, decrease overall energy consumption, and facilitate more efficient 
transportation systems though the application of connectivity and automation specific strategies. 

3.1 CAV-Focused Experimental Research and Analysis 

This section seeks to address the first research question posed in the introduction: “How will connected and 
automated vehicles and systems behave in the real world?” By assessing a range of commercially available 
vehicles and systems as well as developing and utilizing CAVs research platforms, insights related to the real-
world behaviors, benefits, and challenges associated with CAVs technologies were investigated experimentally 
within this work. The results and data described in this section are also critical for improved and more realistic 
CAV simulations. Specifically, the modeling and analytical techniques used to predict the vehicle-level, local, 
regional and national impacts of CAV systems depend heavily on the application of real-world experimental 
data for validation. The results of these tests can then be used for updating simulation models and validating 
analytical assumptions, overcoming one of the most significant limitations – lack of data – to prior attempts to 
model the impacts of CAV systems. Additionally, as CAVs become more widely available, expanded on-road 
data collection (including comparable baseline vehicles) will provide valuable direct measurements of their 
real-world impacts. The following sections highlight findings from such experimentally driven research 
projects. 
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Key experimental insights and results include: 

• A comprehensive set of experimental Class-8 truck CACC and platooning testing was performed 
across a range of gap spacing and platoon formations. At the closest separation distance evaluated, 
4 m, the average fuel savings for a three-truck platoon with at 105 km/h was about 13%, while two-
truck platoons in the same scenario saved 7% on average. 

• Other maneuvers, applied transiently during platoon/CACC operation showed a 2%–3% and 1%–2% 
reduction in the realizable benefits for traffic cut-ins and speed variations respectively. 

• The Class-8 truck CACC testing also investigated the thermal and aerodynamic turbulence impacts of 
the various gaps, providing an experimental analysis of the dynamics and sensitivities of close vehicle 
following aerodynamics as well as detailed data for thermal and aerodynamics model validation. 

• An effort to estimate the national potential for platooning used real-world operational data from 
57,000 individual Volvo Class-8 trucks to conclude that 56% of classifiable miles driven were both at 
speeds where platooning is beneficial and had at least a single partner vehicle, within the same fleet of 
57,000 vehicles, available for platoon/CACC formation (and usually multiple partners were available). 
This degree of availability, combined with the experimentally observed truck platoon fuel savings 
potential discussed previously, suggests truck platooning could be an effective fuel saving strategy if 
implemented nationally and coordinated efficiently.  

• At the individual vehicle level, analysis of on-road driving data based in Gothenburg Sweden using 
18,590 trips from the Volvo Drive Me pilot study, observed that Adaptive Cruise Control led to a 5-
7% reduction in fuel consumption, compared to the manually driven vehicles operating within the 
same study environment. 

• While experimental testing of recent conventional, internal combustion engine powered vehicles 
confirms the generally expected intersection-level benefits for several eco-approach and departure 
(EAD) strategies, the benefits and sensitivities of EAD strategies diverge significantly for electrified 
vehicles, with some strategies providing greater impact for electrified vehicles and some strategies 
showing fewer benefits. 

• The data collected during EAD field testing shows a moderate fuel savings of 10% to 20% as 
compared with adjacent vehicles without EAD operating in an 80m zone centered at a controlled 
intersection (i.e. 40m before, 40m after). However, within this field testing, the frequency for 
encountering EAD scenarios is low, making the overall benefits at the trip level very small. 

• Field data taken from both signalized and stop-sign controlled intersections show that a significant 
portion of vehicle stopping occurs when there are no vehicles at the conflicting approach. For the 
intersections assessed within this study, 80% of stops at signalized intersection and 68% of stops at 
stop-sign controlled intersections were done with no opposing traffic present. These observations 
suggest that increased signal control awareness and intersection coordination/information sharing 
could lead to more efficient operation by enabling fewer stops and smoother traffic flow. 

• A large-scale evaluation of green routing opportunities was performed using 45,000 actual trips. For 
roughly one-third of all trips an alternative, less energy consuming route existed. These alternative 
routes provided an average fuel consumption savings of roughly 12% compared to the original route. 
Interestingly, about 50% of these more efficient alternative routes were also observed to provide a 
shorter travel time in addition to the fuel consumption benefits.  

• Field testing of an automated vehicle prototype, provided by an industrial project partner, found 
automation loads ranging between 300 and 400 W for functionalities including hands-free highway 
operation (L3) and fully self-driving operation and navigation at lower speeds (L4). These electrical 
load levels suggest that many automation functions relevant to more efficient operation may be 
implementable at loads lower than the 2-4 kW experienced by recent driverless-capable pilot fleets. 
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• In-field data collected from several low-speed automated shuttle pilots suggests that the automated 
shuttles’ low operating speeds significantly increase the relative impact of accessory loads on overall 
per-mile energy consumption, highlighting the importance of incorporating these loads when 
assessing the overall mobility impacts of a proposed shuttle implementation. For example, air 
conditioning loads were found to nearly double the observed per-mile vehicle energy consumption in 
hot weather, compared to relatively cooler times when the air conditioner was not active. 

 
3.1.1 Heavy-Duty Truck Cooperative Adaptive Cruise Control (CACC) and Platooning Field Research 

• Truck platooning begins to show fuel savings due to aerodynamic drag reduction within a trailing gap 
distance of 87 m, indicating that manually driven trucks following within this distance are already 
saving fuel. Further evaluations used this trailing gap distance and corresponding fuel savings as the 
baseline for additional savings. 

• Average fuel savings for a three-truck platoon with a 4 m following distance at 105 km/h was about 
12.5%, while two trucks in the same scenario saved only 7% on average. 

• For three CACC trucks following an SUV, the average fuel saving will be 1.0%~1.5% more than in 
the scenario of three CACC truck only. 

• At following distances longer than 12 m, the third truck (of the three-truck CACC case) saves the 
most fuel. However, for following distances below 12 m, the middle truck saves increasingly more 
fuel than the third truck as the distance deceases. This reduction in fuel consumption benefits for the 
trailing vehicle has been observed at closer following distances. For example, at a 4 m following 
distance, the middle truck saves up to 17%, while the third truck only saves about 12% over a single 
truck scenario. 

• The effect of traffic cut-ins during CACC operation was found to be only about 2-3% since they were 
transient behaviors. 

• At the overall platoon level, the tested speed variations during CACC operation reduced net measured 
fuel savings for the three-vehicle system to 5.2% from the 6%–7% expected at a 49 m gap distance 
and baseline 105 km/h driving speed. 

• These results are expected to be transferrable to alternatively powered trucks, such as those with 
hybrid, hydrogen-electric, or fully electric powertrains, as the fuel savings were caused solely by 
aerodynamic drag reduction. 

This section presents the results of test-track testing intended to exclude the effects of other factors on truck 
fuel economy and show the fuel savings benefits of reduced aerodynamic drag reduction through reduced 
distance gaps. Although burning less fuel for the following trucks may mean producing less emissions, the air 
flow reduction into the engine compartment may affect other emission factors.  

In this work the CAV Pillar completed the following research for quantitative test-track evaluation of heavy-
duty connected and automated cruise control (CACC) trucks for fuel consumption, following SAE I-1321 
procedures, for several scenarios: 

• Two and three CACC-equipped trucks following at different time gaps (distance gaps) between 0.14 s 
and 3.0 s (4 m and 87 m)  

• Heavy-duty trucks following LD SUV-type vehicles rather than other heavy-duty trucks 
• The impact of cut-ins/outs on overall CACC fuel savings potential 
• The effect of speeds varying from 55 mph to 65 mph for the fixed time gap 
• The impact of speed variations during system operation on fuel consumption 

While V2V-based cooperative heavy-vehicle systems are nearing commercialization, there is a knowledge gap 
in terms of the performance, reliability, and resiliency of these systems.19 Of particular interest in the current 
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study is the potential energy savings of such systems. For this research, the CACC concepts and 
implementation approaches described in several previous works20,21,22,23,24,25 were applied to a set of three 
heavy-duty vehicles. Procedures and results from an initial, separate closed-track fuel-economy test of this 
three-truck CACC system are reported in a previous report26, with the following discussion focusing on a 
second round of testing that looked into a larger range of gap distances/times as well as other configurations 
and issues related to practical platoon implementation.27 Testing took place at Transport Canada’s Motor 
Vehicle Test Centre (MVTC) in Blainville, Quebec, which is operated by PMG Technologies. The fuel 
consumption tests were performed on the high-speed test track (BRAVO).28 The track is a high-banked, 
parabolic oval with a length of 6.4 km (4 miles). Each day, prior to testing, all vehicles were warmed up for the 
same amount of time (minimum one hour) at the test speed. The drivers’ influence on the results was 
minimized by conducting the tests on a closed circuit and by strictly controlling the driving cycle and inter-test 
procedures. 

Track testing was undertaken using the SAE J1321 Type II Fuel Economy procedure29 to investigate the fuel 
saving potential of the developed truck CACC system. The previous CACC system fuel economy testing 
examined the effect of vehicle speed (89 and 105 km/h), cargo weight (empty and 15,400 kg/34,000 lb load), 
and trailer aerodynamics (standard compared to side-skirts and a boat-tail) on the potential fuel savings from 
platooning.30 Based on the results from the previous testing, it was decided to use one configuration for the 
majority of the testing in this study. The following describes the baseline configuration: 

• Vehicle speed of 105 km/h (65 mph) 
• Total vehicle mass of 29,500 kg (weight of 65,000 lb) 
• Same trailer make and model (same make and models as previous testing) 
• Trailers outfitted with side-skirts and a boat-tail (same make and models as previous testing) 

Compared to the initial set of testing, the three-truck string/platoon was tested at closer distances of 4 m, 6 m, 
9 m, and 12 m, representing time gaps at 105 km/h of 0.14 s, 0.21 s, 0.31 s, and 0.41 s, respectively. Separation 
distances of 17 m, 35 m, and 44 m were re-tested (time gaps of 0.6 s, 1.2 s, and 1.5 s), covering the full range 
of separation distances previously tested with this CACC system in order to provide a measure of repeatability. 
Larger separation distances of 58 m and 87 m, corresponding to time gaps of 2.0 s and 3.0 s at 105 km/h, were 
also tested for these efforts to characterize what vehicles may already be experiencing on the road. To 
understand potential differences between two-truck and three-truck platoons and to provide a comparative 
dataset to additional large data sets of two-truck test data31, four separation distances of 6 m, 12 m, 17 m and 
58 m were tested with only two trucks in the CACC string, corresponding to time gaps at 105 km/h of 0.21 s, 
0.41 s, 0.6 s, and 2.0 s, respectively. 

3.1.1.1 Two- and Three-Truck Platoon Results 

• Truck platooning begins showing fuel savings due to aerodynamic drag reduction within a trailing gap 
distance of 87 m, indicating that manually driven trucks following within this distance are already 
saving fuel. Further evaluations used this trailing gap distance and corresponding fuel savings as the 
baseline for additional savings. 

• Average fuel savings for a three-truck platoon with a 4 m following distance at 105 km/h was about 
12.5%, while two trucks in the same scenario only saved 7% on average. 

• At following distances longer than 12 m, the third truck (of the three-truck CACC case) saves the 
most fuel. However, for following distances below 12 m, the middle truck saves increasingly more 
fuel than the third truck as the distance deceases. This reduction in fuel consumption benefits for the 
trailing vehicle has been observed at closer following distances. For example, at a 4 m following 
distance, the middle truck saves up to 17%, while the third truck only saves about 12% over a single 
truck scenario. 
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This testing effort produced the most comprehensive set of platooning energy consumption test results to date. 
The findings confirm some phenomena observed in previous tests and produce new knowledge. The primary 
energy consumption trends, as a function of the size of the gaps between the trucks, are shown in Figure 3-1 
for each individual truck and for the two-truck and three-truck platoons as a whole. The results compare truck 
energy consumption when driven in close formation to energy consumption of the same trucks when driven in 
isolation. 

 
Figure 3-1. Fuel savings for individual trucks as a function of separation distance (left) and average fuel savings for two- 

and three-truck platoons (right). 

Figure 3-1(left) shows the fuel savings for each of the three trucks in the CACC platoon as a function of the 
separation distance (bottom scale) or time gap (top scale) at a speed of 105 km/h. Note that the lead truck only 
saves significant energy at gaps of 18 m or less, but the middle and trailing trucks are saving 6% and 8% 
respectively even as far apart as 87 m. At gaps below 18 m, the relationships become more complicated, with 
the lead truck’s savings rising rapidly toward 10% as the gap decreases to 4 m, and the middle truck’s savings 
rising rapidly toward 17% at the 4 m gap. In contrast, the trailing truck’s energy saving peaks at about 13% in 
the 15 m range and then declines to 11% as the gap is reduced to 4 m. These trends are the consequence of 
different phenomena affecting the aerodynamics at the front and rear of each truck and are discussed in greater 
detail in Section 3.1.2. Figure 3-1(right) shows the average savings across the entire three-truck platoon, 
trending from about 5% at the 87 m gap up to 13% at the 4 m gap. It also shows a similar trend for a two-truck 
platoon, but with noticeably lower savings, ranging from about 2% less at a 58 m gap to 5% less at a 6 m gap. 
This indicates the incremental energy saving advantage of extending the platoon length from two trucks to 
three. Each scenario for the three- and two-truck platoon was repeated three times, and each time for 16 laps 
(i.e., 16x4 = 64 miles). 

The energy savings of the two-truck platoons were also compared to the energy savings potential when the 
same two trailers are operated in a long combination vehicle (LCV) configuration, pulled by a single truck 
tractor. The LCV provided an energy savings of 23% compared to two single isolated trucks, three times as 
much as the savings of the two-truck platoon. However, this does not mean that trucks should take double 
trailers in order to save energy because, while an LCV does save more energy than two independent tractors 
and trailers at a constant speed, it is difficult for it to accelerate to highway speed if there is a speed variation. 
In addition, its maneuverability will be significantly reduced in highway traffic, particularly up hills. 
Therefore, LCVs will likely form a bottleneck in freeway traffic and significantly affect the overall mobility of 
the freeway traffic. This degraded traffic performance will increase total delays, total travel time, and speed 
fluctuations for other traffic, which can easily cancel the energy benefit of the LCVs in the total energy 
consumption of the overall traffic. 
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3.1.1.2 Impact of Following Light-Duty Vehicle (SUV) Versus Class-8 Truck  

• When following an SUV at a range of 87 m to 43 m, a single Class-8 truck experienced a fuel savings 
ranging from 1.5% to 2.6%. In contrast, the following truck of a two-truck or three-truck platoon 
saves on the order of 7.5% to 10%, respectively, at similar following distances. 

To investigate the potential fuel savings from operating in the wake of other traffic, as well as to provide a 
more realistic baseline representing current day “platooning” with mixed on-road traffic, additional tests were 
conducted with a single truck following an SUV. As can be observed in Figure 3-2 below, at distances from 43 
m to 87 m behind the SUV, the single truck experienced fuel savings ranging from 1.5% to 2.6%. In contrast, 
when following two tractor-trailer combinations at these ranges, the trailing vehicle would experience fuel 
savings of 7.5% to 10%. In addition to the single vehicle tests shown below, tests were also run with a two-
truck and three-truck string following an SUV at 58 m, but those results remain statistically inconclusive and 
are not discussed in this Capstone report, due to concerns about test-to-test variability in those test conditions. 

 

 
Figure 3-2. Fuel savings of single truck with ACC following an SUV compared to following trucks in two and three vehicle 

platoons (105 km/h vehicle speed, 29,500 kg vehicle mass). 

3.1.1.3 Fuel Consumption Due to Cut-Ins During Platoon Operation 

• The effect of traffic cut-ins during CACC operation was found to be only about 2-3% since they were 
transient behaviors. 

To understand the fuel consumption penalty associated with vehicle cut-ins, a problematic issue for real-world 
CACC/platooning performance, four sets of test runs were performed in which a large SUV periodically cut in 
between the trucks. All cut-in tests were performed using a baseline CACC configuration with a time-gap of 
1.2 s (35 m separation distance at 105 km/h). For each one-hour run, 30 cut-ins were performed at one of the 
CACC gap locations (between the lead and middle vehicle or between the middle and trailing vehicle). The 
cut-in vehicle remained in place between the trucks for about 25 to 28 s, during which time the truck following 
the cut-in vehicle adjusted its position to follow the SUV with a 1.2 s time gap. When the SUV exited the 
string, the CACC re-established the 1.2 s time gap between trucks. The energy penalties associated with these 
periods of driving at longer than normal separations with the extra speed changes needed to respond to the cut-
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ins were encouragingly small. When the cut-in was between the first and second truck, the second truck gave 
up only 1% of its fuel economy improvement, and when it was between the second and third trucks, the third 
truck lost between 1.5% and 2.3% of its fuel economy improvement.  

 

 
Figure 3-3. Impact of SUV cut-in/out for three vehicle platoons and controller-reaction scenarios (105 km/h target vehicle 

speed, 29,500 kg vehicle mass). 

3.1.1.4 Consumption Impacts of Speed Variations 

• At the overall platoon level, the tested speed variations during CACC operation reduced net measured 
fuel savings for the three-vehicle system to 5.2% from the 6%–7% expected at a 49 m gap distance 
and baseline 105 km/h driving speed. 

In addition to possible cut-ins, CACC trucks in real-world mixed-vehicle traffic are subject to overall traffic 
speed changes. Therefore, it is necessary to investigate the effect of speed variations on the developed CACC 
system’s fuel saving potential. Testing scenarios used to investigate these impacts included speed variations 
between 89 km/h and 105 km/h (55 and 65 mph) for the three-truck CACC system at a time gap of 1.2 s, 
representing a separation distance of 34.9 m at 105 km/h and 29.5 m at 89 km/h. The change in separation 
distance with speed is due to the time-gap control nature of the CACC. The speed was changed every 100 
seconds, with 30 to 40 seconds of constant speed travel before an acceleration or deceleration phase. The 
results of this test case are shown below in Figure 3-4, with the separation distance variable representing the 
mean distance and the horizontal error bars representing the range of separation distances encountered over the 
speed range tested. The test results show a decrease is fuel savings associated with the three-truck CACC 
system when the periodic speed changes were introduced. Due to the speed variations, approximately 2% 
lower fuel savings were measured for these variable speed cases than would be expected for this range of 
separation distances. At the overall platoon level, the introduced speed variations reduced net measured fuel 
savings for the three-vehicle system to 5.2%, rather than the 6% to 7% expected at this separation distance 
based on a constant 105 km/h driving speed. 
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Figure 3-4. Middle and trailing vehicle fuel-savings results for three-vehicle CACC tests with 1.2 s separation time and 
speed variation (89 to 105 km/h), with changes in speed every 100 seconds. Horizontal error bars represent range of 

separation distances (29,500 kg vehicle mass). 

3.1.1.5 Fuel Measurement Technique Comparison: SAE J1321 versus Fuel Injector Based 
Measurement 

The fuel consumption measurements from the laborious and time-consuming SAE J1321 fuel weighing 
procedures were compared to simultaneous measurements of fuel injector data from the trucks’ data buses, and 
these comparisons were used to calibrate the data bus measurements so that they could be used for finer-grain 
assessments of variations within the test runs (not just the total fuel consumption for a complete sequence of 16 
laps of the test track). A comparisons of the results from the two methods of measuring fuel consumption are 
shown in the left plot in Figure 3-5, which shows that the two signals tracked very closely except for the 
trailing truck at the shortest gap settings.  

Figure 3-5 (right) shows how CAN (SAE J-1939) measurements from the fuel injectors can be used to 
compare the fuel savings on the straight and curved sections of the test track. These results indicate that the 
savings on the straight sections of the track are about 2% larger than the average savings measured along the 
entire track. This means that trucks that are driven on essentially straight roads may be expected to save up to 
2% more energy from CACC or platooning systems than shown in the results discussed above. 
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Figure 3-5. (Left) Comparison of J1321 fuel weighing and CAN bus showing fuel injector signal measurements of fuel 

consumption and (right) CAN bus fuel injector measurements delta fuels savings on straight and curved track. 

3.1.1.6 Summary 

One potential benefit of a shorter time gap in CACC truck /platooning is energy saving due to aerodynamic 
drag reduction at higher speeds. The results described here should also apply to CACC platooning-capable 
trucks with other powertrains, such as hybrid, fuel cell and fully electric. Quantitative tests on a closed test 
track showed that:  

• A truck following another truck at a distance less than 87 m at 65 mph could gain some energy saving 
benefit, and a shorter time gap saves more energy. For example, a three-truck string saved 11% on 
average at a 4 m following distance.  

• CACC platooning of three trucks saves ~4%–5% more energy than two trucks, so it could be 
predicted that a four-truck CACC platoon operation could save even more energy. However, this will 
need confirmation through quantitative tests. 

• The effect of other transient maneuvers, such as cut-in and cut-out by other vehicles and speed 
variation, which are common in real-world traffic, on energy saving is only about 2%–3%. 

• At following distances over 12 m, the third truck saves the most and the lead truck saves the least; for 
distance above 12 m, the middle truck saves increasingly more. The crossing point of this behavior is 
worth further investigation. 

 
3.1.2 Analysis of Class-8 Truck Platooning Dynamic Air Flow 

• For the trailing truck in a platoon, the variability of measured wind speed and wind angle was 
observed to increase at close following distances, suggesting that increased turbulence (as indicated by 
the higher variability) is the likely explanation for the reduced vehicle fuel savings demonstrated at 
close following distances. 

• Measured engine and under-hood air temperature increases correlate with vehicle gap distance and 
platoon position and will inform vehicle and engine thermal control design. 

The work described in the previous section has shown significant fuel-savings promise for a range of truck 
platooning strategies but has also raised unexpected questions about the air-flow effects of these strategies on 
aerodynamic drag and engine temperatures. To support research into these questions, additional onboard 
instrumentation was installed on the experimental vehicles to help the team gain a deeper understanding of the 
air-flow dynamics and interactions between multiple vehicles.  
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Specifically, the following instrumentation methods were used to understand air flow and engine temperatures, 
in addition to the fuel consumption-based instrumentation discussed in the previous section: 

• J1939 CANBUS32 native data stream capture 
• Cobra Probe33 mounted 1 meter ahead of vehicle and 2 meters from the ground (Figure 3-6, left) 

o Probe provides three-component velocity and local static pressure plus an ambient 
temperature thermocouple. 

• Air velocity transmitter mounted flush to center of grill (Figure 3-6, right) 
o Transmitter provides air-flow velocity and temperature of air entering the engine 

compartment. 
• Six-thermocouple grid attached under hood with air gap between it and the hood surface 

o Grid provides under-hood temperatures during platooning operation under various testing 
conditions. 

 
Figure 3-6. Supplemental airflow instrumentation from truck platooning experiments: (left) Cobra probe mounted 1 meter 

ahead of vehicle and 2 meters off the ground, (right) air velocity transmitter mounted flush to center of grill. 

To explain the reduced savings at close following distances for the last vehicle in a platoon, detailed data 
analysis was performed using the additional information collected from this instrumentation during the track 
testing for these cases: 1) air flow experienced by the following truck along with turbulence changes at the 
close following distances where reduced trailing vehicle fuel savings were observed, 2) impacts of platooning 
position on engine cooling in different formations due to reduced air flow through the front grill (ram air), 3) a 
true in-use aerodynamic “baseline” with other light-duty vehicles on the highway, and 4) correlation between 
track test data and wind tunnel-derived average drag coefficient, pressure and particle image velocimetry 
data.34,35 The CAVs Pillar’s detailed data analysis approach includes harmonic analysis of wind speed and 
direction while utilizing J1939 CANBUS data from the 2017 track test to investigate air flow and turbulence 
changes affecting the following truck.  

Data analysis indicates that many of the data trends in wind angle, wind speed, turbulence and temperature 
show a non-linearity in pattern for closer following distances, where a fuel savings decrease for the following 
vehicles was also documented. Figure 3-7 illustrates the magnitude and angle of wind experienced by each 
truck in a platoon over a range of distance. Note that while the lead vehicle always has a mean speed of 29 m/s 
(65 mph), the following trucks start to see significantly slower speeds and higher angles of wind when closer 
than 35m. At distances of 12m and less, the radar plots take on an arrowhead shape — indicating high 
variability in both angle and speed — and this turbulence correlates with the distances at which following 
trucks exhibit an unexplained drop in savings. 
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Figure 3-7. Magnitude and angle of wind radar plots. 

Results of the thermal analysis show that significant changes in the engine and under-hood air temperatures 
correlate with vehicle gap distance and platoon position. Figure 3-8 shows the significant temperature increase 
from ambient for following vehicles, especially at gap distances less than 20 meters. 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

32 

 

 
Figure 3-8. Temperature difference at varying separation distances. 

These results are encouraging. A similar analysis of the SUV and dynamic cut-in scenarios could yield insights 
into the fundamental cause of the reduced savings. Analysis of the baseline scenarios with SUVs would refine 
the findings from the standard platooning scenarios and allow for investigation into the fundamental problem. 

3.1.3 Understanding Realistic Class-8 Truck On-Road Platoon Opportunities 

• Two studies with different data sets and methodologies conclude that 63–66% of class 8 truck miles 
are at speeds where platooning would achieve aerodynamic benefits demonstrated in track test 
conditions. 

• One study concluded that for an early adopter subset of vehicles, 77% of miles are platoonable. 
• One study using telematics data from 57,000 unique Volvo trucks concluded that 56% of classifiable 

miles were both at platoonable speeds and had a partner vehicle from the same fleet of 57,000 
available for platooning (usually multiple partners were available). 

While the fuel savings opportunities related to Class-8 truck platooning discussed in this document are 
promising for close following/platooning vehicles equipped with cooperative adaptive cruise control (CACC) 
operating in highway environments, many unknowns can influence the actual savings during real-world 
operation. Specific to this investigation are: 1) time spent at speeds appropriate for observable aerodynamic 
benefits and 2) the availability of a partner vehicle to platoon with.  

A preliminary study to estimate the fraction of “platoonable” miles36 was based on a large set of driving data: 
more than 3 million miles of high resolution driving data from 194 tractors in NREL’s FleetDNA database.37 
The data were collected using on-board data logging devices or telematics systems. Vocations represented in 
the data include line-haul truck load, less than truck load, regional parcel movement, port drayage, refrigerated 
operations, tanker operations, transfer truck operations, and regional food delivery. The data set includes 
information on vehicle speed (1-second resolution), GPS position, road segment (highway, freeway, or 
collectors and local), and various levels of engine/vehicle parameters, such as fuel rate and engine 
temperatures. Platoonable mileage was estimated by analyzing highway vehicle use and prolonged high-
velocity travel. 

Results of this analysis are shown in Figure 3-9. The upper plot shows the share of miles driven over each road 
segment type based on the entire data set, as well as the fraction of miles continuously driven for given 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

33 

minimum time durations above a range of vehicle speed thresholds. For instance, the results show that for a 
time threshold of T= 15 minutes at a speed threshold V = 50 mph, 66% of vehicle miles are platoonable (and 
show how this number changes at different time and speed thresholds). The same methodology is applied to a 
subset of the data that might represent early adopters of this technology, including approximately 4,500 miles 
of mostly highway long-distance driving to evaluate the fraction of platoonable miles for specific applications. 
The vocation represented for the early adopter subset is a split-duty combination truck that runs local pickup 
and delivery trips during the day and regional line-haul operation at night (representing the majority of the 
miles driven and making this application well suited for platoon operations). 

Results for this early adopter subset of highway-centric data, shown in the lower plot in Figure 3-9, indicate 
that for a time threshold of T = 15 minutes and a speed threshold V = 50 mph, 77% of vehicle miles are 
platoonable. This technical potential for platoonable miles in the United States helps provide an upper bound 
for scenario analyses quantifying the overall potential fuel savings benefits of truck platooning. 

 

 
Figure 3-9. Share of total miles (y-axis) continuously driven above a certain speed threshold (x-axis) for T minutes that are 

platoonable for share of load segments, considering the entire data set (upper) and a select highway-centric targeted likely 
early adopter subset of entire dataset (lower). 

A second study38, in collaboration with Volvo Trucks North America, analyzed a two-week period of Volvo 
Trucks’ telematics data from over 57,000 unique vehicles traveling more than 210 million miles, which 
included 11 million GPS waypoints, during the summer of 2016. Telematics data from this study were also 
used to identify opportunities in which both a partner vehicle and acceptable operating conditions were 
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observed. Despite covering a large population, these data have very low time resolution, consisting primarily 
of hourly observations of the vehicles throughout the day. Therefore, specific duty cycle understanding is 
limited to knowing what probably happened over the course of the hour, as average vehicle speeds are based 
on the odometer change between observations. The data does indicate that 75% of total fuel consumption 
occurs when the trucks operate in top gear, suggesting heavy highway utilization (and significant potential 
platooning fuel savings opportunities). 

Figure 3-10 shows the geospatial representation of hourly average speed for all active trucks in the dataset at 
different times during a weekday. Overall, more trucks travel on the road network during daytime hours than 
during the night or early morning. However, travel speeds during night operation are generally higher than in 
day operation due to lower nighttime traffic volumes. Figure 3-10 also indicates that the East Coast, West 
Coast, and urban areas have higher temporal variability than the central part of the country. Analysis using a 
highway speed based method similar to the one used in the previous study suggests that 63% of total miles 
driven at known hourly average speeds may have potential for platooning.  
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Figure 3-10. Geographic representation of hourly average speed at different times of day. 

When considering the availability of nearbyiii (Volvo) partner vehicles, results indicate that 56% of all 
classifiable miles driven were platoonable. Further, the platooning opportunity potential would be greater if 
inter-manufacturer platooning were to be considered. Figure 3-11 shows a snapshot of the spatial distribution 
of these partner availability based platoonable observations for a single day. The patterns evident in Figure 
3-10 are also present here. The highest regions of platoonability occur across major shipping corridors and 
interstate highways. Urban areas, particularly those in dense regions on the East Coast and West Coast and in 
the Great Lakes region, appear to have fewer opportunities than West and Midwest regions, though lower 
speed limits in West Coast states were not taken into consideration.  

                                                     
iii Where “nearby” means traveling at least 50 mph AND within a 15-mile radius and 15-minute travel time window. 
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Figure 3-11. Snapshot of U.S. platoonability based on partner analysis for a single day. Observations with speeds less than 

30 mph are omitted for clarity. 

Figure 3-12 shows the available platooning partner distributions for the platoonable cases. In most cases, 
multiple partners could be available to platoon, with a peak occurring at around 2-3 partners and a mean of 10. 
This indicates that it could be worthwhile to investigate the opportunity for 3- and 4-truck platoons, and that 
fleet non-cooperation and technology incompatibility would have minimal impact on partner availability for 2-
truck platoons. 
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Figure 3-12. Distribution of number of available platooning partners. 

Comparing results from the two studies shows that the proportion of platoonable miles traveled for known data 
aligns with the overall spatial patterns of partner availability, suggesting that the computationally simpler 
vehicle speed method from the first study may be sufficient for high-level platooning analysis. The detailed 
availability information gathered from the proximity analysis in the second study provides additional context 
and will be critical for more advanced analysis of adoption scenarios where different platooning systems are 
incompatible, or fleets do not have platooning cooperation agreements in place. The proximity analysis also 
provides decision makers with information on the value of platooning technologies capable of connecting more 
than two trucks by identifying how often larger platoons could be formed. Additional partner characteristics 
such as vehicle type, load, origin/destination, etc. could be included in future analyses but were omitted here. 

Combined with the truck platoon team fuel savings potential demonstrated in the track testing scenario 
analysis reported in Section 3.1.1, the substantial opportunities for Class 8 truck platooning identified by these 
results suggest that truck platooning could be an effective fuel saving strategy nationally. Combination trucks 
drove 174 billion miles in 2016, consuming 29.6 billion gallons of fuel. If the nation’s truck fleet were to save 
6.4% of fuel with conservatively spaced 2-truck platoon teams for 56% of the miles traveled, the overall 
reduction in fuel consumption would be on the order of 1.1 billion gallons of fuel per year (roughly 0.5% of 
U.S. transportation energy use in 2016) resulting in 10.7 million metric tons of CO2 reductions. Platoons of 
three close-following trucks achieving a combined 13% fuel consumption reduction would save close to 2.1 
billion gallons of fuel per year.39 

These studies demonstrate the value of both high-resolution data and more traditional low resolution telematics 
data sets. Despite leveraging data with very different time steps, both studies found that 63%–65% of Class 8 
tractor miles occur at speeds that can realize the aerodynamic benefits of truck platooning, while target early-
adopter vocations may have as much as 77% of their miles available for platooning fuel savings. Intra-
manufacturer availability restrictions may reduce this mileage percentage by roughly 10%, but cross-
manufacturer platooning would likely make up much if not all of that difference. More detailed fleet- and 
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manufacturer-level cooperation scenarios will be necessary to further refine these high-level studies as well as 
identify specific fleet types/vocations that will outperform the population analysis done to date. 

 

3.1.4 Objective Method to Quantify On-Road CAV Fuel Efficiency — Demonstrated on In-field 
Assessment of Large-Scale, Light-Duty Adaptive Cruise Control (ACC) Fleet Pilot Data  

• A novel method for estimating overall on-road energy impacts from specific CAV technologies was 
developed and demonstrated in partnership with Volvo Cars Corporation. 

• In today’s traffic mix, vehicles operating with adaptive cruise control saw 5%–7% lower fuel 
consumption at the vehicle level than fully manually driven vehicles. 

• However, with high CAV penetration, cooperative adaptive cruise control will be important in 
maintaining benefits for both individual vehicles and the overall traffic flow. 

Overall on-road fuel efficiency of CAV technologies can be difficult to quantify, as the fuel efficiency of a 
given CAV technology compared to a fully human-controlled vehicle can vary in different driving contexts. 
The CAVs Pillar developed a methodology that evaluates the fuel efficiency difference between a CAV 
technology and manual driving in a wide array of driving conditions or contexts and quantifies the overall 
impact by weighting the specific driving context fuel efficiency differences by the amount of driving that 
occurs in each context.40 In collaboration with Volvo Cars, application of this methodology in a partial 
automation technology context was demonstrated over a large on-road dataset of vehicles operating with and 
without active adaptive cruise control (ACC). While multiple studies41,42,43 have identified fuel-saving 
potential from ACC strategies, the literature remains limited in terms of real-world operational and energy-
consumption differences between this type of automated driving behavior and comparable manually driven 
vehicles under various driving conditions. The Volvo Cars collaboration helped to fill this information gap and 
explored the proposed methodology’s potential to quantify overall CAV technology on-road fuel efficiency — 
an objective of interest to Volvo Cars not only for ACC but also for higher-level CAV technologies being 
contemplated under the “Drive Me” project.44 The designated Drive Me project driving route covered 40 km of 
major roadways around Gothenburg, Sweden, typical of commuting conditions where customers would be 
anticipated to benefit from vehicle automation. Data for the ACC versus non-ACC fuel efficiency comparison 
were collected from vehicles traversing various portions of this designated route45,46.  

For this research, Volvo diesel automatic models (V70, XC70, V60) were driven by Volvo Cars employees 
and family members on more than 18,590 trips over the Drive Me route during the 2010–2011 project 
timeframe. Vehicles were equipped with ACC that used a radar sensor to detect the distance to the vehicle 
ahead and adjusted the ACC-equipped vehicle’s speed to maintain a preferred gap between the vehicles. Fuel 
consumption data, reported to be of good quality by Volvo Cars, were collected from the vehicle’s data bus at 
a 10-Hz sampling rate. Additional data included vehicle and engine speed, pedal positions, GPS position, ACC 
status, and distance to the nearest leading vehicle, along with ambient temperature and weather conditions. 
Available traffic and driving condition data over the Drive Me route included the number of vehicles passing 
130 fixed traffic detector locations, the traffic speed (which varies with time of day and day of week), and the 
road grade (which can significantly impact the fuel consumption of the test vehicles). This work builds on a 
preliminary fuel consumption analysis done by Volvo, and expands upon that effort by creating the framework 
in which fuel consumption impacts under different driving conditions are weighted to obtain an estimated 
aggregate impact at the road-network level. As described in much greater detail in the corresponding 
publication47, the analytical methods applied for these efforts included: 

Step 1: Separate ACC from non-ACC trips 
Step 2: Separate trips into segments and map-match 
Step 3: Segregate data by driving conditions and calculate statistical significance 
Step 4: Create fuel consumption rate ratio matrix across relevant driving condition dimensions and 

perform any rate adjustments where needed 
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Step 5: Prepare traffic flow data and perform traffic flow modeling to fill in any gaps 
Step 6: Create corresponding vehicle miles traveled (VMT) matrix 
Step 7: Calculate aggregate ACC impact 

The first step in the process was to separate ACC from non-ACC trip data based on whether vehicles had ACC 
on or off. Next, the trips were separated into segments of 0.5 km or shorter, and these segments were matched 
to road links on a base map. The segment data were categorized by road grade and by the average traffic speed 
at the time of travel to enable comparison of the two vehicle modes under common operating conditions. 
Traffic speed was estimated using the average road link speed at time of travel based on historic TomTom 
Traffic Statistics data, when available. When these data were not available, the average traffic speed was 
represented by the average speed from the test vehicle’s GPS trace. The above methods were then utilized for 
characterizing ACC and non-ACC vehicle operation and fuel use as well as weighting ACC fuel economy 
improvement by driving condition and VMT. 

The sample of ACC driving data contained significantly fewer low-speed driving segments than in the non-
ACC data. According to Volvo Cars, ACC could only be activated at speeds above 30km/h, which no doubt 
contributes to this difference. However, the ACC driving data did include some segments with driving speeds 
below 30 km/h, so ACC evidently remains active at these speeds if it is turned on at a higher speed before 
traffic conditions force the vehicle to slow. Focusing on driving segments in traffic conditions ranging from 40 
to 110 km/h (where the vast majority of the ACC and non-ACC sample data occur), Figure 3-13 compares 
acceleration standard deviation distributions for each driving mode. Higher acceleration standard deviation 
indicates more rapid changes in vehicle acceleration and would be expected to correlate with higher fuel 
consumption compared to smoother driving with lower acceleration standard deviation. The figure shows 
comparisons for the standard deviation of both acceleration and deceleration rates for ACC compared to non-
ACC mode, with the results indicating overall smoother driving behavior from ACC operation: The average 
acceleration/deceleration standard deviation in ACC mode was +0.22/-0.21 m/s2 compared with +0.29/-0.29 
m/s2 in non-ACC mode. 
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Figure 3-13. Distributions of acceleration (top) and deceleration (bottom) standard deviations in ACC and non-ACC mode. 

Consistent with the overall smoother driving behavior observed for the vehicles in ACC mode, ACC operating 
vehicles tended to show lower fuel consumption rates than non-ACC operating vehicles across most driving 
conditions. Figure 3-14 illustrates the estimated annual distribution of all vehicle travel that occurs on the 
designated driving network in each combination of traffic speed and road grade condition. An adequate 
amount of on-road data to determine statistically significant fuel consumption rate differences between ACC 
and non-ACC driving were collected in many, but not all, of these driving condition bins. Fortunately, albeit 
unsurprisingly, the best coverage coincided with the driving condition bins where most network travel occurs. 
This mitigates but does not completely eliminate the problem of dealing with driving condition bins that 
experience a measurable level of vehicle travel but lack a statistically significant measure of the fuel 
consumption rate difference between ACC and non-ACC operation. To resolve this issue, several sensitivity 
scenarios were conducted, including ignoring these bins, setting various fixed ACC/non-ACC fuel 
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consumption rate ratios for these bins, and interpolating “educated guess” ratios based on nearby bins with 
statistically significant measured values. Vehicle travel distance weighting over all of the driving condition 
bins was performed for each sensitivity scenario to generate a robust ACC fuel efficiency impact estimate over 
the evaluated driving network. 

 
Figure 3-14. Variation in estimated overall annual vehicle travel on the designated driving network in Gothenburg (in 

millions of vehicle kilometers travelled) organized by speed and grade bins (high values in red/orange, moderate in yellow 
and low in green). 

The vehicle travel distance weighting and sensitivity scenario evaluation process revealed that these ACC-
operating vehicles consumed 5%–7% less fuel than the fully manually driven vehicles over the designated 
driving network. Other considerations for automated vehicle fuel use include their types/specific 
implementations and penetration levels in traffic. For instance, while the ACC vehicles in this Volvo Cars 
study operated mostly around surrounding vehicles with the driver in complete control, other studies have 
shown that many ACC vehicles operating together can make traffic worse, due to the lag for each vehicle to 
detect speed changes in the others.48 It is possible for high automation penetration to improve rather than 
worsen overall traffic flow if it includes vehicle-to-vehicle communication, enabling Cooperative ACC (i.e., 
CACC — see the SMART Mobility work described in Section 3.3.1 of this CAVs Capstone Report).  

The fuel economy calculation approach featured in this study can be applied to simulations of hypothetical 
future technology penetration scenarios as well as to data from the latest vehicle technologies operating in 
current traffic conditions. With automated vehicles possessing enhanced data collection and connectivity 
capabilities, the proposed approach could provide increased visibility into how on-road fuel economy evolves 
with changes in vehicle technology, penetration rates, and traffic impacts. Such transparency is important for 
stakeholders and policymakers who wish to measure technology impacts on transportation energy use and for 
automakers who wish to get credit for potential fuel-saving features of automated vehicle technologies. 

 

3.1.5 Experimental Evaluation of Eco-Driving Strategies at Intersections  

• The data collected during the EAD field testing shows a moderate fuel savings of 10% to 20% as 
compared with adjacent vehicles without EAD operating in an 80m zone centered at the controlled 
intersection (i.e. 40m before, 40m after). However, within this field testing, the frequency for 
encountering EAD scenarios is low, making the overall benefits at the trip level insignificant. 
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• Experimental testing on the dynamometer has confirmed that for recent conventional vehicles the 
simulation values from literature for highlighted EAD benefits are relatively in-line with the 
experimentally observed benefits, but the benefits and sensitivities of the EAD strategies evaluated 
diverge significantly for electrified vehicles with some strategies providing a greater impact for 
electrified vehicles and some strategies showing less benefit due to the already more efficient 
operating capabilities of electrified vehicles. 

• Field data taken during the EAD intersection testing for a specific intersection, showed that for 
vehicles stopping at this intersection, over 80% of the time they do not encounter other vehicles at the 
conflicting approach. These unnecessary stops are the primary cause of unproductive fuel 
consumption at signalized intersections, which accounts for over 15% of total estimated fuel 
consumption at this test intersection during observation. This suggests that, for the intersection 
assessed during this work, more intelligent signal operation supported by connected vehicle and 
connected infrastructure technologies could lead to additional fuel consumption benefits due to 
reduced stops. 

• For the stop-sign controlled intersection assessed for this work, the majority of vehicles arrived at the 
intersection without encountering a vehicle at the conflicting approach (68% at the test intersection), 
suggesting that additional benefits could be achieved with improved coordination via the reduced need 
for stopping. 

Studies on Eco-Approach and Departure (EAD) at intersections account for a large percentage of the reported 
studies on the broader topic of Eco-Driving. The reported benefits from various studies on specific Eco-
Driving strategies vary significantly, with fuel savings ranging from 2%–3% to 50%.49,50,51,52 Most of the 
existing EAD studies rely on analysis and simulation to demonstrate the effectiveness of specific algorithms. 
Fewer studies involve analysis of field or laboratory data collected in real-world situations with real vehicles. 
As many previous studies focused on searching for optimal solutions, the findings also often highlight the best 
possible performance and resulting maximum benefits as opposed to a range of performance over varying 
conditions. Furthermore, the baseline assumptions and model calibrations reported in these studies vary 
significantly, and the research results are often not easily comparable. For studies that include experiments, 
data are sometimes collected under specific, tailored operational scenarios in which the maximal fuel savings 
can be demonstrated. For example, field testing of EAD without traffic represents one of the most desirable 
operating conditions and results in much greater fuel savings than one may expect in the real world. There is a 
need for realistic energy saving benefit estimates using field and laboratory data collected under a wider range 
of operational scenarios in real-world situations across a range of vehicle powertrain technologies. 

Under the SMART Mobility program, a system-level analysis quantified the extent of unproductive fuel 
consumption at intersections at the national scale and identified and evaluated opportunities to address the 
causes of unproductive fuel consumption. Unproductive fuel consumption for intersections is defined as the 
unnecessary fuel consumption of vehicles that are directed to stop when neither vehicles nor pedestrian 
activities are present at the conflicting approaches. In this work, highlighted connectivity and/or automation-
based EAD strategies for intersections were analyzed and experimentally evaluated for potential and realistic 
benefits. Specifically, three experimental studies were conducted to realistically estimate fuel savings for 
specific EAD strategies, including (1) laboratory experiments to assess the scenario-based fuel saving benefits 
of EAD for different types of powertrain technologies, (2) field testing the fuel saving benefits of EAD 
advisory information at signalized intersections in real-world traffic conditions, and (3) evaluation of 
unnecessary stops and subsequent unproductive fuel consumption at signalized and unsignalized intersections. 

3.1.5.1 Analysis of Unproductive Fuel Consumption at Intersections  

The Urban Mobility Report (UMR) by the Texas Transportation Institute53, a widely referenced estimation of 
wasted fuel and travel time due to congestion, estimates that 3.1 billion gallons of fuel are wasted annually. 
However, the UMR did not consider many non-congestion related factors that cause fuel waste. The average 
nature of the data used in the UMR analysis is adequate for defining the problem the nation faces in wasted 
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fuel and excessive emissions due to congestion, but the estimate of wasted fuel at intersections is not precise 
because of the assumption that stop-and-go behaviors at signalized intersection are equivalent to low average 
speeds. Further analysis shows that controlled vehicle stops at signalized intersections when no vehicles or 
pedestrians are present at conflicting approaches also results in unproductive fuel consumption, which is not 
accounted for in the UMR study. The extent of unproductive fuel consumption at signalized intersections 
depends on many factors and certain specific components and sensitivities are investigated experimentally in 
this study. The CAVs Pillar researchers also investigated unproductive fuel consumption at stop sign 
controlled intersections and revealed that substantial fuel is consumed unproductively for vehicles making 
stops when no vehicles are present at conflicting approaches. Field data collected at both signalized and 
unsignalized intersections, described below, provided scientific evidence to support further assessments of 
unproductive fuel consumption at intersections. 

3.1.5.2 Laboratory-Based Investigation of Select Eco-Driving Approaches 

• Experimental dynamometer testing has confirmed that for recent conventional vehicles, simulation 
values from literature for highlighted EAD benefits are relatively in line with experimentally observed 
benefits. However, the benefits and sensitivities of the EAD strategies evaluated diverge significantly 
for electrified vehicles with some strategies providing a greater impact for electrified vehicles and 
some strategies showing fewer benefits, due to the more efficient operating capabilities of electrified 
vehicles. 

For this work, the potential eco-driving benefits of select intersection approach trajectories for two distinct 
scenarios were evaluated across four different powertrain types in a dynamometer-based laboratory 
environment. The two intersection approach scenarios considered in this study were: 1) an approach to a red 
light where stopping is not needed, given a proper trajectory recommendation and 2) an approach where a 
complete stop is needed but known in advance due to information provided from I2V communications. The 
four powertrain types tested in this study included a conventional vehicle, a conventional vehicle with idle 
stop-start, a hybrid electric vehicle (HEV), and a battery electric vehicle (BEV). The test vehicles used for this 
study were a 2017 Ford F150 with a 3.5L V6, 10-speed automatic transmission, and stop-start capability 
(conventional and start-stop cases) and a 2017 Toyota Prius Prime PHEV (HEV and BEV case due to its full 
engine-off capability). To ensure test-to-test repeatability, driving was done by a robotic driver following the 
desired computed approach trajectories. More detailed specifications for each vehicle as well as the 
instrumentation and experimental setup can be found in in the research publication related to this work.54 The 
test cycles evaluated for this work comprised a series of intersection approach and launch speed traces referred 
to as Approaches 1-4, and were based on two different simulation studies found in the reference literature 
(Scenario 1 and Scenario 2, respectively).55,56 The results of these literature-based reference simulation studies 
for conventional vehicles, are the “reference values” in the results displayed in this section. Results from each 
experimental scenario studied on the dynamometer are compared to the reference value, in the applicable 
simulation study. 

Scenario 1, shown in Figure 3-15, is a vehicle approaching an intersection where slowing down is necessary 
but a full stop is not required (short red light). The EAD strategy investigated, based upon the first literature 
reference, involves an on-board calculation of the cruising speed and associated initial deceleration profile that 
would make the vehicle reach the intersection just after the signal changes back to green.57 Then, once the 
vehicle enters the intersection with a green light signal, it accelerates back up to its previous cruising speed. 
Approaches 2 through 4 apply this cruising-based EAD strategy (using knowledge of the signal timing to 
identify a cruising speed). However, in Approach 1, the vehicle decelerates continuously to the stopline, 
although it is still aware of the impending phase change due as shown by its non-zero arrival speed at the stop 
line. Experimental results comparing the additional benefits of Approaches 2 through 4 over Approach 1 for 
the different powertrain technologies included in this study are discussed below. 
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Figure 3-15. Intersection eco-approach and launch with no stop required (Scenario 1). 

Figure 3-16 summarizes the relative additional consumption improvement for Approaches 2 through 4, over 
Approach 1 for the various powertrain configurations compared to the reference value for this strategy from 
the literature source. Results for the stop-start enabled vehicle are not shown since they are identical to the 
conventional vehicle results, because neither stopped in this scenario. For the conventional vehicle, Approach 
2 was observed to have minimal additional fuel consumption benefit compared to Approach 1, while 
Approaches 3 and 4 showed additional benefits of 5% and 3%, respectively. When applied to the HEV and 
BEV powertrain vehicles in this study, the cruising-based EAD strategy showed additional consumption 
benefits over Approach 1, with slightly increasing benefits from Approach 2 to Approach 4. The simulation-
based results in the original reference work also show an increasing benefit between Approach 2 and 4; 
however, the absolute value of the reference result is significantly higher than the experimental test results for 
any of the three powertrain types. It is also interesting that the experimental test results for the HEV and BEV 
cases show higher additional consumption benefits compared to the conventional vehicle, probably due to 
improved regenerative braking. 
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Figure 3-16. Summary of the relative fuel and energy consumption benefit for approach strategies 2 through 4 for Scenario 

1 (patterning denotes reference values). 

Scenario 2 represents approaching an intersection where a full stop is necessary, and the approach distance is 
long (long red light), such that there is sufficient time to create an optimized decelerating trajectory. For this 
scenario, a strategy for “coasting,” such that the vehicle just reaches the intersection and nearly comes to a stop 
without the need to apply the brakes until the last moment was evaluated for its fuel consumption performance, 
compared to simply cruising through the intersection at a constant speed (as close to the “cruise” condition as 
possible).58 As before, experimental results are provided for the different powertrain types evaluated as well as 
a comparison to the reference value.  

 
Figure 3-17. Intersection eco-approach with stop and idle required (Scenario 2). 

Figure 3-18 summarizes consumption performance of the deceleration-based EAD strategies compared to 
simply cruising through the intersection (Approach 1) for all four powertrain types, plus the reference results 
from the original simulation-based paper. When comparing relative consumption for a vehicle coming to a 
complete stop at an intersection to one passing through on a green light, electrified vehicles, with their much 
lower consumption penalty associated with stopping and re-accelerating, have a significant advantage over a 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

46 

conventional vehicle. Even with idle stop-start technology and eco-driving approach strategies, the non-
electrified vehicle tested for this study used more than double the amount of fuel when coming to a complete 
stop and accelerating back up to cruise speed than when cruising through the intersection. In contrast, the 
electrified vehicles (HEV and BEV) used at most 36% more energy in the worst case of coming to a stop 
rather than passing through the intersection. When compared to the results from the reference study used to 
create the experimental approach strategies, similar conventional vehicle results were observed, but the 
dramatically reduced consumption impact for stopping was not discussed for electrified vehicles. 

 
Figure 3-18. Summary of the fuel and energy consumption of approach strategies 2 through 4 for Scenario 2 compared to 

cruising (approach 1) through the intersection without stopping for Scenario 2 (patterning denotes reference values). 

This experimental study evaluated the potential consumption benefits and sensitivities of key eco-approach and 
launch strategies for two different scenarios and four different powertrain types. The results showed that HEV 
and BEV powertrains could have higher energy consumption benefits from certain eco-driving strategies than 
conventional vehicles. Since many future CAVs are likely to be built on HEV or BEV platforms, these 
experimental results show the importance of applying eco-driving strategies to future CAV applications. 
Furthermore, while the reference results for conventional vehicles are relatively in-line with the experimentally 
observed benefits for conventional vehicles, the benefits and sensitivities of EAD strategies diverge 
significantly for electrified vehicles, thus warranting more study of powertrain-specific EAD strategies and 
approaches. 

3.1.5.3 Field Evaluation of Eco Approach and Departure in Real-World Traffic Conditions 

• The data collected in EAD field testing showed a moderate fuel savings of 10% to 20% compared 
with adjacent vehicles without EAD operating in an 80m zone centered at a controlled intersection 
(i.e., 40m before, 40m after). However, in this field testing, the frequency of encountering EAD 
scenarios was low, making the overall benefits at the trip level insignificant.  

The benefits of EAD may be achieved in a number of ways when a vehicle travels toward an intersection as 
the traffic signal switches from green to red or vice-versa. When approaching a red signal, upon receiving the 
advisory information about the end of a red phase, a driver may slow down in anticipation of the signal phase 
change and pass through the intersection after the signal changes from red to green without making a full stop 
(as in Scenario 1 from the previous section). At the end of a green signal phase, to achieve fuel savings, the 
advisory information may cause an approaching vehicle to slow down earlier and with gentler deceleration 
than a vehicle without advisory information (as in Scenario 2 from the previous section), or to glide through 
before the signal switches to red (as in Scenario 1 and the cruise strategy in Scenario 2 above).  
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Under the SMART Mobility consortium, an EAD advisory application was field evaluated to understand the 
behavior differences between the test vehicles using EAD strategies and the surrounding vehicles within a 
corridor. The EnLighten mobile EAD app, from Connected Signals59, was used to provide the state of 
approaching traffic signals to eco-equipped vehicles, including a red phase countdown and a “make/miss” 
speed range based on the future state of the signals ahead. For testing purposes, Connected Signals made 
modifications to its commercial version of its EnLighten software to also provide green phase countdown 
information. The red phase countdown enables EAD (similar to Scenario 1), while the green phase countdown 
facilitates both EAD (Scenario 1) and eco-approach (Scenario 2). EnLighten uses GPS data from cell phones to 
gather the location of the experimental vehicles and extracts the speed information.  

Figure 3-19 shows the interface of the commercial EnLighten app. The arrows show the status of the signal in 
the direction of travel and change color to correspond with the actual signal phase. A countdown number 
replaces the arrow when the vehicle approaches an intersection. The emulated speedometer panel includes a 
numerical speed reading (e.g., the 20 in Figure 3-19 shows that the vehicle is traveling at 20mph) and a color 
band showing the advisory speed range in green. If the driver reduces speed such that it is in the red speed 
range, the vehicle may encounter a red light at the intersection ahead (i.e., the now green signal will have 
turned red).  

 
Figure 3-19. EnLighten EAD software interface. 

For this experiment, a corridor was instrumented with strategically placed video recording equipment to 
capture vehicle movement and documentation of traffic signal phase and timing information. Eco-equipped 
vehicles were driven by test drivers within the test corridor following the advisory EAD information. Image 
processing tools were installed to record the movement trajectories of the test vehicles, as well as the 
surrounding traffic, which enabled location and speed data to be derived for all vehicles at 0.1 second intervals 
of time. 

A subsection of Santa Clara Ave. in San Jose, CA (shown in Figure 3-20), was the corridor used for data 
collection. This test corridor includes 10 intersections and nine road links, with an average distance between 
intersections of 82 meters. High resolution cameras were used to capture the environment, vehicles, and 
pedestrians within the corridor. Six of the cameras provided a “bird’s-eye” view from the rooftops of 
surrounding buildings and two sets of cameras provided a street-level view where roof-top access was not 
possible. 
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Figure 3-20. San Jose eco-driving corridor overview and camera locations. 

Figure 3-21 shows examples of the captured images. Advanced image processing techniques were used to 
process the captured video data to extract vehicle trajectories. Vehicle speed was then processed through a 
Kalman filter. 

 
Figure 3-21. Example corridor video images (left bird's eye view, right: street view). 

Five mid-size ICE sedans were used as the experimental vehicles. All vehicles recorded their respective GPS 
position, and each had unique markings so it could be easily identified in the camera images. One of the 
experimental vehicles also had an on-vehicle 360-degree camera, roof-top mounted LIDAR, and a high-
precision GPS/INS position measurement system. The experimental fleet was then driven across a range of 
times of day and traffic scenarios over two consecutive weekdays.  

Analyses conducted on the trajectory data enabled a direct comparison of the driving behaviors and fuel 
consumption of the test vehicles instrumented with the EAD function (eco-equipped) to their neighboring 
unequipped vehicles in the same traffic stream. The with/without comparison approach is an objective 
evaluation, as the vehicles with and without eco-driving are evaluated in the same environment, under identical 
traffic conditions, and with drivers in the unequipped vehicles being unaware of the test and behaving as they 
naturally would. In comparison, the before-and-after evaluation approach, typically used in earlier evaluations 
of eco-driving strategies can be significantly influenced by variations in testing conditions and the ability to 
collect adequate data for statistically sound analyses. 

Fuel consumption was derived from the speed trajectory of each vehicle using the VT-Micro fuel consumption 
model for a conventional vehicle.60 In this test corridor, the deceleration and acceleration of most of the 
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vehicles occur from 40 meters before the stop line to 40 meters after the stop line. The driving behaviors and 
resulting fuel consumption for eco-approach (EA) related results was evaluated in the 40-meter range before 
the stop line, and EAD was evaluated by comparing various speed trajectories within the 80-meter range 
centered at the test intersection. The fuel saving benefits of EA and EAD scenarios are illustrated in the 
following case examples. Note that the actual fuel saving benefits for these scenarios may vary depending on 
the type of driver, model of vehicle, intersection setting, and control. 

Figure 3-22 shows an example of eco-approach in which a vehicle is approaching an intersection when the 
signal switches from green to red and a full stop is necessary. The eco-equipped vehicle and unequipped 
vehicle travel in parallel in adjacent lanes when the signal switches from green to red. In comparison with the 
unequipped vehicle (green line), the eco-equipped vehicle (orange line) applied earlier deceleration to come 
smoothly to a stop. This case example shows eco-approach advisory information can facilitate earlier and 
smoother deceleration, which in turn leads to quantifiable fuel saving benefits. For this example, from the 
observed speed trajectories, the equipped vehicle achieved a fuel savings of nearly 9% over the unequipped 
vehicle in the 40 m approach zone.  

 
Figure 3-22. EAD Scenario 2: Eco-equipped and unequipped vehicles travel in adjacent lanes and arrive at intersection at a 

similar time. 

Figure 3-23 presents a different example of eco-approach, in which an unequipped vehicle follows the 
instrumented vehicle in the same lane. The orange line represents the eco-equipped vehicle, and the blue line is 
the unequipped vehicle. In this example, the driver of the eco-equipped vehicle may have initially reacted to 
the green light countdown by accelerating, with the intention of passing through the intersection on the green, 
but then decided they would not be able to and slowed down to come to a stop (still using information 
provided by the EA device). As the lead eco-equipped vehicle (orange line) performs this deceleration, the 
trailing unequipped vehicle (blue line) decelerates in response to the leading eco-equipped vehicle. In this 
particular case, there was not an adjacent vehicle with which to compare. However, test data show that the fuel 
usage of the eco-equipped vehicle is less than the average fuel usage for unequipped vehicles in general. Most 
important, the trailing unequipped vehicle achieved more fuel saving than the leading eco-equipped vehicle 
(about 10% fuel saving for this example). This may be due to the fact that the eco-equipped vehicle initially 
accelerated and then utilized an EA strategy. This case illustrates how even an unequipped vehicle may gain 
fuel saving benefits when following an eco-equipped vehicle. 
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Figure 3-23. EAD Scenario 2: An unequipped vehicle follows an eco-equipped vehicle. 

Figure 3-24 shows an example of EAD, in which vehicles are approaching a signal nearing the end of the red 
phase. The eco-equipped vehicle is further from the stop line than the unequipped vehicle and traveling in a 
parallel lane. With advisory information and sufficient lead time, the eco-equipped vehicle (orange line) 
decelerates then accelerates to avoid a full stop, while the unequipped vehicle (blue line) nearly comes to a full 
stop and then accelerates to pass through the intersection. This case example shows that EAD advisory 
information can help a driver to avoid a full stop as the vehicle approaches an intersection when the signal is 
switching from red to green, which in turn saves fuel (nearly 10%, in the 80m control zone in this example). 
However, this scenario is rather rare. Among the 82 passes of eco-equipped vehicles in this field study, only 
two additional Scenario 1 cases were observed, and these cases are without adjacent unequipped vehicles for 
comparison. 

 
Figure 3-24. Case of Scenario 1: EAD Case I: An eco-equipped vehicle slows down but does not make a full stop. 

Unequipped vehicle in adjacent lane makes nearly a full stop 

Table 3-1 summarizes the observed occurrences of traffic scenarios and estimated fuel consumption of all 
southbound vehicles at test intersection 5 in Figure 3-20 (Santa Clara St. and 4th St. in San Jose). During a 
cumulative 10-hour time window, 5,296 vehicles were observed passing through the intersection, with 82 eco-
equipped vehicle arrivals. The data show that, in comparison with the vehicles without EAD information, EAD 
advisory information produced an average fuel savings of 3.5 grams or 13% per occurrence for vehicles 
approaching the test intersection at the end of a green phase (EAD Scenario 2), and an average fuel savings of 
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5 grams or 20% per occurrence for vehicles arriving at the test intersection at the end of a red phase (EAD 
Scenario 1). 

Table 3-1. Eco-equipped vehicle fuel consumption (in 10 hours). 

  
# of 

occurrence
s 

% of Arrivals 
for EAD 
Vehicles 

Average fuel 
consumed per 

occurrence 
(grams) 

Cumulative Fuel 
Consumed 

(grams) 

Average Fuel 
Saving due 

to EAD 

(grams) 

All Vehicles 
Cruise 2549  16.6 42313  

Stopped 2747  26.3 72246  

Vehicles 
w/EAD 

Arrive during 
green phase 52 63.4%    

Arrive during red 
phase 17 20.7%    

Arrive at end of 
red phase (EAD 

Scenario 1) 
3 3.7% 21.3 63.9 15 

Pass at end of 
green (EAD 
Scenario 2 

cruise) 

0 0%    

Arrive at end of 
green (EAD 
Scenario 2 

Approach 2-4)  

10 12.2% 22.8 228 35 

 
While the fuel saving benefit per occurrence is considerable, the statistics from the experimental study show 
that the observed frequency of EAD scenarios is generally low at the penetration levels evaluated for this 
study. Among the total of 82 arrivals by vehicles with EAD at the test intersection within a 10-hour time 
period, EAD strategies were only applicable to about 15% of the cases, and did not offer any benefits for the 
remaining cases. Overall, 80% of observed cases were arrivals occurring during either the green phase or the 
red phase when EAD information was not helpful. More specifically, EAD enabled 3.7% of arriving vehicles 
to pass through the intersection without stopping at the end of red phase and 12.2% of vehicles to arrive with 
earlier and gentler deceleration leading to a stop at the end of the green phase. Interestingly, none of the eco-
equipped vehicles were observed to increase speed in order to cruise through an intersection, most likely 
because the drivers were advised to observe speed limits and to not speed up to beat a red light. In real world 
consumer deployments, applications such as EnLighten do not typically provide a countdown for a green phase 
completion so that drivers are not led to run red traffic lights if the phase change were to be incorrectly 
predicted. To put the observed EAD occurrences in context, for a typical trip with an average trip length of 7 to 
13 miles for various trip purposes and involving 10 signalized intersections, an eco-equipped vehicle may 
benefit from EAD advisory information at one to two intersections, resulting in a savings of less than 1% of 
the fuel consumed for the trip. Thus, the low frequency of encountering the EAD scenarios makes the overall 
fuel saving benefit due to EAD small at the trip level, based on this study’s specific intersection configurations 
and the penetration implied by the amount of eco-equipped vehicles in the study. 
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However, it is worth noting that the number of vehicles benefitting from the EAD system may be greater than 
the total number of eco-equipped vehicles, as indirect benefits may be achieved for vehicles following eco-
equipped vehicles (as in the example above). Also, note that the fuel saving results only represent an order-of-
magnitude analysis. The actual fuel savings for EAD at both the trip level and intersection level can vary, 
depending on many factors, including the traffic control strategies, traffic conditions, and the way drivers use 
the EAD advisory information, as well as the types of powertrains operating within the system. Analyses also 
show that the distance between intersections can be an influencing factor. The fuel savings identified at the San 
Jose test site may be constrained due to the shorter distance between intersections (average 82 meters). EAD 
may become somewhat more effective when the distance between intersections is longer, so that drivers can 
take earlier actions to slow down for more fuel saving. Nevertheless, the field evaluation study concluded that 
the overall fuel saving benefit of EAD appears small at the trip level due to limited vehicle arrivals during a 
time-period where an EAD strategy would provide benefits. 

3.1.5.4 Evaluation of Unproductive Fuel Consumption at the Signalized Intersection Level 

• Field data gathered during EAD intersection testing for a specific intersection, showed that more than 
80% of the time, vehicles stopping at that intersection did not encounter other vehicles at the 
conflicting approach. These unnecessary stops are the primary cause of unproductive fuel 
consumption at signalized intersections and accounted for over 15% of the total estimated fuel 
consumption at the test intersection. This suggests that, for the intersection assessed, more intelligent 
signal operation supported by connected vehicle and connected infrastructure technologies could lead 
to reduced stops and reduced fuel consumption. 

When evaluating fuel saving benefits at the intersection level, it is critical to determine the level of 
unproductive fuel consumption that can be addressed by more situationally aware signal phase and timing. The 
unproductive fuel consumption for signalized intersections is defined as the excessive fuel consumption for 
vehicles being stopped by traffic controls when neither vehicles nor pedestrian activities are present at the 
conflicting approaches. While EAD may address a portion of unproductive fuel consumption when the signal 
is switched from green to red or vice versa, the unproductive fuel consumed when vehicles are stopped without 
the presence of any conflicting traffic should also be assessed.  

An analysis of traffic behaviors and unproductive fuel consumption was conducted using the data collected at 
test intersection 5 (Santa Clara St. and 4th St., in San Jose). Table 3-2 summarizes the vehicle arrival rate and 
the potential fuel consumption of southbound vehicles approaching the test intersection. The data shows that 
among the roughly 52% of the vehicles stopping at the intersection, only 26% of the vehicle stops were at the 
same time as other vehicles were at the conflicting approaches (13% of total approaches). The remaining 74% 
of vehicle stops observed in the evaluation period involved no conflicting vehicles during the red phase (39% 
of total approaches), resulting in added fuel consumption for unproductive stopping and idling. The analysis 
revealed that unproductive fuel consumption due to unnecessary stops accounted for up to 30% of total fuel 
consumption at the test intersection. The analysis of unproductive fuel consumption only provides an order-of-
magnitude estimate specific to the traffic conditions encountered and infrastructure capabilities assessed, yet 
this analysis reveals that unproductive fuel consumption at intersections is primarily attributed to unnecessary 
stops when no conflicting traffic or pedestrians are present. 
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Table 3-2. Vehicle stopping and fuel consumption at signalized intersection on August 7, 2019. 

Arrival 
at red 
phase 

 

Conflicting 
vehicles 
present 

25 

7.0% 

33 

7.2% 

61 

12.8% 

75 

14.5% 

103 

14.5% 

51 

19.2% 
28.7 0.51 0/0 

No 
conflicting 
vehicles 
present 

172 

48.5% 

220 

48.0% 

150 

31.5% 

177 

34.2% 

224 

41.8% 

72 

24.7% 
25.1 1.31 1437/0.45 

 
Analysis done within this report shows that unnecessary stops can be caused by inefficient traffic control at 
intersections, likely rooted in the suboptimal detection of approaching vehicles at intersections due to limited 
information provided by inductive-loop detectors, resulting in the traffic control not being able to adapt to the 
larger real-time traffic conditions. The unproductive fuel consumption at signalized intersections due to 
unnecessary stops cannot be directly addressed by EAD functionality. Rather, unproductive fuel consumption 
can be mitigated by advanced detection of vehicles by radar and/or cameras at intersections or with connected 
vehicle technologies that enable vehicles to communicate with intersections prior to their arrival. EAD can, 
when integrated with Connected Vehicle supported traffic control systems, offer added fuel saving benefits. 

3.1.5.5 Unproductive Fuel Consumption at Stop-Sign Controlled Intersections 

• For the stop-sign controlled intersection assessed for this work, the majority of vehicles arrived at the 
intersection without encountering a vehicle at the conflicting approach (68% at the test intersection), 
suggesting that additional benefits could be achieved with improved coordination via the reduced need 
for stopping. 

Our analysis also assessed the driving behaviors and unproductive fuel consumption at a four-way stop-sign 
controlled unsignalized intersection in Pleasant Hill, California. The unproductive fuel consumption for 
unsignalized intersections is defined as the portion of fuel consumed by vehicles making decelerations and 
stops at intersections when no vehicles nor pedestrian activities are present at the conflicting approaches. At 
the unsignalzed test intersection, 360° cameras were installed on top of two traffic signs, and image processing 
techniques were used to process the captured video data and extract vehicle trajectories. Figure 3-25 shows the 
top view of the intersection where video data were collected. The red lines mark the stop line, the green points 

Event 

Number and Percentages of Arrivals Average fuel 
consumption 

Unproductive 
Fuel 

Consumption 
per hour 

(gram/gallon) 

07:30 

-08:30 

08:30 

-09:30 

09:30 

-10:30 

10:30 

-11:30 

11:30 

-12:30 

12:30 

-13:30 

Per 
arrival 

(gram) 

hourly 
average 

(gallon) 
 

Arrival at green 
phase 

(passing through) 

157 

44.4% 

205 

44.7% 

265 

55.6% 

265 

47.8% 

208 

38.9% 

168 

57.7% 
16.6 1.08 0/0 

Total number of 
arrivals 354 458 476 517 535 291    
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mark the driving vehicles, the red points are stopping vehicles, and the yellow points are conflicting vehicles. 
For example, in the scenario shown, the red vehicles 203529 and 203527 are stopping at the west stop line. 
The green vehicle 118 is driving inside the intersection. The yellow vehicle 100048 is approaching the 
intersection and is a conflicting vehicle for the stopping vehicles 203529 and 203527. 

 
Figure 3-25. Unsignalized intersection in Pleasant Hill with mapped vehicle detections. 

As with the signalized intersection data, speed profiles were extracted from the data to analyze vehicle 
behaviors before and after the stop line. Figure 3-26 shows the vehicle speeds as a function of distance to the 
stop line. Although all the vehicles decreased their speeds when approaching the stop line (dashed line), only a 
portion of the vehicles made complete stops (blue lines) as required by the traffic laws. A significant portion of 
the vehicles did not come to a full stop. 
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Figure 3-26. Speed profile of the vehicles. Dashed line marks location of the stop sign. 

Table 3-3 summarizes the data collected for a weekday between 13:30 and 16:30 at the Peasant Hill stop sign 
controlled intersection. Analyses were conducted to classify the vehicle behaviors into complete stop (speed 
less than 1 mph), rolling stops (speed between 1 and 5 mph) and running stop signs (speed over 5 mph). The 
data show that 73% of the arriving vehicles from all approaches at this intersection did not make a complete 
stop, and 27% of all the vehicles made a full stop. Of the vehicles that made a full stop, 66% made full stops 
when there were vehicles at the conflicting approaches (18% of total approaches), while roughly 34% of 
vehicles made full stops when no vehicles appeared at other approaches (9% of total approaches). Further 
analysis shows that the rate of rolling stops and stop sign running has an inverse relationship to the rate of 
conflicting vehicles. Specific to this intersection, vehicles arriving from the east and west approaches had 
higher rolling stop and stop sign running rates, since the rate of conflicting vehicles from South and North 
approaches were lower. The analysis suggests that a portion of the full stops made at the stop lines were 
required by the presence of conflicting vehicles, i.e., not fully stopping was not an option. The unnecessary 
stops result in travel delays and unproductive fuel consumption. Though stop signs are perceived as promoting 
traffic safety, improper use of stop signs can cause many drivers to ignore them, creating a more hazardous 
situation.61  

In order to estimate unproductive fuel consumption, the trajectory of slow-down-then-speed-up activity of each 
vehicle within the range of 40m before and after the stop sign was fed into the fuel consumption model. When 
there are no conflicting vehicles, if the vehicle makes a stop or slows down, the extra fuel is uses (unproductive 
fuel consumed) is compared with a reference vehicle that keeps a steady speed to cross the intersection. The 
unproductive fuel consumption for the observation period reaches 1.0 gallon/hour at the testing intersection, 
accounting for over 30% of the fuel consumed at this intersection. The analysis also indicates that the 
unproductive fuel consumption at an unsignalized intersection, within the range of 40 m before and after the 
stop sign, can be as high as 60% of the fuel consumed at that intersection (within the assessment zone) if all 
vehicles make proper full stops. 

The unproductive fuel consumption at unsignalized intersections can be reduced if vehicles are allowed to pass 
through the intersection at a steady speed when no vehicles or pedestrians are present. Among potential 
remedies, signal control with intelligent vehicle and pedestrian detection can be an effective way of 
minimizing unproductive fuel consumption. However, most of the current unsignalized intersections do not 
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have enough vehicular and pedestrian volumes or crash history to justify the installation of traffic signals as 
defined by the Manual on Uniform Traffic Control Devices.62  Alternatively, yield signs are appropriate in 
some cases to call on drivers to slow down, defer to oncoming traffic, stop when necessary, and proceed when 
safe. Connected Vehicle technologies have the potential to offer more intelligent solutions to maintain safety 
and efficiency while reducing the unproductive fuel consumption at unsignalized intersections. Further work 
on innovative strategies/technologies is needed. 

Table 3-3. Vehicle stopping and fuel consumption at unsignalized intersection (13:30 to 16:30). 

 Event Total # of 
arrivals/hour 

Average fuel 
consumption per 
arrival (grams) 

Average hourly fuel 
consumption 

(gallon) 

Unproductive fuel 
consumption (gallon) 

Fu
ll 

st
op

 With conflicting vehicles 
151 

17.56% 
20.4 0.81 0 

Without conflicting 
vehicles 

79 

9.1% 
17.6 0.36 0.21 

Ro
lli

ng
 v

eh
ic

le
s 

 

With conflicting vehicles 
86 

10.0 % 
15.9 0.36 0 

Without conflicting 
vehicles 

295 

34.3 % 
14.6 1.13 0.54 

Ru
nn

in
g 

ve
hi

cl
es

 
 

With conflicting vehicles 
41 

4.7 % 
13.4 0.14 0 

Without conflicting 
vehicles 

208 

24.19% 
12.2 0.67 0.25 

 Reference steady speed 
vehicle @ 22mph  7.6   

 Total 860    

 
3.1.5.6 Summary  

The experimental studies conducted by the CAVs Pillar show that moderate levels of fuel consumption 
improvement may be achieved when a vehicle arrives at an intersection shortly before the signal is switched 
from green to red or from red to green and a driver responds to the EAD advisory information in a fuel-saving 
manner (this is called a “benefited arrival”). On the other hand, the experimental studies have shown that the 
chances of vehicles encountering end-of-the-green/red scenarios at intersections are generally low. Therefore, 
for an individual vehicle, the fuel saving achieved by EAD at the trip level is insignificant. The field studies 
also reveal that fuel savings due to EAD at the intersection level may become noticeable if the total number of 
“benefited arrivals” is high. However, high rates of EAD equipped vehicle benefited arrivals are difficult to 
achieve until the overall penetration of connected vehicles is high.  

The analyses of the field data generated under SMART Mobility also indicates that additional investigations 
could focus on unproductive fuel consumption due to unnecessary controlled stops at both signalized and 
unsignalized intersections. During testing in the eco-equipped corridor described in this section, considerable 
unproductive fuel consumption occurred at intersections due to situations when vehicles stopped at 
intersections when no conflicting traffic was present. This work validates the promise of CAV technologies 
that can prevent vehicles from stopping unnecessarily when no conflicts are present, thus substantially 
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reducing unproductive fuel consumption for both signalized and unsignalized intersections. Further studies are 
needed to develop specific CAV applications that can realize this potential at a larger scale and contribute to 
substantial fuel savings while improving safety at intersections. 

 

3.1.6 Real-World Driving Data and Strategies for Green-Routing Applications 

• The RouteE tool was developed to make pre-trip vehicle energy consumption estimates, and initial 
validation testing indicates that RouteE accurately identifies which will be the least energy consuming 
(“greenest”) route among various alternatives. 

• A large-scale green routing opportunity evaluation, leveraging data on 45,000 actual trips, found that a 
less energy consuming route alternative existed for about one-third of these trips, and that among this 
subset of trips with a fuel saving route alternative, the aggregate fuel consumption of the “greenest” 
routes was estimated to be 12% lower than that of the originally selected routes. 

• Among the subset of routes with a less fuel consuming route alternative in the large-scale study, 
roughly half of the less fuel consuming routes also have a lower travel time. These “double win” cases 
account for roughly two-thirds of the fuel saving potential, with the other one-third requiring some 
level of travel time penalty to achieve the fuel savings. 

Green routing tools select travel routes that minimize energy consumption and present an important fuel saving 
opportunity for CAV technologies. The CAVs Pillar developed, validated, and applied a methodology that 
considers the relationship between driving conditions (road type, grade, traffic, etc.) and energy consumption 
for a given vehicle. Accurately representing this relationship enables optimization and selection of routes that 
minimize energy consumption. (As described in Sections 3.1.4 and 3.3.5.2, other applications of this capability 
include estimating aggregate energy consumption for a specific vehicle or for all vehicles traveling on a given 
road, a city’s entire road network, or even the national road network.) Through these efforts the methodology 
developed became formalized as the RouteE energy estimation tool. At its core, RouteE relies on detailed 
training data for a given vehicle model to establish the relationships between driving condition and vehicle 
energy consumption rate. These training data could come from comprehensive on-road physical data collection 
or be supplied by higher-fidelity vehicle model simulations over a comprehensive set of detailed real-world 
driving profiles (e.g., using a validated tool such as FASTSim63 or Autonomie64). Additional background on 
RouteE can be found in the SMART Modeling Appendix. Beyond helping to formalize development of the 
tool, the CAVs Pillar conducted a focused validation effort on RouteE and applied RouteE to estimate the 
large-scale energy benefits of green routing.  

The focused validation activity included collecting on-road fuel consumption data from identical pairs of 
conventional, hybrid, and plug-in hybrid electric vehicles driven along different routes between the same 
origins and destinations.65 Figure 3-27 shows two of the routes from the data collection effort in Phoenix, 
Arizona — one traversing only surface streets and the other driving primarily on a controlled access highway. 
RouteE models were subsequently trained for each of the vehicle types. A variety of approaches can be 
employed for training RouteE models, including various machine learning techniques that have been 
successfully used in other applications. For this effort, training involved running large-scale simulations of 
FASTSim vehicle models over real-world data from the Transportation Secure Data Center (TSDC)66, then 
binning the large-scale simulation results based on driving condition parameters (e.g., road grade, traffic speed, 
road type and orientation/turns taken). Averaging the many simulation results that coincide with each driving 
condition bin resulted in a multi-dimensional lookup table of representative fuel consumption rates for each 
driving condition. Following such training to establish a RouteE model for a given vehicle type, RouteE was 
then validated for its ability to accurately estimate relative energy consumption differences between the actual 
vehicles driving each route from the physical testing — including testing conducted at different times of day 
and thus in different traffic conditions.  
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Figure 3-27. Two of the routes driven during on-road data collection in Phoenix, AZ. 

The validation effort successfully demonstrated RouteE’s ability to accurately predict which route alternative 
would be the “greenest” (i.e., consume the least amount of fuel). Figure 3-28(a) illustrates the findings for one 
of the evaluated vehicles over a dozen different on-road test scenarios. Each axis of the figure plots the ratio of 
energy consumed on the surface route (option A) over that consumed on the highway route (option B), with 
the x-axis indicating this ratio as calculated from the on-road test data and the y-axis indicating model 
estimates of this ratio. Note that the figure includes results for both a basic FASTSim model (making use of the 
actual second-by-second driving trajectories traversed by the test vehicles) as well as the RouteE estimation 
results (made without the benefit of the actual second-by-second driving profile as this would not be available 
in a true pre-trip application). Unsurprisingly, the RouteE estimates show greater scatter than those from the 
basic FASTSim model, but RouteE nevertheless demonstrated 100% accuracy for predicting which of these 
pairs of tested routes would be less energy consuming. Note also from this plot that the actual energy 
consumption differences between the measured route pairs varied from roughly no difference to over 20% 
difference. 

Figure 3-28(b) examines how the model would be expected to perform over a much larger real-world dataset, 
given the 9.1% root-mean-square-error (RMSE) calculated for RouteE’s ability to predict the relative energy 
consumption differences between the smaller set of tested route pairs. This assessment relied on an early 
version of the larger scale green routing impact analysis, where a subset (about 14,000 trips) of real-world data 
from the TSDC were used in combination with a routing application programming interface (API) to identify 
different routes between the real-world trip origins and destinations and to subsequently estimate which of the 
route options would require the least amount of energy to drive. For each trip, the larger amount of energy 
estimated for other viable route alternatives was divided by the energy required by the least energy consuming 
route option to calculate the set of route alternative energy ratios plotted in Figure 3-28(b) as a histogram. 
Applying a probability function (based on the RouteE RMSE testing result) to the large set of real-world trip 
data demonstrates an expected 90% success rate for RouteE to select the least energy-consuming route. Note 
that most trips within this large real-world sample show energy consumption differences between alternate 
routes in a range similar to that of the smaller scale instrumented vehicle tests, but there are also route 
alternatives in the larger set of real-world origin–destination pairs that show potential fuel savings even higher 
than 20%. This validation effort demonstrated that the novel energy estimation techniques deployed in RouteE 
are suitable for green routing applications.67 
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(a)  

(b)  

Figure 3-28. Green routing methodology assessment -  (a) The plot highlights regions that indicate correct (white) and 
incorrect (red) selection of the least energy-consuming route option by the basic FASTSim (blue) and RouteE (black) models 

and (b) estimated success rate identifying the greenest route based on the RMSE from on-road validation of the RouteE 
model. The distribution demonstrates that the model will accurately select the least energy-consuming route for 90% of 

real-world trips. 

The broader green-routing opportunity analysis utilized a larger-scale version of the TSDC trip data referenced 
in Figure 3-28(b) and compared time and energy differences for alternative route options compared to the 
actual route chosen by drivers. Specifically, matched origin–destination pairs from 45,000 trips in the TSDC 
were fed into a routing API (from Google Maps), along with the day of week and time of day that the actual 

90% success selecting the 
least energy consuming 
route 

FASTSim 
RouteE 
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route was driven. Based on this information, the API returned the most viable route options between each 
origin–destination pair (along with estimated travel times), and RouteE was used to estimate the required 
energy consumption for each of the route options. As the TSDC data included information on the actual route 
driven, these time and energy consumption estimates were made for the actual routes along with the top 
alternative routes between each origin–destination pair.68,69 

The analysis found that for conventional vehicles a potentially less energy consuming route alternative existed 
for 31% of these actual routes. Among this subset of trips with a fuel saving route alternative, the aggregate 
fuel consumption of the “greenest” routes was estimated to be 12% lower than that of the originally selected 
routes. When considering the travel time impacts of these alternative energy saving routes, it was found that 
about half of them resulted in faster travel times as well as fuel savings, and the other half incurred some 
amount of travel time penalty. Figure 3-29 shows a scatter of the estimated energy savings and travel time 
impacts for the subset of real-world trips with energy savings potential. All points above the dashed horizontal 
line represent alternatives that present a time and energy savings (representing a “double win”), whereas those 
points below the horizontal line represent some degree of tradeoff between travel time and fuel savings. 
Among the points below the horizontal axis, those resulting in the steepest negative slopes relative to the origin 
(i.e., falling close to the negative vertical axis) represent the least favorable travel time to fuel savings 
tradeoffs. As line segments with increasingly less negative slopes sweep the region in the lower portion of the 
figure, the points where they intersect represent increasingly more favorable tradeoffs between travel time 
penalties and achievable fuel savings (with the most favorable options falling close to the horizontal axis). A 
promising finding in this combined assessment of fuel savings and travel time impacts is that those “double 
win” routes where both fuel and time savings occur account for two thirds of the overall energy savings — 
underscoring the substantive and potentially easy-to-achieve opportunity that green routing could provide for 
connectivity-enabled vehicle fuel savings.70,71 
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Figure 3-29. Energy savings vs. time savings for alternative routes compared to actual routes. 

 
3.1.7 Accessory Loads and Sensitivities for Automated Vehicles 

• Energy consumption sensitivity impacts of electrical loads vary significantly depending on cycle 
average power consumption and thus should be represented as an additional load applied to a cycle, 
not a percentage increase in consumption. 

• Various electrical loads have been applied to MY2019 BEVs and ICEs to show sensitivities to 
automation system electrical load across a range of levels. For example, a 2000W additional load 
shows overall real-world increases in consumption ranging from 17% to 30% for BEVs and 6% to 
24% for ICEs. 

o In contrast, if this load is applied over the UDDS cycle, the consumption increase is 38% to 
70% for BEVs and 10% to 50% for ICEs. 

• Field testing of a Cadillac CT6 with Super Cruise, a L2+ automation system, found automation system 
loads slightly above 100W when actuation, processing, and sensing loads are included.  

o The additional electrical loads changed minimally when Super Cruise was deactivated, 
suggesting that for lower-level automation capabilities, the true accessory load penalty for 
certain eco-behaviors may be minimal if these systems are already in use for safer driving. 

• Field testing of an automated vehicle prototype, provided by an industrial project partner, found 
automation loads ranging between 300W and 400W for functionalities including hands-free highway 
operation (L3) and fully self-driving operation and navigation at lower speeds (L4). These electrical 
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load levels suggest that many automation functions may be implementable at loads lower than the 2-4 
kW seen in recent driverless capable pilot fleets. 

Vehicle automation, especially higher-level capabilities that require minimal input from the driver and allow 
for more efficient operation and coordination, have begun to show significant potential for decreased 
fuel/energy consumption. While the information, awareness, and capabilities attributed to these automation 
systems offer many potential strategies for efficient operation, the sensors, processing and actuation 
components required by these systems represent a new additional power load which can reduce or cancel out 
the benefits provided by these new eco-capabilities. As several highly automated vehicle pilot fleets have 
begun testing, issues regarding the power consumption associated with these systems have come to the 
forefront, as several of these pilot fleets have experienced individual vehicle power consumption on the order 
of 2kW to 4 kW, which represents a significant increase in overall vehicle energy consumption.72,73 On the 
lower end of the spectrum, Tesla has recently announced its “Full Self Driving Chip” with a claimed 72 W 
power load74, although it is unclear how many additional components are required to assess the total energy 
consumption of their automation system. Similarly, researchers have also begun to look into the expected 
additional electrical loads and subsequent impacts of these loads on vehicle efficiency and consumption.75,76 

Despite this elevated interest, significant uncertainty remains regarding the expected loads for vehicle 
automation, particularly automation systems capable of driverless operation, with estimates varying widely 
from 240 W77 to 3 kW7879 and beyond. Moreover, studies that address the consumption impacts of these 
additional loads tend to focus on a single vehicle per powertrain option, which is not always recommended 
since electrical load impacts vary significantly with overall vehicle efficiency and type. Additionally, the 
electrical loads associated with automation have often been treated as “one size fits all,” with any automated 
driving capability attributed to a single electrical load. In practice, there is a spectrum of automation loads 
associated with the sensing and processing needs for a certain set of functionalities (i.e., more sensing and 
processing required for driverless operation versus basic hands-free driving). While automation systems are 
rapidly changing and evolving, this work created a snapshot of current vehicle and system trends while also 
providing insights applicable to future automated vehicle systems. 

Given the importance of understanding the impact of automation system loads on overall vehicle operational 
efficiency, as well as the current uncertainty in the public and research literature regarding expected loads, this 
research refined and expanded on the current literature related to automation loads and their impacts using a 
mix of experimental vehicle testing, analysis, and on-road commercial and prototype system testing. More 
specifically, this work first sought to identify the consumption sensitivities of very recent (MY 2018-2019) 
vehicles to a range of additional electrical loads and consumption levels. The second component of this work 
was to evaluate the loads associated with several automation systems under real-world operating conditions by 
using on-road field testing of instrumented vehicles. While certainly not intended to be exhaustive, this work 
then builds upon these diverse sets of experimental data to identify the trends, insights, and conclusions related 
to loads associated with automation systems and their impacts on overall vehicle system efficiency. 

3.1.7.1 Vehicle Electrical Load Sensitivity Analysis 

• Energy consumption sensitivity impacts on electrical loads vary significantly depending on cycle 
average power consumption and thus should be represented as an additional load applied to a cycle, 
not a percentage increase in consumption. 

• A range of electrical loads have been applied to MY2019 BEVs and ICEs to show sensitivities to 
automation system electrical load across a range of levels. For example, 2000W additional load shows 
overall real-world power consumption increases ranging from 17% to 30% for BEVs and 6% to 24% 
for ICEs. 

o In contrast, if this load is applied over the UDDS cycle, a consumption increase of 38% and 
70% for BEVs and 10% to 50% for ICEs. 
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While several simulation-based studies have recently begun to investigate the impacts of various automation 
system electrical loads on overall system efficiency, these results often use vehicle models built upon earlier 
vehicle generations, which may not fully represent the efficiency and characteristics of today’s current fleet of 
vehicles. For example, the EPA Label MPGe (a proxy for overall vehicle electrical efficiency) of a MY 2012 
Nissan Leaf is roughly 20% lower than that of a MY2019 Chevrolet Bolt. Similarly, ICE-powered vehicles 
have also increased in efficiency compared with previous generations, so it also important to consider more 
recent ICE vehicles when investigating automation system load impacts. With this in mind, dynamometer 
testing of select recent vehicles was used as a baseline to which the additional automation system loads were 
applied. This testing was used as a preliminary validation point for specific load impacts as well as to define 
estimates for parameters relevant to understanding electrical load impacts across vehicles. Specific to this 
work, dynamometer based testing of a MY2019 Chevrolet Bolt was used as a starting point for BEVs and a 
MY2019 Toyota Camry was used for the ICE assessment. 

To begin with the BEV case, Figure 3-30 summarizes the tested cycle-average DC energy consumption for the 
Bolt over U.S. regulatory cycles (secondary axis) and the subsequent estimated impact of a range of additional 
electrical loads applied during operation over these cycles (primary axis). Loads ranging from 250 W to 
3000 W were selected in an attempt to cover the majority of cases discussed in recent literature, although loads 
of more than 3 kW have been reported for certain prototype vehicles.  

 

 
Figure 3-30. Chevrolet Bolt estimated additional load sensitivity and cycle average energy consumption for U.S. regulatory 

cycles. 

The clearest observation from the Bolt testing is that the impact of additional electrical loads (for a BEV) is 
very strongly related to the average energy consumption of a particular drive-cycle. The Urban Dynamometer 
Driving Schedule (UDDS)80, a relatively mild drive cycle, shows a significantly larger relative impact than the 
much more aggressive US06 Supplemental Federal Test Procedure (US06)81. For example, 2000 W of 
additional electrical load is estimated to have a 55%–62% overall consumption impact for UDDS driving, 
whereas the same load results in roughly a 14%–15% overall consumption increase for US06 driving. Even for 
back-to-back repeats of the same driving cycle (i.e., UDDS 1-4), the impact of the additional electrical load 
changes noticeably due to cycle-to-cycle warm-up and other variations. These results again highlight the 
observation from previous studies that automation system electrical load is an important consideration when 
evaluating overall vehicle energy consumption. Furthermore, when considering the impact of a particular 
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automation system load, a simple percentage multiplier (i.e., 700 W = X% consumption increase) is likely to 
be misleading except in the aggregate case. 

Building on the BEV sensitivities observed for the Bolt testing, the next step was to apply these insights for a 
range of recent BEVs. It stands to reason that the observed sensitivity to cycle average power will also be 
relevant when investigating BEVs with different weight and vehicle characteristics (efficiency, drag, rolling 
resistance). To accomplish this task, the same range of additional electrical loads were applied to all of the 
BEV results in the EPA MY2019 data repository82, which collects consumption data over select U.S. 
regulatory cycles (UDDS, HWFET for BEVs). The estimated UDDS and Highway Fuel Economy Test 
(HWFET) consumption sensitivities due to additional electrical load for MY2019 BEVs are shown in Figure 
3-31, with each individual entry on the X-axis corresponding to a distinct MY2019 BEV. These results again 
highlight the observation that UDDS and HWFET sensitivities differ significantly. In addition, a significant 
range of impacts due to the vehicles themselves can also be observed. For example, the impact of a 2000 W 
additional electrical load applied to all MY2019 BEVs varies between 38% and 70% for UDDS operation 
versus 15-26% for HWFET operation. 

  

 
Figure 3-31. Baseline highway electrical consumption for MY 2019 BEVs and their estimated UDDS and HWFET energy 

consumption sensitivities. 

While it is useful to observe the individual sensitivities for the UDDS and HWFET cycles to illustrate a range 
of possible impacts across automation system power levels, a combined estimate of real-world impact 
expectations is useful as well. As shown in Figure 3-32 below, the real-world adjustments detailed in 40 CFR § 
60083 were used to create an estimated real-world impact due to electrical loads applied to the same set of MY 
2019 BEVs.  
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Figure 3-32. Estimated real-world consumption sensitivity to additional electrical loads for MY2019 BEVs. 

As before, a significant range of sensitivities can be observed at each level of additional power due to the 
baseline performance of the vehicle to which the additional loads are applied, but the overall impacts are much 
more muted than the dramatically large impacts observed for the UDDS cycle. That said, even for real-world 
adjusted values, the additional loads due to a particular automation system will have a significant impact on 
overall BEV energy consumption and must be considered when estimating the benefits of a proposed AV 
operating strategy. Additionally, for BEVs these dramatic increases in energy consumption lead to significant 
decreases in vehicle range and thus must be intelligently considered when sizing components as well as 
defining trips that can be made without requiring a recharging session.  

As in the BEV analysis above, experimental data for a recent ICE vehicle was used to provide baseline 
parameter estimates and sensitivity validation for an ICE vehicle. This information was then applied to a much 
larger set of MY2019 vehicles contained in the EPA Vehicle Database to estimate both cycle-specific and 
vehicle performance specific consumption sensitivities to additional electrical load. ICE fuel consumption 
increases due to additional electrical loads is also very dependent on both the drive cycle and an individual 
vehicle’s baseline performance and characteristics. Overall consumption impacts are somewhat lower than 
those for BEVs, with a 2000 W additional load representing a roughly 10%–50% increase in consumption, 
compared to the BEV’s 38%–70%. Interestingly, the spread of sensitivity (max%–min%) is much larger for 
MY2019 ICEs than for BEVs. This because MY2019 ICE vehicles include a range of economy cars to sports 
cars encompassing a very large set of fuel consumption values, while the range of BEV energy consumption 
for MY2019 vehicles is considerably smaller. 
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Figure 3-33. MY2019 ICE estimate electrical load sensitivity for UDDS, HWFET, and US06 cycles. 

An aggregate estimate for real-world sensitivities to additional electrical loads was created for the ICE 
MY2019 results. As expected, the overall impacts are more muted than the much larger impacts estimated for 
the UDDS cycle in the above analysis, and a very large range of impacts for a given load level was estimated 
because of the wide variations in MY2019 vehicle efficiencies, leading to different relative impacts of the fuel 
required to power the additional electrical load. These real-world impacts appear to be on the order of roughly 
5% lower than the BEV results, although the range of sensitivity is again much larger for the ICEs. For 
example, a 2000 W additional load is estimated to result in a 6%–24% increase in fuel consumption for the 
range of MY2019 ICE vehicles, whereas the same 2000 W load applied to the MY2019 BEVs results in a real-
world electrical consumption impact range of 17%–30%. 
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Figure 3-34. MY2019 ICE vehicle estimated real-world additional electrical load sensitivity. 

3.1.7.2 In-Field Assessment of Automated Vehicle Electrical Loads during Typical Operation 

• Field testing of a Cadillac CT6 with Super Cruise, a L2+ automation system, found automation system 
loads slightly above 100 W, including actuation, processing, and sensing loads.  

o The additional electrical loads changed minimally when Super Cruise was deactivated, 
suggesting that for lower-level automation capabilities the true accessory load penalty for 
certain eco-behaviors may be minimal if these systems are already in use for safer driving. 

• Field testing of an automated vehicle prototype, provided by an industrial project partner, found 
automation loads ranging between 300W and 400W for functionalities including hands-free highway 
operation (L3) and fully self-driving operation and navigation at lower speeds (L4). These electrical 
load levels suggest that many automation functions may be implementable at loads lower than the 2-4 
kW seen in recent driverless-capable pilot fleets. 

• Issues such as how to implement safe and efficient system redundancy (and the associated electrical 
loads), as well as the electrical loads associated with cooling an automated vehicle’s processing 
system, were also highlighted in the in-field testing. 

The second component of this work sought to quantify the power consumed by the sensors, controllers, and 
actuators of a production hands-free automated driving system (L2+) as well as the power required for a L3/L4 
automated vehicle development prototype. To support this assessment, a production 2018 Cadillac CT6 with 
“Super Cruise” advanced driver assist features84 was selected for the L2+ case. The Super Cruise system uses 
multiple radars (a mix of long and short range units) fused with a forward facing camera and processing unit 
for its environmental perception system. This externally facing system is supplemented by an internally facing 
driver awareness camera and processing unit used to ensure continued driver engagement despite operating in 
hands-free mode as well as a GPS and mapping unit to ensure the vehicle is operating within its intended 
operational design domain (ODD). The Cadillac vehicle provides insights into current series production 
strategies, and the hands-free capabilities enabled by the Super Cruise system likely represent a minimum 
point at which certain eco-driving strategies may be implemented on a controlled access highway. For 
example, since the driver is already somewhat disengaged from specific maneuvers, the Super Cruise system 
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could easily coordinate with other vehicles (assuming some form of V2V communication/coordination) to 
create spaces for merging vehicles to enter the highway, thus smoothing overall traffic flow.  

In collaboration with project partner FEV85, FEV’s “Smart Demonstrator” vehicle86,87, a 2017 Ford Fusion 
hybrid-based automated vehicle development platform for L3/L4/L5 sensor development and controls 
research, was selected as the L3/L4 assessment platform for this research. The Smart Demonstrator is equipped 
with a single NVIDIA DRIVE PX2 GPU-enabled processing unit in addition to a ruggedized PC and 
accompanying peripherals. The Smart Demonstrator utilizes the following sensors: 

• 360-degree LIDAR (Velodyne VLP16) 
• Six wide-angle 2 MP cameras (120 degrees) 
• Two 2 MP front-facing cameras (60 degrees) for stereovision 
• One narrow angle 2 MP front-facing camera (43 degrees) 
• Dual-band front facing radar (>70 GHz wavelength) 
• Precise two-antenna dGPS with RTK and IMU correction (accuracy up to 1.5 cm) 

Each vehicle was instrumented with a large number of voltage and current sense points. Sense points were 
focused on overall vehicle automation system power consumption as well as on individual sensors, their 
controlling ECUs, and the actuators that they control. An array of additional sensors and cameras were used to 
facilitate and record the actual testing in order to better understand the surrounding operational conditions 
during testing. The results, though potentially similar to those for other systems, are specific only to those 
measured and to the specific suppliers of the sensors suites evaluated. Example sense points and 
instrumentation are shown in Figure 3-35, Figure 3-36, and Figure 3-37 below. 

 
Figure 3-35. Examples of advanced driver-assistance system instrumentation and sense points. 

An overview of the instrumentation for each vehicle is provided in Figure 3-36 and Figure 3-37: 
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Figure 3-36. Cadillac CT6 Instrumentation Overview. 

 

 
Figure 3-37. Ford Fusion HEV (FEV AV Demonstrator) Instrumentation Overview. 

3.1.7.3 CT6 with Super Cruise — Highlighted Results 

Controlled access highway driving with the Super Cruise system enabled resulted in an overall average 
measured automation-related power consumption of 101 W to 104 W. The sensors themselves consumed an 
average of 52 W, or roughly 50% of the total system load. The ECUs and processing support for the specific 
advanced driver-assistance systems (ADAS) features being reviewed consumed 35 W, roughly 35% of the 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

70 

total consumption. The actuators (electric power steering and braking) consumed an average of 14 W over the 
course of testing. The consumption results were consistent regardless of environment or complexity of the 
driving environment. Overall system and individual group usage are summarized in Figure 3-38 below, with 
significant individual contributor components shown in Table 3-4. 

 
Figure 3-38: Super Cruise overall automation system and subsystem average electrical loads during operation on public 

limited access highways (95% confidence interval shown in error bars). 

Table 3-4: Key Contributors to Observed Super Cruise On-Road Accessory Loads. 

Component 

Average Observed 
Power Consumption 
During Super Cruise 

Operation 

Radar (aggregate) 40W 

System control and processing modules  
(aggregate, two modules) 

24W 

Driver monitoring control module (DMCM) and camera 10W 

Electric power steering actuators (EPAS) 10W 

External cameras (aggregate)  

(driver monitor not included) 

9W 

Video processing control module (VPCM) 6W 

Other loads 4W 
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The device that saw the greatest difference in power consumption due to activation of Super Cruise was the 
driver monitoring control module (DMCM) which varied by ~3 W, due to the illumination of the driver’s face 
during Super Cruise operation to ensure driver attentiveness. Surprisingly, the additional electrical loads due to 
the vehicle’s other ADAS-related sensors and processing changed minimally when Super Cruise was 
deactivated. This is likely due to the processing system and sensors being used for other safety and 
convenience features even during normal operation, suggesting that for lower-level automation capabilities, the 
true accessory load penalty for certain eco-behaviors may be minimal if these systems are already in use for 
safer driving. 

While the overall average power consumption for the actuation systems was a relatively low 14 W, the specific 
duty cycle of the actuators is an important consideration when generalizing the actuator consumption for a 
wider range of operational profiles. More specifically, since the Super Cruise vehicle operates exclusively on 
limited access highways, moderate to severe steering and braking inputs are relatively minimal, and thus a 
relatively low average overall power consumption is to be expected. For maneuvers that required a large and 
rapid change in steering position, momentary excursions to power levels above 700 W were observed for the 
power steering system. These excursions occurred during non-Super Cruise operating periods when the 
vehicle’s electric power steering assist system activated when transitioning between roadways or navigating 
parking lots. Although to a lesser degree, the braking system also showed momentary periods of elevated 
power consumption. While the average observed actuation electrical load of 14 W represents a minimal impact 
to overall vehicle efficiency, these excursions do represent an important requirement for overall system 
maximum power capability, particularly for an EV, in that these elevated loads must be considered when 
budgeting for overall battery power capability in a driverless-capable vehicle (or any vehicle for that matter). 
Figure 3-39 shows the steering and braking system actuation loads during a subsection of the Cadillac CT6 
testing, with and without the Super Cruise system activated. 

 
Figure 3-39. Example Cadillac CT6 braking and steering actuator loads during operation. 

Another interesting observation about the Super Cruise vehicle is that it appears to utilize two fully redundant 
controllers to operate and supervise the automation system. Specifically, both active safety control modules 
(ASCM) are active during vehicle operation despite the vehicle’s ability to operate using only one ASCM.88 
While each ASCM module utilizes between 11 W and 12.5 W (Figure 3-40), one can easily imagine that if 
fully redundant higher-power-consuming controllers were required for higher-level automation systems, this 
could result in a sizable increase in overall electrical load beyond what is needed for system operation. From 
this observation, it is clear that the amount of redundancy and capability for a safe driverless vehicle system is 
an important consideration not only for critical safety, but also for overall system energy usage. While not 
investigated in great detail for this work, since it primarily acts as a pass-through during normal operation, the 
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Super Cruise also has a capacitor-based energy storage and isolation system to power the ASCM modules in 
case of a loss of system power. 

 
Figure 3-40. Cadillac CT6 active safety control module power consumption during vehicle operation. 

3.1.7.4 AV Demonstrator — Highlighted Results 

The FEV Smart Demonstrator was evaluated across two types of operation: 1) “Highway Pilot,” which allows 
for hands-free highway operation requiring minimal driver attentiveness, similar to SAE L3, and 2) “Urban 
Pilot,” which allows for driverless operation and navigation at lower speeds (similar to SAE L4). Summarized 
in Figure 3-41 below, the overall automation system for the demonstrator vehicle consumed 315 W during 
Highway Pilot operation and 380 W during Urban Pilot operation. Also noteworthy is the significant jump in 
processing loads, to 236 W and 257 W for Highway and Urban Pilot assist respectively. In contrast to the 
Super Cruise results, the processing loads now represent 70% to 75% of the overall automation system 
automation loads, providing support for the hypothesis that processing loads related to higher automation 
levels are driving the large in-field electrical loads seen in recent pilots (although loads for this testing are still 
well under the reported 2-4 kW levels). Given the much higher processing power levels, it also stands to 
reason that these systems will likely need supplemental cooling, and this is supported by the additional fan 
loads observed during testing: on the order of 19 W to 55 W depending on the use case and prior operating 
conditions. Although not to the same degree as the processing loads, overall sensor power consumption is also 
larger than the Super Cruise’s due to the sensors utilized by the demonstrator vehicle. Average actuation loads 
appear to be roughly similar to the Super Cruise’s, although the Urban Pilot operation shows slightly higher 
average loads (20 W vs 15 W), due to more and larger steering position changes.  
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Figure 3-41. FEV Smart Demonstrator automation electrical loads during Highway Pilot and Urban Pilot operation on public 

roads (95% confidence interval shown in error bars). 

Table 3-5 shows a consumption breakdown for some of the major components used in the demonstrator 
system. Interestingly, the PX2 processing system shows the same consumption across both operating modes, 
likely because the system processes nearly the same sensor information regardless of operating conditions 
(assuming the same frame rates in each case). In contrast, the system’s PC, which is used for actions such as 
trajectory and route planning, shows increased power consumption in Urban Pilot operation. This observation 
suggests that it is important not only to consider the GPU-based image processing loads when refining an 
automation system, but the power draw required by certain planning and control algorithms may also drive 
additional loads. The second important observation, and one likely related to the differences in PC power 
consumption between the test modes, is the impact of thermal (cooling) loads as illustrated by the fan loads. 
Although the actual loads are likely dependent on the previous usage and cabin conditions during the specific 
tests, the load levels and their differences highlight that in addition to the loads associated with “running” an 
automation system, the thermal loads required to cool the systems are themselves an appreciable load.  

Table 3-5. Key Contributors to Observed AV Demonstrator On-Road Accessory Loads. 

Component 
Average Observed Power Draw 

During Demonstrator Operation: 
Highway Pilot 

Average Observed Power Draw 
During Demonstrator Operation: 

Urban Pilot 

NVIDA PX2 127W 127W 

PC 52W 81W 

Cooling fan 19W 55W 

Ethernet router and HMI 52W 45W 

LiDAR, DGPS, OD camera 33W 34W 

Other loads 32W 38W 
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While still a prototype demonstration vehicle, data and analysis from the FEV demonstrator point towards 
some promising insights and new research opportunities. More specifically, the vehicle is capable of most if 
not all of the eco-driving and coordination behaviors discussed elsewhere in this Capstone Report at electrical 
load levels between 300 W and 400 W, well below the 2 kW to 4 kW reported for recent pilot fleet testing. 
Combining the observed 315 W to 380 W additional electrical loads from the demonstrator testing with the 
sensitivity analysis presented in the previous section, overall real-world consumption impacts on the order of 
5% or less may be achievable, which suggests that automation can become a net positive for vehicle efficiency 
when used to operate vehicles more efficiently and provide improved overall system efficiency. This testing 
also highlights the importance of considering the thermal loads associated with a given process in addition to 
the loads needed to operate the processing system.  

3.1.7.5 Considerations for Driverless Capable Systems 

While the 2-4 kW levels of electrical loads discussed in the introduction may seem high based on this work, 
applying the FEV demonstrator’s much lower consumption loads across the board to represent driverless 
systems capable of operating across a much wider set of ODDs is not recommended. In fact, in consultation 
with several industry experts, a contrary opinion arose that, for driverless systems capable of operating across a 
wide range of ODDs, the 2 kW and above processing loads may not begin to decrease as quickly as many 
think. The reasoning is in part due to a continued need for higher resolution imaging/processing systems and a 
general need for more sensors for highly detailed situational awareness. This increase in resolution and sensor 
count leads to a significantly large input set to the automation system’s processing subsystem, which will 
continue to require high levels of processing power. Moreover, the frame rate at which this information needs 
to be acquired and processed is also a significant driver of elevated processing loads, as electrical load can 
sometimes be estimated as proportional to calculations/operations per second.89 While many automated vehicle 
functions can be done at loads well under the 2-4 kW required for a fully self-driving vehicle, it is not entirely 
clear when, how quickly, and to what degree the processing loads associated with fully self-driving vehicles 
will decrease. In addition, required system redundancy for safe operation may dramatically increase overall 
loads if fully redundant systems (and therefore processing loads) are required for failsafe vehicle operation. As 
would be expected, these topics are of immense academic and commercial research interest and contribute to 
the uncertainty of estimating expected electrical loads for a driverless-capable vehicle. 

However, many companies, startups, academics, and OEMs are allocating significant resources to reducing the 
processing loads associated with fully driverless vehicles. ASIC, FPGA, and other specialized chip solutions 
have shown promise90,91 for a significant reduction in overall processing, as supported by Tesla’s fully self-
driving computer’s claimed 73 W processing load. Similarly, the self-driving industry is identifying additional 
methods for reducing average processing loads, such as dynamically modifying frame/processing rate 
depending on location and driving situation or activating sensors as needed due to changes in the driving 
environment.92,93 

3.1.7.6 Summary 

This work found that the energy consumption sensitivities related to electrical loads for a range of ICE and 
battery-electric vehicles vary significantly depending on cycle average power consumption and the type of 
driving where the loads are applied. For example, routes with a significant portion of idling will be especially 
strongly impacted by increased loads. These experimental efforts also observed real-world, in-use electrical 
loads for two different AV technologies. Field testing of a Cadillac CT6 with Super Cruise, a L2+ automation 
system, found automation system loads of 101-104W during on-road usage. Interestingly, the CT6’s overall 
electrical loads changed minimally when Super Cruise was deactivated, suggesting that for lower-level 
automation capabilities, the true electrical load penalty associated with certain automated eco-driving 
capabilities may be minimal if these systems are already in use for safety driving. Field testing of an automated 
vehicle prototype, provided by an industrial project partner, found automation loads ranging between 300W 
and 400W for functionalities including hands-free highway operation (L3) and fully self-driving operation and 
navigation at lower speeds (L4). While the loads required for true driverless vehicle operation across a wide 
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range of Operational Design Domains are still subject to significant uncertainties due to the rapid pace of 
vehicle development and refinement, the experimentally observed electrical load levels discussed in this report, 
suggest that many of the capabilities related to automated eco-driving may be implementable at electrical loads 
ranging from 100W to 400W, depending on the required capabilities. 

 

3.1.8 Use Cases and Energy Characterization of Lower-Speed Automated Shuttle Applications 

• The low operating speeds of current automated shuttles significantly increases the impact of accessory 
loads on overall per-mile energy consumption for these vehicles. 

• Air conditioning loads nearly doubled the observed per-mile vehicle energy consumption in hot 
weather compared to cool weather operation. 

Automated transit systems have existed in various forms for some time, but recent advances in self-driving 
technology have ushered in several new modes of vehicle operation with various levels of autonomy. Among 
the first commercially available vehicles featuring SAE Level 4 automation are low-speed automated electric 
shuttles. These small van-like vehicles generally feature room for about 12 passengers with a combination of 
seating and standing space. In line with their Level 4 automation designation, they generally do not feature 
steering wheels or pedal controls and may be permitted to run without operator intervention. Automated 
electric shuttles have the potential to reduce fuel use by displacing personally owned vehicle operation and 
substituting electricity for petroleum consumption, yet the usage profiles and energy consumption related to 
these vehicles is not widely documented. The CAVs Pillar collected energy consumption and operation 
characteristics of these unique automated electric vehicles and made the data available to researchers modeling 
future mobility scenarios. Directly related activities within SMART Mobility include the automated mobility 
district impacts modeling effort of the Urban Science Pillar (refer to the SMART Mobility Urban Science 
Capstone Report: Section 2.3 - Urban Infrastructure & Built Environment Synergy with Mobility) and the 
dynamic wireless power transfer feasibility analysis of the Advanced Fueling Infrastructure Pillar (refer to the 
SMART Mobility Advanced Fueling Infrastructure Capstone Report: Section 2.3 - Exploring New Paradigms 
Created by Automated-Vehicle Charging). 

Three automated shuttle pilots agreed to participate in the data collection effort for this project — University of 
Michigan (U of M), Texas Southern University (TSU) and University of Utah (U of U). These pilots were 
selected because their owners were willing to participate in two-way data sharing, and their timing coincided 
with this project. Successfully connecting with multiple automated shuttle pilots resulted in performance data 
being captured over a range of state-of-the-art vehicle types, as observed under a set of differing real-world use 
cases and environments (rather than from the laboratory or simulated field applications). Daily recharge energy 
combined with daily mileage were the minimum data collected from each pilot to quantify daily energy 
consumption characteristics. Additional data were gathered as available.  

The first data collection site was the University of Michigan, which operated a pilot with two Navya Autonom 
shuttles94 equipped with custom data logging systems with Global Navigation Satellite System (GNSS) 
receivers to provide travel path and speed data. GNSS data were provided exclusively by this pilot, allowing 
for some additional analysis. These vehicles operated on a 1.2-mile-long round-trip route on the university’s 
north campus in Ann Arbor, Michigan. The route was located on secondary campus roads with speed limits of 
25 mph. Shuttles were continuously staffed by safety conductors to ensure proper operation and to manually 
navigate the shuttles if necessary. Both shuttles ran between north and south stations for six hours daily and 
were charged in an indoor bay during conductor lunch breaks and during the night. Shuttle operations were 
launched in June 2018. 
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Figure 3-42. Map of shuttle route at University of Michigan (courtesy of University of Michigan). 

Per Navya specifications, the Autonom shuttle features a 33 kWh LiFePO4 battery pack and a 7.2 kW onboard 
charger. Climate control equipment includes dual 4.6 kW air conditioning units and a 3.4 kW heater. The curb 
weight is 2400 kg, and the gross vehicle weight rating is 3450 kg, yielding a 1050 kg payload carrying 
capacity. 

 
Figure 3-43. Two Navya Autonom shuttles on the University of Michigan campus (courtesy of University of Michigan). 

The second automated shuttle pilot the CAVs Pillar cooperated with was launched by Houston Metro at Texas 
Southern University in Houston, Texas in May, 2019. One EasyMile EZ10 Gen 2 shuttle was leased for this 
pilot. The vehicle was deployed on a 1-mile round-trip route on the university campus. The route was on the 
university’s Tiger Walk, a paved pedestrian path, which is not open to regular motor vehicles. A dedicated 
shuttle lane was established on this path and the shuttle ran on weekdays for approximately 6-8 hours daily. 
The shuttle was charged in an indoor garage bay during mid-day breaks and at night. The shuttle was 
continuously staffed by an operator to ensure proper operation and to manually navigate the shuttle if 
necessary. 
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Figure 3-44. An EasyMile Gen2 shuttle, identical to the model used at TSU, is shown operating as part of a pilot in Salt Lake 

City, Utah. 

Per EasyMile specifications, the EZ10 shuttle features a 30.72 kWh LiFePO4 battery pack and a conductive 
onboard charger. The vehicle was equipped with air conditioning units. The curb weight is 2130 kg, the gross 
vehicle weight rating is 3130 kg, and the payload carrying capacity is 1000 kg.95 

 
Figure 3-45. Map of Shuttle Route on Texas Southern University Campus (courtesy of EasyMile). 

The Utah Department of Transportation and Utah Transit Authority launched the third driverless shuttle pilot 
the CAVs Pillar collaborated with at the University of Utah’s campus in Salt Lake City, Utah in August 2019. 
One EasyMile EZ10 Gen 2 shuttle was leased for this pilot. At the University of Utah campus, the vehicle was 
deployed on a 1-mile round-trip route. The shuttle ran on weekdays for approximately 6-8 hours daily and was 
charged in an indoor garage bay overnight. The shuttle was continuously staffed by an operator to ensure 
proper operation and to manually navigate the shuttle if necessary. This shuttle is identical in specifications to 
the TSU shuttle detailed above. 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

78 

 
Figure 3-46. Map of the shuttle route on University of Utah Campus (courtesy of Utah DOT). 

Charging energy delivered to each shuttle was collected by metering the charging circuits used exclusively to 
charge the shuttles. Distance traveled was collected via odometer logs provided by the operators or from GNSS 
data when odometer logs were unavailable. In the case of the University of Michigan pilot, daily operating 
distance and energy from the two shuttles were combined and averaged because it was not possible to discern 
which shuttle charged at which circuit. Travel distances were combined with the charging energy data and used 
to provide a daily snapshot of energy consumption and the routes travelled. Because the automated shuttles are 
on a fixed route, sensitivities affecting vehicle energy consumption, such as weather or speed profile, can be 
also explored from this dataset. 

Substantive data collection and analysis were completed on the University of Michigan, Texas Southern 
University and University of Utah deployments. For each of these deployments, the monitored shuttles 
generally used most of their battery capacity during daily operation. The TSU EasyMile shuttle drove a median 
24.2 daily miles, and the U of U EasyMile shuttle drove a median 21.1 miles daily. The U of M Navya shuttles 
drove 21.1 median daily miles per vehicle. These distances corresponded to daily run-times of approximately 
6-8 hours. No doubt due to the very early nature and limited maturity of the technology, along with the 
prudence of cautious operation in mixed travel conditions (with pedestrians, bicyclists, etc.), the shuttles drive 
quite slowly (even below the 25-mph limit imposed on other low-speed vehicles such as neighborhood electric 
vehicles). When also factoring in the amount of time the vehicles spent stopped at pick-up/drop-off locations, 
the median daily average speed was 3.3 mph for the TSU shuttle, 3.0 mph for the U of U shuttle and 3.4 mph 
for the U of M shuttles. Distributions of daily average speed, which includes operating time when both moving 
and stopped, are shown for each vehicle pilot in Figure 3-47. 
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Figure 3-47. Distribution of Daily Average Speed for Each Shuttle Pilot. 

The GNSS data from the U of M pilot enabled more detailed analysis beyond daily average speed calculations, 
including quantifying the proportion of time stopped and the average speed while moving. From one day of 
operation, March 25, for both shuttles, the moving average speed was observed to be 6.0 mph, with the 
vehicles stopped for 44% of the total operating time. The cumulative distribution of speed over that day is 
shown in Figure 3-48. In the entire U of M data set, the top speed observed was 13.6 mph. 
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Figure 3-48. Cumulative distribution of U of M shuttle speed over a single day of operation for both shuttles. 

Daily energy intensity was calculated for each shuttle for every day for which data were available and 
complete. The U of U data set, with 15 days of data, was gathered exclusively during summer months. The 
TSU data set, with 84 days of operation data, was collected from both summer and fall months, and while both 
hot and cool days were observed, there wasn’t a clear delineation in seasonal temperature by date. The U of M 
data set, while small, includes results from both late summer (four days) and early spring (10 days), which 
have been displayed separately because there is a significant difference in seasonal energy consumption. The 
median energy consumption rate over a full day’s driving was 1262 Wh/mi for the TSU shuttle, 1333 Wh/mi 
for the U of U shuttle, 1768 Wh/mi during summer days for the U of M shuttles, and 701 Wh/mi during spring 
days for the U of M shuttles. Because the operation of each pilot was managed differently, in different 
conditions, consumption data are not directly comparable between pilots or vehicle models. Rather, the range 
of consumption in varying climate and speed conditions can be considered for each pilot. Distributions of 
energy intensity for each pilot are shown, excluding outliers, in the figures below.  
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Figure 3-49. Distribution of TSU EasyMile shuttle energy intensity. 

 

 
Figure 3-50. Distribution of U of U EasyMile shuttle energy intensity. 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

82 

 
Figure 3-51. Distribution of U of M Navya shuttle energy intensity during summer operation. 

 

 
Figure 3-52. Distribution of U of M Navya shuttle energy intensity during spring operation 
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The automated shuttles that the CAVs Pillar studied are complicated vehicles used in routes that differ from 
conventional bus transit. They can be affected by several external factors, such as passenger loading and 
weather. Thus, it stands to reason that their energy consumption is a function of many externalities, in 
combination with their powertrain characteristics. Based on observations from other electric vehicle testing, it 
seems that these vehicles use a particularly high proportion of their energy on time-constant accessory loads, 
independent of the tractive effort required to move the shuttle. These types of time-constant loads, such as 
heating, ventilation and air conditioning (HVAC), have a great effect on vehicles with low average speeds.  

To illustrate this concept, Figure 3-53 shows the energy intensity range for two simplified hypothetical 
vehicles along with the results from this study. The first simplified hypothetical scenario considers a vehicle 
with fixed tractive-effort energy intensity requirements of 400 Wh/mi, a 5-mph moving average speed, and a 
time-constant power requirement ranging between 500 and 5,000 W while operating over a 25-mile route. The 
area outlined by the blue line in the figure represents the varying energy intensity for this hypothetical vehicle 
scenario, with variation in the horizontal dimension caused by changes to the amount of time the vehicle 
spends at stops and variation in the vertical dimension due to the assumed upper and lower bound of the time-
constant power requirements. The area outlined by the yellow line in the figure represents a similar scenario, 
where the same simplified hypothetical vehicle operates at a faster average moving speed of 10.67 mph with a 
corresponding increased tractive-effort energy intensity requirement of 500 Wh/mi (but the same range of 
time-constant power loads and proportions of time spent stopped), since varying the proportion of time stopped 
changes the overall average speed even when the actual moving average speed does not change. The data 
points from the shuttle pilots are also overlaid on the figure. Although simplified, these hypothetical vehicle 
examples illustrate how a decrease in average speed clearly increases per-mile vehicle energy consumption 
rates due to increased consumption by non-tractive, time constant accessory loads. This increase in 
consumption with a decrease in average speed is exacerbated as time-constant accessory loads increase. 
Potential future efforts to increase average daily operating speed for these shuttles may therefore lead to 
improved energy efficiency. 
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Figure 3-53. Daily energy intensity of each pilot shown relative to average daily speed, along with illustrated ranges of a 

simple hypothetical vehicle. 

For further context, representative energy consumption rates were calculated for modern human-driven electric 
vehicles both smaller and larger than the automated electric shuttles. The larger vehicle comparison leveraged 
NREL’s report on Foothills Transit’s battery electric bus deployment, in which a fleet of 35-foot battery-
electric transit buses (each with a roughly 27680 lbs curb weight) consumed an average of 2150 Wh/mi to 
2170 Wh/mi while traveling at an average speed (including stops) of 8.57–10.6 mph.96 The smaller vehicle 
comparison leveraged Idaho National Laboratory’s report on the 2013 Nissan Leaf, showing that this vehicle 
(with a 3302 pound curb weight) consumed 275 Wh/mi when running the urban dynamometer drive schedule 
(UDDS) at 95°F with 850 W/m2 of solar irradiation.97 The UDDS has an average speed of 19.5 mph, with 17 
stops over the 23-minute-long cycle.98 

Although obtained from multiple deployment locations, the sample size for the collected automated electric 
shuttle operating data is small and primarily reflects summertime operation in hot conditions. Nevertheless, the 
U of M and TSU data shows a stark contrast in energy intensity between summer and spring or fall operation. 
This strongly suggests that HVAC loads for cabin cooling in hot weather account for a significant portion of 
the measured energy consumption demands, primarily because of the vehicle design, featuring many windows 
and large doors for passenger on- and off-boarding (and simultaneous air exchange between the cabin and 
outside environment). Figure 3-54 illustrates the effect of ambient temperature on energy consumption 
observed for the TSU EasyMile pilot in Houston. Hourly temperature data were retrieved from NOAA’s 
Climate Data Online database for the station nearest to TSU, about two miles away at the Texas Medical 
Center. Temperature readings between 8 a.m. and 8 p.m. were averaged to produce daytime daily averages to 
match the operating schedule of the shuttle. The lowest energy usage occurs on mild days, with more energy 
consumed as outdoor temperature increases or decreases from the band of comfortable temperature.  

 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

85 

 
Figure 3-54. Daily energy intensity of the TSU pilot relative to daily daytime average temperature for a subset of days with 

average speed above 3 mph. 

This data was provided to SMART Mobility modelers seeking to better ground their assumptions for modeling 
future automated shuttle scenarios and for optimizing potential wireless charging systems to serve such 
transportation scenarios. A deeper understanding of the energy-flow attributes for these self-driving vehicles 
could be obtained by instrumenting the vehicle battery, powertrain, and individual subsystems during 
operation and collecting data over a range of different operating conditions. 
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3.2 CAV-Specific Modeling and Simulation Methodology and Approach Refinements 

In order to evaluate new transportation technologies such as connectivity, automation, sharing and 
electrification at different levels of fidelity and scale (i.e., from individual vehicles to entire metropolitan 
areas) multiple approaches and simulations were refined to comprehend the complex dynamic interactions and 
capabilities of CAV technologies. With this outcome in mind, the following subsections highlight adaptations 
and additions to DOE’s advanced vehicle modeling portfolio with the goal of incorporating CAV technologies 
into a robust and validated environment of modeling and simulation tools. Specific adaptations discussed in 
this section include: 1) improvements to traffic modeling tools (micro-simulation) to incorporate mixed fleets 
of manually and automatically driven vehicles within a particular traffic scenario or environment, 2) an 
environment for simulating and optimizing the controls of multiple proximate vehicles with full powertrain 
models while comprehending and incorporating (when applicable) the interactions between these vehicles and 
their environment, and 3) CAV-specific refinements to regional-level modeling tools relating to traffic flow 
models, representation of vehicle agents, and implementation of resource allocation and optimization routines 
related to specific CAV technologies and capabilities. 

 

3.2.1 RoadRunner: Trip-Level Simulation of Powertrain and Driving Dynamics for CAVs  

• To help researchers and engineers develop energy saving algorithms that rely on a combination of 
powertrain controls, driving automation, connectivity, and sensing, a simulation tool called 
RoadRunner was developed to simulate, in the same environment, multiple connected and automated 
vehicles with full powertrain models as well as the interactions between vehicles and their 
environment. 

One significant way in which CAVs can produce energy savings is through better vehicle speed and/or 
powertrain control at the individual or multi-vehicle level. Perception sensors and connectivity provide 
increased awareness of the surrounding environment and enable control optimization, while automation 
provides the necessary level of controllability for the application of the optimization. In order to research these 
topics (see Section 3.4.1), CAV Pillar researchers developed RoadRunner99, a tool dedicated to the 
development and evaluation of energy-focused CAV controls.  

RoadRunner is uniquely suited to energy-focused CAV control research and complements powertrain and 
vehicle system energy-efficiency research and traffic flow microsimulation models. Typical powertrain and 
vehicle system energy-efficiency research relies on specific drive cycles (i.e., predefined speed as a function of 
time). This approach is not suitable for CAVs, where the vehicle itself dynamically decides its own speed 
based on its environment. Traffic flow microsimulation tools, on the other hand, focus on the dynamics of 
interactions between a large number of vehicles on a corridor or a small road network rather than on individual 
vehicle control.  

RoadRunner can simulate, in the same environment, multiple vehicles with full powertrain models as well as 
the interactions between vehicles and their environment. RoadRunner uses powertrain models from 
Autonomie100,101, an established state-of-the-art vehicle energy-consumption simulator developed with U.S. 
DOE support, and adds new capabilities, such as multi-vehicle simulation, models of road characteristics, 
causal models of human driving, “vehicle to everything” (V2X ) communications, and sensors. In short, it is 
designed to help researchers and automotive engineers develop energy saving algorithms that rely on a 
combination of powertrain controls, driving automation, connectivity, and sensing.  

Figure 3-55 illustrates a typical RoadRunner workflow. The user first defines a scenario: the route, the number 
of vehicles, the type of vehicles, and the type of CAV technology for each vehicle. RoadRunner then 
automatically builds the Simulink diagram. Intersections are modeled either as stop signs or traffic lights, 
connected or not. Each vehicle is composed of an Autonomie vehicle plant model and supervisory controller, 
driver and/or longitudinal dynamics controller, with car-following and free-flow driving logic. An 
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aerodynamics block computes the drag reduction coefficient based on relative position and inter-vehicle gap. 
Finally, the position along the route is computed, and signal routers allow the proper flow of information 
between the simulated agents (vehicles and intersections), so that each vehicle/driver receives only the 
information relevant to its position. Once the diagram is built and initialized, RoadRunner runs the simulation 
and post-processes the results to facilitate analysis by the user.  

 
Figure 3-55. RoadRunner workflow to simulate a CAV scenario. 

The development of RoadRunner involved two complementary tracks. On the one hand, the software back end 
was developed to allow easy setup, running and analysis of complex large-scale simulations, tapping into the 
research team’s experience in the development of Autonomie. At the same time, CAV and baseline models 
were developed, integrated in RoadRunner, validated, and applied to analyze energy impacts of different 
scenarios, as described further in this report (3.4.1.1). 

 

3.2.2 Micro-simulation and Traffic Flow Modeling for CAVs and Mixed Fleets 

• In order to better understand the interactions between CACC and manually driven vehicles, 
microsimulation improvements were completed, including: 1) detailed and expanded operational 
models of CACC vehicle behavior based on field experiments, 2) improved modeling of manually 
driven vehicles interacting with CACC vehicles (i.e., human drivers operating near CACC strings), 
and 3) improved anticipatory lane changing models for both CACC and manually driven vehicles. 

The market penetration of AV/CAV will likely be a long and progressive process. Therefore, mobility and 
energy consumption evaluation/prediction will need to consider a range of mixed AV and manually driven 
traffic scenarios, which will require the simulation of mixed traffic. Within this work, “car-following” models 
for cooperative adaptive cruise control (CACC) and autonomous (but not connected) ACC-based systems were 
implemented for both cars and heavy-duty trucks and calibrated directly from experiments on full-scale cars 
and trucks.102,103 The developed CAV vehicle-following models capture the dynamic interactions between 
different CAV strategies and manually driven vehicles, which is the foundation of microscopic simulation-
based analysis. If these foundational models of dynamic interactions are incorrect, the microscopic mixed 
traffic simulations built on these models will generate biased (or incorrect) results.  

Stochastic microscopic simulation tools (microsimulation) for traffic flow modeling deploy analytical 
algorithms to describe vehicle behavior, including car following and lane changing, and are a critical 
component in understanding the traffic flow and efficiency ramifications of various CAV operating strategies 
for a vehicle and its surrounding traffic environment. Much of the microscopic simulation research discussed 
in this work builds upon a set of traffic microsimulation models that were developed at the University of 
California’s Partners for Advanced Transportation Technology (PATH) program, based on the FHWA’s Next 
Generation Simulation (NGSIM) oversaturated flow model104 implemented on the Aimsun microsimulation 
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platform105 for baseline traffic. These revised and updated models include many enhancements, providing 
more realistic representations of normal drivers’ car-following and lane-changing behavior as well as the 
expanded set of behaviors for ACC and CACC modeling. 

Although CACC microsimulation modeling has attracted considerable research effort in the past few years, 
there are important model aspects yet to be developed for better CACC behavior representation. Many existing 
studies have analyzed CACC operations on a two-lane controlled access highway, without considering the 
lateral interactions of vehicles. Alternatively, some researchers have depicted the car-following and lane-
changing behaviors of both manually driven vehicles and ACC/CACC vehicles using the same behavior model 
with different model parameter settings. Such a method fails to consider the differences between the two 
vehicle classes in terms of their distinct ways of acquiring data, processing information, and making driving 
decisions. In most of the existing studies, the CACC speed control algorithm was the only model used to depict 
the car-following behavior of CACC vehicles. However, drivers of CACC vehicles will typically take over the 
vehicle’s lateral and longitudinal control when they need to make lane changes, yield to other lane changers, 
and apply emergency braking for collision avoidance. With these issues in mind, CACC models need to be 
improved such that they can describe situations in which a subject driver turns on or off the CACC controller 
during the car-following and lane-changing process. The model also needs to explicitly describe the car-
following behaviors of the CACC controller as it switches among different control modes (e.g., constant time 
gap regulation or constant speed regulation control) under different roles in a CACC string (e.g., string leader 
or string follower). Moreover, the realistic modeling of CACC vehicle behavior also requires the enhancement 
of human driver models. The human driver models should be refined to capture a driver’s lane changing 
preparation, gap searching, and lane changing maneuvers as the driver tries to merge into a target lane 
occupied by CACC vehicle strings.  

To address these challenges, the CAVs Pillar developed a CACC modeling framework based on the NGSIM 
oversaturated flow human driver model and the CACC car-following model derived from the CACC field tests 
mentioned above. The models were enhanced by developing new algorithms that can reproduce the 
complicated interactions of CACC vehicles and manually driven vehicles in multi-lane controlled access 
highway segments.106 Particularly, the addition of an anticipatory lane-changing algorithm and the CACC 
operation rules form a modeling framework to realistically depict the car-following and lane-changing 
behaviors of CACC vehicles in mixed traffic under the influence of the CACC management strategies. The 
lane-changing component is important because it considers the complex lateral interactions between the 
automated vehicles and manually driven vehicles. With these modifications and expanded capabilities, the 
models are now ready to reproduce the traffic dynamics that are likely to appear in multilane highways, while 
most existing studies consider CACC operation only in hypothetical two-lane highway scenarios. In addition, 
the modeling framework can describe the behaviors of CACC vehicles under the influence of specific CACC 
operation strategies relevant for improving overall traffic flow and corridor fuel consumption, the primary goal 
of the SMART Mobility Consortium. 

 

3.2.3 Regional-Level Model Adaptations for CAVs 

• At the regional level, CAV-specific modeling modifications and improvements include: 1) 
development and implementation of updated mesoscopic traffic flow models sensitive to CAV 
impacts, 2) implementation of vehicles as agents (especially driverless vehicles), including scheduling 
and operations, and 3) implementation of resource and scheduling constraints at the household level 
relating to vehicles both individually owned and shared as well as automated or non-automated. 

Historically, existing transportation-related models have looked at different aspects of the transportation 
system (travel demand, traffic flows, emissions, etc.) independently. The evolving complexity of regional-level 
transportation networks has led to the integrated modeling of travel demand and network supply, as opposed to 
a sequential process. In particular, agent-based models (ABMs) capture these interactions from the perspective 
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of a particular agent that engages in activities (demand) based on time-dependent travel times for the different 
modes available (supply) in such a way that demand and supply are mutually dependent. In ABMs, each agent 
is represented by multiple models that ultimately define several decisions, from long-term decisions, such as 
car ownership, to short-term decisions, such as activity location, departure time, mode, and route for a 
forthcoming trip.  

Specific to the regional-level CAV work done by the CAVs Pillar, the POLARIS agent-based transportation 
systems simulator107 was adapted and used for analysis. POLARIS is a high-performance, open-source agent-
based modeling framework that can simulate large-scale transportation systems. It features an integrated travel 
demand, network flow and traffic assignment model in which multiple key aspects of travel decisions (activity 
planning, route choice, and tactical-level driving decisions) can be modeled simultaneously and in a 
continuous, fully integrated manner. POLARIS models individual decision making at long-term, mid-term and 
within-day time frames for the various decisions that are represented. The mid-term and within-day travel 
behavior decisions are captured in a computational process model representation of decision-making that 
captures the process of individual activity episode planning and engagement. These decisions are constrained 
by long-term choices such as home/workplace location and household vehicle, which in turn influence activity 
and travel episode planning and realization.  

The network model includes a mesoscopic representation of vehicle movements based on the Newell’s 
kinematic wave model108 with updates for representing interactions with traffic control infrastructure. The 
traveler agents in the model can react in real time to changing or unexpected network conditions due either to 
direct observation or through information provided, using an en-route rerouting and replanning model. For 
long-term choices, the fleet definitions within POLARIS can come either from external market penetration 
forecasts coupled with baseline vehicle registration data, or from household level choice modeling. An 
additional CAV technology choice step is implemented using models based on stated-preference survey data109 
to determine the willingness to pay for various levels of CAV technology for household vehicles.  

Analyzing mobility and energy impacts from future CAV technologies at the regional scale required 
substantial development of the POLARIS framework relating to the traffic flow models, representation of 
vehicle agents, and implementation of resource allocation and optimization routines related to CAV-specific 
studies and implementation updates. The mesoscopic traffic flow model has incorporated link capacity 
modification functions from empirical studies and microscopic traffic flow studies to represent CAV impacts 
over a range of penetration levels under a variety of configurations (e.g., merging sections, on/off ramps, lane 
reductions, etc.), based on a clustering analysis using observed highway data from loop detectors.110 The link 
fundamental diagram within each cluster is then updated using microsimulation analysis.  

The POLARIS behavioral simulator has also been significantly updated to incorporate a new household 
vehicle sharing optimization model, which seeks to determine optimal levels of vehicle sharing when the 
vehicle is allowed to reposition itself. The optimization utilizes an improved version of the model developed 
within the SMART Mobility Consortium.111 The model assumes that households with a fixed number of fully 
automated vehicles (all household vehicles are assumed to be AVs for those willing to pay) are able to 
schedule the vehicle pickups in such a way to minimize total household costs. The AVs are able to reposition 
themselves between trips, and multiple household members can share the same trip if it is feasible. 
Additionally, the AV can travel home to avoid parking costs at any activity destination. The costs to the 
household include:  

• Energy costs associated with each loaded and unloaded trip based on the travel distance 
• Value-of-time cost due to trip diversions and wait time for coordinating shared rides 
• Parking costs to wait at the destination 
• Taxi or transit costs if vehicles are not able to service trips 
• Vehicle ownership costs (or lack thereof) 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

90 

The optimization routine described above is implemented using the Gurobi API112 and is called for every 
household agent in the POLARIS simulation after the activity patterns are generated. The activity attribute 
flexibility model implemented in POLARIS is used to determine the start time and duration thresholds, with 
inflexible activities having low thresholds and highly flexible activities having higher thresholds. The exact 
level of the thresholds is left as a scenario parameter, with the default values of 5 minutes for low flexibility 
and 60 minutes for high flexibility. POLARIS also provides the optimization model with time-dependent travel 
times that are updated throughout the simulation run in order to ensure that schedules resulting from the 
optimization are consistent with those generated by the travel simulator. Finally, the new repositioning, or 
dead-heading, trips generated by the model are then simulated in POLARIS to analyze this additional source of 
increased demand. 

For platooning simulations (discussed in Section 3.4.3.3), an algorithm113 previously developed by Argonne 
researchers was adopted and integrated into POLARIS. The model tries to form platoons of vehicles, 
minimizing the energy consumed while meeting travel demand (for platooning-enabled vehicles) from 
POLARIS, and coordinates the vehicles’ movements in the formed platoons. The POLARIS traffic simulator 
was modified to be able to update vehicles’ routes to match their platoon head when they participated in a 
platoon, while accounting for the wait time to join a platoon. To improve efficiency, only expressway links of 
each trip were considered for platooning evaluation, and a new component, the platooning controller, was 
developed to optimally route platooning vehicles once they have entered a platoon. Therefore, the model first 
uses the POLARIS router to find a route from trip origin to a point where the platoon can be joined (the entry 
point, which is usually an on-ramp link), and then a route from where the vehicle exits the platoon and control 
is handed back to the POLARIS traffic simulator/router (the exit point, which is usually an off-ramp link) to 
the trip destination. The route from a vehicle’s platoon entry point to a vehicle’s platoon exit point are 
determined by the optimization algorithm. The optimization model then merges these three routes and 
generates an updated trajectory. The trajectory is assigned to the vehicle when it is loaded into the network, 
and then traffic simulation continues with its regular steps to move the vehicle. To accommodate the waiting 
times of the coordinated platooning movements, the traffic simulator code was modified so platooning vehicles 
could wait the amount of time requested by the optimal solution. For all cases, the expressway entry node is 
where vehicles wait to join the platoon; however, it may be possible for vehicles to wait at other points on the 
expressway to facilitate platoon formation. 

Expanding upon the deep foundational capabilities enabled by ABMs, several CAV-centric adaptations and 
improvements were performed within the CAVs Pillar to better simulate the implications of CAVs on both 
overall traffic as well as household demand and mobility choices. Together, these changes help in more 
robustly integrating CAVs into a larger research and analysis portfolio. 
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3.3 Corridor-to-Regional-to-National Level Impacts and Sensitivities of Connectivity 
and Automation 

Research findings in this section address the CAVs Pillar’s second research question: “What are the GHG, 
energy, technology and usage implications of connectivity, automation, and the combination of both 
technologies?” As discussed in the Introduction and National Level Impact Synthesis sections of this report, 
there is significant uncertainty regarding the expected outcomes of widespread CAV introduction into today’s 
transportation systems. Additionally, the dynamics of automated and/or connected vehicles operating in 
parallel with manually driven vehicles is also a topic of great uncertainty. These uncertainties lead to widely 
varying expectations for both the benefits and challenges associated with CAV introduction. Moreover, the 
behavioral sensitivities and key modeling assumptions leading to the range of expected impacts are also not 
widely established or documented with consistency. These issues are further complicated by the fact that many 
diverging possible future technology implementation scenarios need to be assessed in a coordinated manner 
and that these impacts ultimately need to be aggregated into a set of national-level impact estimates to better 
assess the impacts of CAVs from an overall energy and technology perspective.  

In the context of these issues, this section seeks to discuss research focusing on the impacts of CAVs when 
introduced into a current and near-term transportation system as well as develop tools and insights 
regarding future CAV deployment and mobility market dynamics as well as methods to aggregate detailed 
results into a national-level impact assessment. Beginning with research into the traffic dynamics of 100% 
fully automated vehicles as well as mixed scenarios of CAVs and manually driven vehicles, this section then 
seeks to identify regional-level CAV implications. The section then transitions to more exploratory tools and 
insights regarding CAV transitions scenarios and dynamics and national level impacts and sensitivities to CAV 
technology implementation. 

Key section insights and results include: 

• At the freeway corridor level, automation without V2V connectivity (as represented by ACC) may 
lead to more congestion and increased consumption due to traffic instabilities created by the 
unconnected automation systems and the required following behaviors and distance associated with a 
lack of information from surrounding vehicles. In contrast, CACC, which is enhanced by V2V 
communications shows increasing benefits to both congestion and consumption as market penetration 
increases, ultimately, removing most if not all traffic congestion at current demand levels for this 
simulation study. 

• At the regional level, CAVs have some congestion relieving effects when no assumption of value of 
travel time (VOTT) change is made (i.e., low rebound). However, as VOTT is reduced (via higher 
levels of vehicle automation or other means), significant travel increases can occur. For example, a 
preliminary investigation in the Chicago area showed that a 50% reduction in VOTT shows a 48% 
increase in vehicle hours traveled (VHT) and 45% increase in vehicle miles traveled (VMT), as well 
as indications of increased congestion. Overall, there is a 42% increase in overall fuel consumed for 
this case due to some efficiency gains facilitated by the CAVs systems, but this is more than offset by 
the increased VMT. 

• Highlighted results from a case study based in Bloomington, Illinois investigating privately owned 
vehicles with both partial automation (no zero-occupancy vehicle (ZOV) travel) and full automation 
(with ZOV travel) indicate that at the regional level ZOV trips could increase total automobile trips by 
an additional 27% (for low CAV penetration rates) and 39% (for high CAV penetration rates). In the 
worst-case, additional travel demand facilitated by full automation (both ZOV and new trips due to 
enhanced capabilities) could completely negate the beneficial impacts of VTO technologies on overall 
fuel usage over the next 30 years, leading to minimal reductions in national fuel usage. 

• At the regional level, several promising mitigation strategies leveraging vehicle connectivity and 
automation were identified including: ZOV optimization, improved transit access, leveraging 
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connectivity and automation for improved situational awareness and control, large-scale traveler 
coordination, managed lanes (possibly including CACC specific lanes), and co-design of vehicle 
technology to incorporate the new functionalities associated with connectivity and automation. More 
specific information regarding these strategies and their impacts is provided in the next section 
(Section 3.4) 

• A modeling investigation of CAV deployment and transition dynamics provided insights into the 
complex landscape of overlapping adoption, development, and regulatory phases CAV adoption faces, 
where different stakeholders can block or accelerate deployment. Examples include interactions 
between manufacturer R&D, VMT accumulation for insurance underwriting, time for regulatory 
approval, vehicle costs to consumers and achieving economies of scale. The study also investigated 
influential factors for CAV adoption and energy consumption sensitivities including strong influencers 
such as consumer preference, time valuation and technology costs; others include vehicle powertrain 
types and fuel economy, proportion of time freed by a particular CAV concept, willingness to pool, 
road congestion, and amount of deadheading (i.e., extra travel performed by ride-hailing vehicles in 
between passenger-carrying trips). 

• As a means to estimate national level impacts of CAV technologies from detailed regional-level 
simulations, extrapolating the results of detailed, activity-based, transportation system simulations to 
other areas or other populations was found to be challenging. Extrapolating results was especially 
challenging for travel metrics such as VMT, since VMT depends not only on traveler characteristics, 
but also on road network characteristics and other land use characteristics at local and regional 
geographic scales. 

 
3.3.1 Corridor Level Impacts of Connectivity and Automation 

• In a freeway corridor, traffic throughput decreases and energy consumption increases as ACC market 
penetration increases. However, it is the opposite for CACC: Traffic throughput increases and energy 
consumption decreases as CACC market penetration increases. In other words, there is significantly 
more energy consumption for ACC than CACC at the same level of market penetration, and 100% 
CACC market penetration could completely remove traffic congestion at the current demand level, for 
the corridor simulated in this work. 

• Active Traffic Management (ATM) strategies for freeways including Local Responsive Ramp 
Metering (LRRM), Coordinated Ramp Metering (CRM), Variable Speed Limit/Advisory (VSL/VSA) 
and the combination of CRM and VSA, have been simulated for SR-99 North Bound Corridor. The 
performance analysis included: total delays, average traffic speed, the number of lane changes 
(indication of traffic disturbances), fuel economy (MPG), and emissions (NOx, CO, CO2, HC, and 
PM2.5). For LRRM, Total Delay is reduced by 9%, and improvements in all other aspects are 1~2% 
over the baseline traffic. As for the improvements by CRM, VSA, and the combined CRM and VSA, 
the Total Delay reduction is five times more and other improvements are ten times more compared to 
those of the LRRM over the baseline traffic. CRM only worked slightly better than VSA alone, and 
the combination of CRM and VSA did not bring extra benefit. 

CAV systems exist today only in very limited numbers of prototype vehicles with limited capabilities, so it is 
not possible to observe their impact on freeway corridor traffic. Consequently, it is necessary to depend on 
large-scale use of simulations to predict what would happen when CAV systems are deployed in large 
numbers. To this end, the CAV Pillar developed and applied traffic microsimulation tools to predict the 
impacts that CAV systems are likely to have on traffic and energy consumption, with minimal efforts at 
additional energy-centric controls (see Section 3.4 for more information on these strategies). Producing 
realistic estimates of the impacts is challenging, because they requires high-fidelity models that are sensitive to 
the changes in vehicle behaviors that will occur when they are equipped with CAV technology.  
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Note that this work does not directly optimize energy consumption, since it is not yet possible to formulate an 
objective function representing the total energy consumption for all the traffic in a freeway corridor. Therefore, 
for the corridor-level work in this section, energy consumption is indirectly optimized the throughput and 
indirectly reduce energy consumption. Using a microscopic traffic simulation of a freeway corridor with mixed 
traffic, the CAV Pillar analyzed several simulation scenarios. Mobility and energy consumption have been 
evaluated with individual trajectories saved from microscopic traffic simulation: 

• Traffic throughput and fuel consumption impact of varying market penetrations of ACC and CACC 
on freeway corridor traffic 

• Fuel consumption changes with changes in the market penetration of CACC vehicles 
• The impact of ramp metering on mixed traffic (with manually driven vehicles and CAVs) throughput 

3.3.1.1 Simulation of Mixed Traffic for Freeway 

• In a freeway corridor, traffic throughput decreases and energy consumption increases as the ACC 
market penetration level increases. With 100% ACC market penetration, fuel consumption could 
increase by up to 60%. 

• In the case of CACC, lower market penetration (<40%) increases the average energy consumption, as 
with ACC. but higher market penetration (≥ 40%) reduces the average energy consumption and 
increases throughput. At 40% CACC market penetration, fuel consumption begins to drop and 
continues to decline as market penetration levels rise. At 100% CACC market penetration, energy 
consumption could drop by up to 20%. In this study, with 100% CACC penetration, traffic congestion 
could be completely removed at the current demand level. 

• Therefore ACC leads to significantly more energy consumption than CACC at the same market 
penetration. At 100% market penetration for both, ACC vehicles consume roughly 80% more fuel 
than CACC vehicles. 

Early simulation studies by the SMART Consortium concentrated on freeway applications and were based on 
models of the vehicle-following performance of ACC and CACC systems for cars and heavy trucks. Although 
ACC and CACC systems represent Level 1 automation, their car-following behaviors are expected to be 
similar to the car-following behavior expected from vehicles with higher levels of automation, so these results 
can, to some degree, be generalized to those higher automation levels. One important distinction is between 
“autonomous” automation systems (which do not actively coordinate with other road-users) and cooperative 
automation systems (which use V2V communication to actively coordinate their behaviors).  

To compare the impact of ACC and CACC penetration levels on traffic, the same calibrated baseline traffic 
was used for both ACC and CACC car-following models. Note that in a CACC string, the lead vehicle will 
always be in ACC mode when following a manually driven vehicle or another CACC string. For the latter 
case, the two CACC strings may combine if the total length does not go over the maximum CACC string 
length limit. Car-following behaviors used in this study were calibrated with field-collected data for a few 
ACC and CACC vehicles driven in public traffic. These car-following models are intended to capture the 
dynamic interactions between manually driven vehicles and ACC and CACC vehicles.  

Figure 3-56 and Figure 3-57 show the contrast between the trends in achievable throughput per lane as the 
market penetration increases for ACC (unconnected) and CACC systems, respectively. The simulation 
scenario for these results was a section of four-lane freeway operating at its maximum achievable upstream 
throughput level, with a single exit ramp serving different exiting traffic volumes, ranging from none (the ideal 
case) to 25% of the mainline volume. The decline in achievable downstream throughput with increasing use of 
ACC is in distinct contrast to the increase in downstream throughput with increasing use of CACC. This 
occurs because ACC destabilizes the vehicle-following control, while the CACC stabilizes it and enables the 
vehicles to be driven at shorter gaps. 
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Figure 3-56. Corridor throughput versus ACC penetration level; the color codes represent the percent of flow through the 

exit ramp. 

 
Figure 3-57. Corridor throughput with CACC penetration; the color codes represent the percent of flow through the  exit 

ramp. 

The effects of ACC and CACC on energy consumption can be visualized more clearly on contour plots for a 
simple scenario of a four-lane freeway section with a single on-ramp. Figure 3-58 shows a fuel consumption 
contour plot for a 13.5 km corridor for one hour of operation, with an upstream mainline approaching traffic 
flow of 1,950 vehicles/lane/hour, approximately the maximum capacity for manual driving, plus an on-ramp 
volume of 600 vehicles per hour beginning after the first 20 minutes of simulation. The vertical axis of each 
plot represents the location along the freeway, the horizontal scale represents the time, and the colors represent 
the traffic speeds. The results in Figure 3-58 also show that when all the vehicles are using CACC the impact 
of the on-ramp traffic is negligible, but that when all the vehicles are using autonomous ACC, the fuel 
consumption increases significantly because of the unstable vehicle-following behavior. 
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Figure 3-58. Fuel consumption rate (GPM - gallon per mile travelled) contour plot for 100% CACC driving (left) and 100% 
ACC driving (right) in response to a traffic disturbance caused by an on-ramp. The upstream mainline approaching traffic 

flow is 1,950 vehicles/lane/hour, and the on-ramp volume is 600 vehicles per hour. 

Using the same freeway section simulation scenario — mainline demand of 1,950 vehicles/lane/hour and on-
ramp demand of 600 vehicles per hour — Figure 3-59 and Figure 3-60 show how energy consumption changes 
with changing market penetrations levels of ACC and CACC in mixed traffic, respectively. Note that in CACC 
operation, the leader vehicle will usually operate in ACC mode, even in a single vehicle situation. At 100% 
market penetration of CACC vehicles, energy consumption could drop by approximately 7% to 20%, and the 
average (over time) energy consumption could drop by 15%. Therefore the same market penetration of ACC 
leads to significantly more energy consumption than CACC. Up to about 80% more energy is consumed with 
ACC than with CACC with 100% market penetration for both. 

It can also be observed from Figure 3-59 that for combined mainline and the on-ramp traffic, (a) higher market 
penetration levels of ACC vehicles in mixed traffic (with manually driven vehicles and ACC vehicles) increase 
energy consumption, and (b) with 100% market penetration of ACC, energy consumption could increase by up 
to 60% over the baseline (current traffic with manually driven vehicles only). These results are in line with 
other predictions about the impact of ACC market penetration levels on mobility: Higher market penetration 
levels of ACC vehicles will reduce the flow of mixed traffic significantly.114 
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Figure 3-59. Energy consumption changes compared to the baseline traffic (manually driven vehicle only) with changes 
in market penetration levels of ACC vehicles. 

 

Figure 3-60. Energy consumption changes compared to the baseline traffic (manually driven vehicle only) with changes 
in the market penetration levels of CACC vehicles. 

Figure 3-60 shows that for the combined mainline and on-ramp traffic (t>~1300s) (a) at low market 
penetration levels (<40%) of CACC, the average energy consumption over time will increase compared to the 
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baseline (current traffic with manually driven vehicles only) since most vehicles have to operate in ACC mode 
due to limited opportunities to form platoons, (b) at market penetration levels of 60% and above, the average 
energy consumption starts to drop, and (c) at 100% CACC market penetration, energy consumption over time 
could drop between 7% and 20%. 

For mainline traffic only (t<~1300s), even a 20% market penetration of CACC immediately leads to a 10% 
benefit (Figure 3-60). However, this is not the case for ACC only (Figure 3-59). When there is no on-ramp 
traffic, the performance of the 20% CACC case (with 5% effectively in string operation) is better than the 
baseline human driver case and the 20% ACC case, because the CACC string operation provides mobility and 
energy benefits to the traffic flow. In the ACC case, on the other hand, a minor random disturbance caused by 
lane changes could be amplified by the ACC controller, thus decreasing the stability of the mainline traffic 
flow.  

At the on-ramp bottleneck, the on-ramp traffic would disrupt the CACC string operation in the freeway 
mainline. For the 20% CACC case, as the mainline strings are broken, those CACC vehicles switch to the 
ACC mode, making the scenario performance similar to the performance observed at the 20% ACC case. 
When the CACC market penetration gets higher, most of the on-ramp vehicles are CACC vehicles themselves. 
They can join the mainline CACC string after merging into the freeway traffic. In this case, the disturbance 
from the ramp traffic becomes smaller and the freeway performance at the on-ramp bottleneck starts to 
improve. 

Another finding from examining the four-lane freeway section is that there may be a subtle trade-off between 
fuel consumption and maximum freeway throughput at higher traffic volumes. When the use of CACC is 
maximized, and traffic throughput is pushed to the maximum achievable by operating long strings of CACC 
vehicles, congestion can re-emerge as the highway is handling a much higher traffic volume. This trade-off is 
shown in Figure 3-61, which shows (for CACC vehicles) the downstream capacity of a freeway section 
increasing as the upstream input traffic increases, but with some flattening as congestion builds up (red curve), 
while the energy efficiency declines (as calculated by MOVES and VT-Micro based on simulated individual 
vehicle trajectories) as that congestion increases (blue curve). Note that the vertical scale on the right side of 
the plot shows energy savings toward the upper end (negative signs in fuel consumption signifying savings).  
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Figure 3-61. For a freeway section: trends in downstream freeway lane throughput and energy efficiency as traffic volume 
increases with 100% CACC penetration. 

The calibrated models of ACC and CACC vehicle-following were also applied to real-world freeway corridors. 
The initial calibration of the human driver model parameters was done for the SR-99 freeway corridor 
approaching Sacramento, CA, from the south during the morning peak period. The upper left corner of Figure 
3-62 shows the contour plots of traffic speeds along this corridor in the current base case (no CACC vehicles), 
followed by plots showing successively larger market penetrations of CACC, from 20% to 100% in 20% 
increments. The vertical axis of each plot represents the location along the corridor, the horizontal scale 
represents the time from 4:00 a.m. to 12:00 noon on a weekday, and the colors represent the traffic speeds.  

While there are many on-ramps and off-ramps along this section of the corridor, there are three major 
bottlenecks, which are noted in the top of Figure 3-62.. As the CACC market penetration increases, the 
bottlenecks can be seen to dissipate, while the corridor traffic volume remains the same as in the base case. 
This demonstrates the ability of CACC to reduce the traffic congestion that produces inefficient use of energy. 
Note that the 20% market penetration is actually worse than the base case. This occurs because the CACC 
system reverts to ACC when there is not a CACC-equipped vehicle in front of it, and at this low market 
penetration level most of the CACC vehicles have not arrived right behind another CACC-equipped vehicle, so 
they have been compelled to function in ACC driving mode.  
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Figure 3-62. Speed contour plots for SR-99 Sacramento corridor with all-manual driving and CACC at market penetrations 
from 20% to 100%. The horizontal lines in the speed contour plots indicate the locations of the three on-ramps, based on 
postmile, which are the major bottlenecks along the corridor for peak morning traffic. The road sketch and traffic direction 

is depicted on the top. 

3.3.1.2 Energy and Emissions Evaluation of Ramp Metering in Microscopic Mixed Traffic Simulation 

• For a simple freeway section with a merge bottleneck at a single on-ramp, ramp metering can improve 
mobility via increased throughput as well as reduce energy consumption and emissions. This 
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improvement in average fuel consumption and emissions can be as high as 20% at high on-ramp 
demands (1200 veh/hr to 1500 veh/hr). 

• In addition to the simple freeway section, several Active Traffic Management (ATM) strategies were 
implemented and simulated on a realistic corridor (SR-99 North in California) to analyze their impact 
on traffic flow, energy consumption, and emissions. Compared to the baseline case with no metering 
on the simulated corridor, Local Responsive Ramp Metering (LRRM) was found to provide 2-9% 
traffic flow and 1-2% emissions and fuel economy improvements. Coordinated Ramp Metering 
(CRM) and Variable Speed Advisory (VSA) strategies both achieved over a 20% improvement in 
mobility, emissions, and fuel savings, with CRM-alone working slightly better than VSA alone. The 
combination of both CRM and VSA did not show additional benefits for simulations done within this 
work. 

 
Ramp metering is one traffic management strategy for controlling the flow from an on-ramp onto a freeway. 
Unmetered high-volume entrance traffic can significantly affect mainline traffic flow and create bottlenecks at 
the on-ramp merge area. Ramp metering can often help relieve these bottlenecks. There are different 
implementations of ramp metering and it is the subject of significant continued research. Time-of-day fixed 
metering rates (where the rate is determined by the time of day regardless of the traffic situation) are used in 
many states in the U.S. In California, almost all Caltrans freeways use LRRM, which determines the metering 
rate based on the real-time occupancy measurement immediately upstream of the on-ramp, using a look-up 
table that provides the suggested ramp metering rate for the corresponding threshold of occupancy levels. In 
contrast to LRRM, Coordinated Ramp Metering (CRM) intends to optimize the traffic throughput in a corridor 
by managing traffic from a system-level viewpoint and determining the ramp metering rates jointly for all on-
ramps along a freeway corridor. The CRM algorithm implemented for this work to evaluate energy impacts 
was developed in previous work115,116 and uses a Model Predictive Control approach to optimize the trade-off 
of Total Travel Time and Total Travel Distance based on field available traffic detections. 

While ramp metering controls the traffic demand into the freeway, once the vehicles get onto the freeway they 
are no longer controlled by the ramp metering, and traffic patterns are determined by driver behavior. To 
control or affect the mainline traffic directly, a Variable Speed Limit or Advisory (VSL/VSA) strategy is 
necessary. VSL and VSA are effectively the same control method with the only difference being that VSL is 
legally compulsory and VSA is advisory. Therefore, with a VSA strategy a driver can still choose to comply 
with the advisory or not. Obviously, higher levels of driver compliance will likely generate better control 
effects. For vehicles with longitudinal automation and I2V connectivity, the VSL/VSA information can be 
directly used on the vehicles as the set-speed for longitudinal control. In this sense, a CAV can be used as a 
traffic regulator due to its positive impact on the overall traffic.117 The VSL/VSA algorithm implemented for 
this work uses an algorithm developed and field tested along the SR-78 East Bound Corridor near Escondido, 
San Diego.118,119 The driver compliance rate used in the simulation was the rate of observed in-field 
compliance during the SR-78 testing as indicated by radar-based detection near all roadside VSA signs. While 
the previous efforts discussed above did not consider the energy and emissions impacts of the developed VSA 
strategy, this work evaluates the impact mobility impacts as well as the energy consumption and emissions 
impacts of the discussed traffic management strategies for freeway traffic. 

The road geometries considered were (a) a simple freeway section with a merge bottleneck at a single on-
ramp, and (b) a real-world freeway corridor, northbound SR-99, with multiple on-ramps and off-ramps. The 
purpose of studying a simplified freeway section is that the system can be isolated from the effects of its 
upstream in-flow and downstream back propagation. Since ramp metering controls the demand from the on-
ramp, which affects the on-ramp queue and the total travel time, both the mainline and on-ramps have been 
evaluated rather than the mainline only. 
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Evaluating the impact of mixed traffic with CAVs and manually driven vehicles on energy consumption and 
emissions with microscopic traffic simulation is a challenging task because of the need to consider inputs and 
interactions at three different levels:  

1. Individual vehicle 
2. Mesoscopic traffic, such as a freeway or an arterial corridor with aggregated traffic data and the 

corresponding energy and emission models 
3. Macroscopic traffic, such as a city or a region with highly aggregated data and the corresponding 

evaluation models 
These efforts used several energy consumption models, including MOVES120,121,122, Autonomie123, and the 
VT-CPFM.124. It was discovered that each model has its own pros and cons, and they all need experimental 
data for calibration for a reasonably accurate energy consumption evaluation. For example, MOVES can only 
be used with aggregated data. Autonomie can be used for individual vehicles, but it depends on the vehicle 
type and other powertrain characteristics, requiring an estimate of the individual vehicles and types operating 
in the evaluation environment. In addition, using Autonomie with microscopic traffic simulation requires 
extremely high computational power, since each vehicle requires a corresponding dynamic vehicle-level model 
and feedback control. The CAV Pillar developed a creative way to use Autonomie for energy consumption 
evaluation by using a randomly selected small percentage (e.g., 10%) of vehicles in a microscopic traffic 
simulation for the overall energy consumption evaluation. This method can still achieve reasonably accurate 
results compared to using all of the individual vehicle trajectories (speed, acceleration/deceleration, etc.) from 
a given microsimulation. 

Autonomie was developed for individual vehicle modeling and feedback control development, and energy 
consumption and emission estimation. However, using Autonomie for energy consumption and emission 
estimation of the traffic along an entire freeway corridor, which includes thousands of vehicles, would not be 
possible due to computation overhead. To use Autonomie for energy consumption and emission estimation in a 
microscopic mixed traffic simulation at an aggregated level, 10% of the vehicle trajectories were randomly 
selected as the representatives and saved to feed into Autonomie for calculation. Average fuel consumption 
and emissions metrics were measured on a per-kilometer and per-vehicle basis in order to account for the fact 
that different scenarios have different number of vehicles simulated (due to varying on-ramp demand) and that 
vehicles travel varying distances.125 

This work first considered the effect of time-of-day fixed rate metering on a simple freeway section, as shown 
in Figure 3-63: 

 

Figure 3-63. Simple freeway section with a merge bottleneck at the one on-ramp 

In Figure 3-64, the solid lines represent the fuel consumption or emissions estimates for the freeway merge 
(mainline and on-ramp combined), while the dotted lines represent fuel consumption and emissions estimates 
at the on-ramp only. Before implementing a fixed rate ramp metering strategy, which controls the demand onto 
the freeway from the on-ramp by adjusting the metering rate (or entrance flow), the average fuel consumption 
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and emissions increased at a constant rate as the on-ramp demand increased from 300 veh/hr to 900 veh/hr. 
After implementing ramp metering at a fixed rate of 400 veh/hr, the average fuel consumption and emissions 
still increase, but at a slightly lower rate. This indicates that there is a correlation between capacity drop due to 
higher on-ramp demands and increased average fuel consumption and emissions; capacity drop due to high on-
ramp demand can lead to as much as 57% more fuel consumption and emissions per kilometer for each 
vehicle, compared with the case where the on-ramp demand is absent (Figure 3-64).126 Fuel consumption 
(kg/km/veh.) and emissions (CO, PM2.5, NOx, CH4 (kg/km/veh.)). have been analyzed with Autonomie based 
on simulated trajectory data, as shown in Figure 3-64. 

  
(a) Fuel consumption 

 
(b) CO2 
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(c) NOx 

 

 
(d) CO 
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(e) PM 2.5 

 

 
(f) HC 

 
Figure 3-64. Emission and fuel consumption estimates at varying levels of on-ramp demand  

with fixed metering rate of 400 veh/hr. 

As shown in Figure 3-64 once the on-ramp was metered at a fixed rate of 400 veh/hr for on-ramp demands of 
600 veh/hr or higher, the average fuel consumption and emissions on the mainline are no longer as high as 
those observed without ramp metering. Note that the plot only shows emissions in relation to on-ramp demand, 
not metering rate. The ramp meter rate is not shown. 

This improvement in average fuel consumption and emissions can be as high as 20% at high on-ramp demands 
(1200 veh/hr to 1500 veh/hr). This can be attributed to higher overall freeway merge capacity, leading to lower 
delay and less travel time. In addition, careful inspection of Figure 3-64 reveals an interesting finding: 
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Metering the on-ramp when the on-ramp demand is 600 veh/hr or higher restricted the on-ramp flow and 
caused the average fuel consumption and emissions to increase significantly, and this is also correlated to the 
significant increase in the stop time and total number of stops on the on-ramp shown in Table 3-6. However, 
although ramp metering increased the number of stops and stop time on the on-ramp, it led to higher freeway 
merge capacity, fewer stops and less stop time on the mainline, which contributed to an overall reduction in 
average fuel consumption and emissions. This phenomenon is very similar to the observation that ramp 
metering improves the overall capacity of the freeway merge at the expense of restricting the flow and 
increasing the delay of the on-ramp.  

Table 3-6. Comparison of stop time and number of stops on mainline vs on-ramp metered at 400 veh/hr. 

On-ramp demand 
(veh/hr) 

No Metering Metering 

600 900 1200 1500 600 900 1200 1500 

Stop time (sec) 

Mainline 0.04 4.11 10.56 11.25 0 0 0 0 

On-ramp 0 0.95 59.41 67.9 437.98 498.01 500.76 506.27 

Number of stops (#/veh) 

Mainline 0 0.11 0.21 0.22 0 0 0 0 

On-ramp 0 0.11 0.62 0.67 1 1 1 1 

 

Although even a simple ramp metering strategy like the time-of-day fixed metering rate control was shown to 
improve energy consumption for a simplified freeway section with a downstream bottleneck, similar results for 
the same metering strategy applied to a freeway corridor with complicated traffic patterns are unlikely. For 
complex traffic scenarios, a given section of a freeway corridor is affected by its upstream and downstream 
traffic. Such two-directional chain effects would not be comprehended in an isolated freeway section as 
discussed above. Therefore, the simulation of traffic along a freeway corridor is absolutely necessary to 
analyze realistic traffic impacts. For this reason, several ATM strategy were simulated for California’s SR-99 
North Bound Corridor. The ATM strategies implemented and simulated include: LRRM, CRM, VSA, and the 
combination of CRM and VSA. The simulated performance analysis includes: total delays, average traffic 
speed, the number of lane changes (indication of traffic disturbances), fuel economy (MPG), and emissions 
(NOx, CO, CO2, HC, and PM2.5). It is noted that the simulations have only been conducted for status quo 
traffic (manually driven vehicles) and do not include an automated vehicle behaviors at this stage. The energy 
and emissions have been evaluated with Autonomie developed Argonne National Laboratory. Sensitivity 
analysis with respect to the market penetration of CAVs in mixed traffic is an area for future research. 

From Table 3-7 below, it can be observed that energy consumption and emissions have been improved over 
the baseline traffic for all of the various ATM strategies simulated for the corridor. This is the case even for 
LRRM; however, CRM and VSA achieved significantly larger improvements than LRRM in all aspects. This 
is because LRRM is a local approach, which only looks at the traffic detection of its immediate upstream 
section, not system wide. Therefore, LRRM is a selfish algorithm which can lead to issues and instabilities 
elsewhere in the system. In contrast, both CRM and VSA determine the ramp metering rates and the desired 
speeds from a system-level viewpoint, including mainline sections, on-ramps and off-ramps, optimizing 
overall traffic mobility. It should be noted that the energy consumption and emissions have not been directly 
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considered as factors in the traffic optimization, rather their improvement is a byproduct of the improved 
traffic mobility. 

Table 3-7. Emission and fuel consumption estimates (no metering vs. highlighted ATM strategies). 

 

 

 

 

 

 

 

 

 

 

 

 

It can be observed from Table 3-8 that the total delay reduction enabled by the CRM, VSA and the 
combination strategies is about 5 times that of the LRRM reduction. For other aspects, the improvements are 
over 10 times more. This again indicates the merits of a system-level approach over a local approach. From 
these results, there is one question yet to be answered: since CRM and VSA should be complementary in 
function from a traffic management viewpoint; why does the combination of CRM & VSA not bring extra 
benefit compared to CRM and VSA alone? This question is recommended for future research. 

Table 3-8. Mobility performance (no metering vs. highlighted ATM strategies). 

 

In summary, this section has preliminarily considered the effects of highlighted Active Traffic Management 
strategies in terms of their mobility, energy consumption and emissions impacts. The simple case considered 
was a fixed rate ramp metering strategy of 400 veh/hr which appeared to remove the mainline capacity drop at 
a bottleneck for an isolated freeway section with a downstream onramp bottleneck. However, this mainline 
improvement does not necessarily mean an improvement in overall mobility, since the onramp queue for the 

Ramp metering 
strategy No Metering LRRM CRM VSA CRM+VSA 

Fuel Economy 
(mpg) 31.39 1% 28% 27% 28% 

NOx 
(kg/veh/mile) 1.95E-04 -2% -24% -22% -22% 

CO 
(kg/veh/mile) 1.96E-03 -2% -23% -21% -22% 

CO2 
(kg/veh/mile) 0.291 -1% -23% -22% -22% 

HC 
(kg/veh/mile) 3.63E-04 -2% -22% -21% -22% 

PM 2.5 
(kg/veh/mile) 1.37E-05 -1% -23% -21% -22% 

Ramp metering strategy No Metering LRRM CRM VSA CRM+VSA 

Delay (sec/km) 31.69 -9% -47% -45% -45% 

Average speed (km/hr) 65.53 2% 14% 12% 13% 

Number of lane changes 
(#/km) 

1709.19 -1% -13% -13% -13% 
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simple freeway section could be significantly large at high demand levels.  Several other ATM strategies 
including LRRM, CRM, VSA and the combination of CRM and VSA were implemented for a more realistic 
and well-calibrated freeway corridor, SR-99 Northbound. The ATM strategies were developed for a direct 
mobility improvement, however, the simulation results also showed that energy savings and emission 
reductions could also be achieved as a byproduct of the improved mobility. Although LRRM provided some 
improvement to the traffic in all three aspects of interest: mobility, energy saving and emission reduction, 
CRM, VSA and combined CRM and VSA was found to provide significantly larger improvement compared to 
the LRRM implementation in all performance aspects. CRM worked slightly better than VSA alone, and the 
combination of CRM and VSA did not show an additional benefit when applied to the corridor simulated 
within this work. 

Further research regarding ATM strategies should include a sensitivity analysis of the highlighted ATM 
strategies for mixed traffic with respect to different levels of connectivity and automated driving market 
penetrations. It would also be interesting to analyze the effect of combined CRM and VSA more deeply to 
understand why the combination of both strategies did not bring additional benefits compared to CRM or VSA 
alone although their functionality in freeway traffic control should be complementary. 

3.3.2 Regional-Level Impacts of Connectivity and Automation 

• The impacts of CAVs are highly dependent on the value of travel time (VOTT). A preliminary study 
based in Chicago showed that partially automated vehicles could cause up to 45% increase in VMT if 
VOTT is reduced by 50% at full market penetration, while VMT would only increase by 9% if no 
VOTT change is assumed. 

• If vehicle technology improvement occurs along a business-as-usual (BAU) trajectory, there could be 
essentially no fuel use reduction (~6%), despite continued vehicle improvements, due to zero-
occupancy vehicles (ZOVs) and high CAV accessory loads, driving additional VMT and reducing 
overall efficiency. 

• ZOV trips for personally owned vehicles related to repositioning and other behaviors lead to a 
significant increase in overall travel, as these vehicles do not have the higher efficiencies associated 
with larger-scale ride-hailing shared automated vehicles (SAVs). 

Extending the work done for vehicle-level and corridor-level analysis, the CAVs Pillar explored the impacts of 
connected and automated vehicles at a regional level. This is necessary because the way in which individual 
CAVs and small groups of CAVs function and interact with individual travel behavior, as well as larger scale 
transportation system operations, affects the transportation system as a whole. In order to anticipate possible 
impacts at the regional scale, the POLARIS agent-based transportation systems simulator was used to explore 
a variety of scenarios representing potential changes introduced by CAVs. The POLARIS simulator was 
adapted as discussed in 3.2.3 to represent these changes. The next several sub-sections discuss studies 
exploring the impact of automation levels and vehicle sharing strategies on regional energy and mobility. 

3.3.2.1 Impact of CACC and Other Automation Technologies on Regional Traffic Flow, Mobility and 
Energy Use 

• Partially automated vehicles could cause up to a 45% increase in VMT if VOTT is reduced by 50% at 
full market penetration, while VMT would only increase by 9% if no VOTT change is assumed. 

• As VOTT is reduced, individuals living in downtown and other urban core areas are already near more 
optimal activity spaces and do not tend to engage in as much extra travel as others do. 

While corridor-level microscopic simulations of CAVs in various modes of operation (e.g., isolated vehicles 
and CACC) are possible, their full impact can be only captured at the network level. However, most of the 
current state-of-the-practice mesoscopic and macroscopic simulation tools cannot accurately capture the 
impacts of CAVs on congestion, emissions, and travel time reliability. Using the updated regional level 
modeling capabilities discussed in Section3.2.3, several simulations were conducted for various market 
penetration rates of CAVs (considering both CACC and isolated automated vehicles (AVs).  



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

108 

Using the updated POLARIS activity-travel simulator, a set of cases regarding the potential impacts of 
privately owned partially automated (Level-4) CAV deployment were analyzed for the Chicago metropolitan 
area. In this work, “partially automated” refers to vehicles that are capable of limited self-driving but still 
require drivers in the vehicle. The incremental AV costs were modified from $0 to $15,000 to achieve the 
market penetration values specified in Figure 3-65. A range of value of travel time (VOTT) reduction due to 
CAV, and CAV technology purchase models developed within the SMART Consortium efforts127, were 
applied to evaluate the results. The results show that CAVs have some congestion-relieving effects when no 
assumption of VOTT change is made (i.e., low rebound). However, as VOTT is reduced, travel increases 
occur. The worst case (50% reduction in VOTT) shows a 48% increase in vehicle hours traveled (VHT) and a 
45% increase in vehicle miles traveled (VMT), as well as indications of increased congestion. Overall, there is 
a 42% increase in fuel consumption in the high CAV case. 

 

 
Figure 3-65. VMT and energy charge versus CAVs penetration and VOTT. 

Figure 3-66 shows the geographic distribution of changes in fuel consumption for two cases using BAU year 
2040 vehicle technologies. The results show that changing the cost of CAV ownership, while holding the 
VOTT fixed, results in substantial fuel increases in outlying and more wealthy areas of the region, while 
holding the cost fixed and varying the VOTT shows a fairly uniform increase in energy and travel across the 
region, as expected, with the exception of high density employment and activity areas. Individuals living in 
downtown and other urban core areas are already near optimal activity spaces and do not tend to engage in 
substantial amounts of extra travel regardless of the change in VOTT.  
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Figure 3-66. CAV scenario fuel use changes. 

3.3.2.2 Large-Scale Regional Privately Owned CAV Level-5 (Fully Automated, Driverless Capable) 
Scenarios and Insights 

• Many additional zero-occupancy vehicle trips are generated as privately owned CAVs are introduced 
and shared among household members — with total auto trips increasing by 39% in the worst case. 

• If vehicle technology improvement occurs along a business-as-usual (BAU) trajectory, there could be 
essentially no fuel use reduction (~6%), despite continued vehicle improvements, due to ZOV and 
high CAV accessory loads. 

One of the possible scenarios for the future of transportation/vehicle ownership is adoption of privately owned 
fully automated (Level 5) AVs. To model the travel behaviors of these households, an optimization model was 
developed that uses the household’s travel plans and schedules, as well as transportation network information, 
as inputs and generates the AV’s travel plans. The mixed integer programming (MIP) optimization model finds 
the optimal number of Level 5 AVs that a household needs, given its activities and schedules. The model also 
schedules the optimal AV trips, while considering vehicle sharing and carpooling between household 
members, travel to home/parking, flexibility in timing, taxis, and various travel costs, as well as any charges 
for zero-occupancy travel. The travel-related costs include energy, value of time, vehicle ownership, parking, 
and taxi/ride-hail trip fares for trips that cannot be satisfied by the household AV. The optimization model has 
been integrated with POLARIS and is called upon whenever a household is determined to have privately 
owned AVs. The results of the optimization model (encompassing the AVs’ travel plans, including ZOV trips) 
are also simulated in the POLARIS traffic simulator. 

A case study was conducted for Bloomington, Illinois, for the base year (2015), short-term view (2025), and 
long-term view (2040), with details shown in Figure 3-67. The demand assumptions included high CAV 
demand (with a marginal cost of $5,000, high activity scheduling flexibility) and low CAV demand (with a 
marginal cost of $15,000, low flexibility) The value of travel time is 50% of base in both cases, which is 
approximately similar to the VOTT difference between driving and traveling on high-quality transit. Data on 
the base- and forecast-year land use, population, and employment were provided by the Bloomington 
Metropolitan Planning Organization (MPO), and vehicle distributions were obtained from Polk/IHS Markit 
registration data for the base year. Both CAVs with partial automation and no ZOV travel capabilities and full 
automation with ZOV travel were considered in the scenarios. 
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Figure 3-67. Scenario design for Bloomington case studies. 

A summary of the case study assumptions and results is provided in the Appendix, and primary results are 
summarized below in Figure 3-68. Highlighted conclusions from the Level 5 cases suggest that ZOV trips 
could increase total automobile trips by 27% (for low CAV penetration rates) and 39% (for high CAV 
penetration rates) over the baseline, whereas introducing ZOV pricing of $0.33 per mile could reduce the 
impact to some degree (down to 25% and 35%, respectively, for the low and high rates). Fuel consumption is 
reduced by up to 75% for low CAV penetration and by up to 71% for high CAV penetration rates, depending 
on the CAV accessory load for the high technology improvement case. However, in the low-tech cases, fuel 
reductions can be as low as 6% from baseline (essentially no change from current fuel use despite vehicle 
powertrain advances). The case studies also found that ZOV pricing could further reduce fuel consumption by 
1% and 5%, depending on vehicle technology and CAV penetration. 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

111 

 
Figure 3-68. Best and worst case performance metrics over time under privately owned, Level 4/5 CAV scenarios. 

3.3.2.3 Impacts of Automated SAVs on Energy and VMT 

• ZOV trips for personally owned vehicles related to repositioning and other behaviors lead to a 
significant increase in overall travel, as these vehicles do not achieve the higher efficiencies associated 
with larger-scale ride-hailing SAV automation. 

• High penetration of private AVs (~50%) would lead to a 41% increase in VMT and a 16% reduction 
in average travel speed, representing substantial congestion growth. 

Given the dramatic impacts that privately owned automated vehicles were observed to produce, especially the 
possibility of increased energy use as well as significantly increased VMT and VHT, one additional possibility 
considered in this research is the use of shared automated vehicles (SAVs), i.e., automated vehicles operated 
by TNCs. A case study, highlighted in this document and discussed in much greater detail in the companion 
SMART Mobility Modeling Workflow Capstone Report (refer to the SMART Mobility Modeling Workflow 
Capstone Report: Section 4 - Results from POLARIS Workflow Implementation) was performed using the 
POLARIS model of Chicago that, amongst other scenarios, looked into the impacts of ride-hailing versus 
privately owned fully automated vehicles. While only the highlights of the results are presented in this 
document, to provide a contrast between ride-hailing and private fleets of automated vehicles, this work shows 
some important considerations and impacts related to ride-hailing and privately owned fleets. In fact, privately 
owned fleets are much less efficient, on an energy use per traveler mile basis, due to zero occupancy miles, 
than shared fleets of automated vehicles.  

Many of the relevant issues leading to this lack of efficiency can be observed below in Figure 3-69, which 
compares a scenario with high ride-hail use and no private AVs to a scenario with high private AV ownership 
and low ride-hail usage for the Chicago area. While both scenarios see significant use of shared vehicle assets 
(i.e., ride-hailing/SAV usage in the shared fleet case and intra-household AV sharing in the privately owned 
case), there are still significant advantages to be had though usage of ride-hail fleets of automated vehicles: 
ZOV trips for personally owned vehicles related to repositioning and other behaviors lead to a significant 
increase in overall travel, as these vehicles do not achieve the higher efficiencies associated with larger-scale 
ride-hailing SAV automation, which allows for more productive use of the vehicle assets (less empty travel). 
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Compared with the Chicago metropolitan region baseline case for this study, a significant (52%) penetration of 
privately owned AVs would lead to a 42% increase in VMT, a 62% increase in VHT, and a 12% decrease in 
average vehicle travel speed. 

 
Figure 3-69. Private AV vs. shared AV million travel hours per hour. 

3.3.2.4 Identified Regional Level Mitigation Strategies for Undesirable CAV Impacts 

Incorporating the insights gained from the preceding sections, a range of mitigation strategies has been 
identified and assessed. More discussion of the implementation and impacts of these mitigation strategies can 
be found in Section 3.4.3 Promising opportunities to leverage connectivity and automation to offset some of 
the less desirable regional-level impacts of these technologies include ZOV optimization, improved transit 
access, leveraging connectivity and automation for improved situational awareness and control, large-scale 
traveler coordination, managed lanes (possibly including CACC specific lanes), and co-design of vehicle 
technology to incorporate the new functionalities associated with connectivity and automation. 

3.3.2.5 Summary 

At the regional level, fully automated, privately owned vehicles, if introduced into our near-term transportation 
system have the potential to substantially impact traffic and energy use through induced demand and zero 
occupancy vehicles (ZOV), which travel empty due to vehicle repositioning. A preliminary case-study done 
early in the CAVs Pillar’s efforts, showed that VOTT, specifically reductions to VOTT enabled through 
automation, is a critical parameter driving much of the additional VMT observed in the case study. For 
example, regional-level modeling based in Bloomington, IL, done within the CAVs Pillar indicates that the 
presence of fully automated privately owned vehicles would increase trips more than 27% (at low penetration 
rate/high cost) and 39% (at high penetration rate/low cost). With the combined effect of ZOV travel, this 
would increase system level VMT by 42% and 63%, respectively. 

 

3.3.3 CAV Transition Dynamics and Identifying Tipping Points 

The CAVs Pillar developed conceptual and functional models of CAV adoption to test hypotheses about CAV 
deployment scenarios.128 Key takeaways from this work include: 

• CAV adoption faces a complex landscape of overlapping stage gates where stakeholders block or 
accelerate it. Examples include interactions between manufacturer R&D, vehicle miles traveled 
(VMT) accumulation for insurance underwriting, time for regulatory approval, vehicle costs to 
consumers, and achieving economies of scale. 

Shared AV Fleet Private AVs 
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• Scenario-screening analyses highlighted influential factors for CAV adoption and energy 
consumption. Consumer preference, time valuation, and technology costs are particularly strong 
influencers; others include vehicle powertrain types and fuel economy, proportion of time freed by a 
particular CAV concept, willingness to pool, road congestion, and amount of deadheading (i.e., extra 
travel performed by ride-hailing vehicles between passenger-carrying trips). 

A conceptual understanding of CAV deployment was developed by representing system relationships from the 
literature and expert opinion. This was translated into a functional ‘‘CAV scenario generation’’ model in 
systems dynamics using the STELLA simulation tool.129 The scenario generation model developed in this 
work is freely available for download on GitHub.130 This approach improves on human intuition in several 
ways: It accounts for feedback and shows relationships across the transportation system, enabling development 
of self-consistent scenarios and helping achieve consensus and shared understanding about what system 
elements are important and how they interact (such as the interplay between consumers, manufacturers, 
regulators, insurers, infrastructure investments, etc.). It can be populated with either quantitative or semi-
quantitative data with multiple sensitivities regarding uncertainty and the level of detail available in the data. 
For example, quantitative data would include numbers of vehicles, numbers of miles traveled, and amounts of 
energy used. Semi-quantitative data would include consumer preference for different vehicle concepts, which 
is expressed quantitatively in the model but represents a mix of unmeasured and potentially unmeasurable 
outcomes of hypothetical consumer choices. The model’s streamlined data input requirements allow rapid 
configuration and exploration of new scenarios with sufficient detail to encompass newly emerging empirical 
data. 

The systems dynamics model is organized modularly, where each module represents the behavior and 
decisions of a sector or stakeholder group. Some modules focus on bookkeeping and accounting of activities, 
modal choices, vehicle sales, stock, energy, and so forth, while others represent decision making and the 
choices of the various stakeholders. Influences on the modules are either endogenous feedbacks from other 
modules or exogenous conditions external to the whole model. Modules within the CAV scenario generation 
model include the following (additional details on each of these structural elements may be found in the 
appendix to this CAV Capstone Report): 

• Population 
• Activities 
• Energy 
• Travel choice 
• Travel time and distance 
• Infrastructure 
• Vehicles and vehicle requirement 
• Manufacturers 
• Regulators 
• Insurers 
• Safety 

Multiple assessments and studies were undertaken to identify and develop insights regarding preliminary CAV 
adoption scenarios. The assessments informally evaluated several CAV adoption hypotheses and identified 
scenarios of potential interest for deeper analysis using more quantitative, detailed, computationally intensive 
tools.  

The three sensitivity analyses undertaken using the CAVs scenario generation model included a screening 
study broadly exploring stakeholder interactions and CAV adoption futures, an energy study assessing factors 
leading to variability in total energy consumption, and a comprehensive study quantifying interactions among 
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stakeholder and energy factors, as detailed in Table 6-4 in the CAVs Capstone Report Appendix. This 
appendix table contrasts the input parameters varied in these three sensitivity analyses. The three studies use 
Latin hypercube sampling (LHS) or Sobol experimental designs for 50,000 to 100,000 simulation runs each. 

Results of the screening sensitivity analysis provisionally identified conditions for transitions to CAV use and 
can be refined to focus on conditions of greatest interest. Figure 3-70 shows how each vehicle concept’s share 
of fuel consumption varies with consumer preferences and operating costs. Results range from high-cost, low-
preference cases without CAV adoption (lower right corner) to low-cost, high-preference cases with 
substantial CAV adoption (upper left corner). The figure illustrates a ‘‘tipping point,’’ which is defined here as 
scenarios where a small change in a combination of input parameters results in a disproportionately large 
change in output metrics: On either side of the diagonal line in the figure, when a small increase in operating 
cost combines with a small drop in preference for CAV, the market share for CAV falls significantly. With 
data refinement, calibration, and segmentation, the ranges of parameter space showing various CAV shares 
could be more quantitatively defined. These results are displayed without detailed quantification, but instead 
are shown as trends in shares because the data do not warrant excessive precision. 

 

 
Figure 3-70. Sensitivity analysis (in the screening study) of fuel consumption by concept type nationally in 2040 as a 

function of the operating cost for L1 and L4 CAV technologies and consumer preference for using CAVs. 

CAV adoption faces a complex landscape of overlapping ‘‘stage gates,’’ a term which refers to points in the 
pre-adoption process where upstream stages (R&D, regulation, manufacturing, etc.) must be completed before 
dependent downstream stages may begin: For example, CAV R&D must reach a requisite maturity before 
manufacturing can begin. A ‘‘bottleneck’’ occurs when an incomplete upstream stage impedes the initiation of 
downstream stages: For example, insurance underwriting may not become available to consumers until a CAV 
technology has demonstrated sufficient on-road VMT. Figure 3-71 summarizes the frequency (among the 
scenarios) of particular stage gates becoming the bottleneck limiting the availability of L4 automated taxis. In 
many cases, lack of consumer interest or lack of R&D completion blocks availability. In scenarios in which 
those two stages have been overcome, factors such as infrastructure readiness, vehicle manufacturing, or 
regulatory approval impose delays but not permanent bottlenecks. Proportions of results in the figure should 
not be interpreted as probabilities of outcomes because input assumptions do not include probability 
distributions. 
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Figure 3-71. Summary (in the screening study) of the frequency of different bottlenecks to CAV adoption among the 

scenarios. 

Figure 3-72 shows a regression tree that indicates that consumer preference and variable costs are the primary 
influences on the choice of L4 over L1 and L0 concepts. The method used to establish the branching order in 
this tree ranks factors by the extent to which they distinguish results, such that the most important node 
appears at the top and the least important ones at the bottom. Each node shows a binary choice that 
distinguishes two sets of simulations, and the blue wedge shows the share of each set that is in the best 5% for 
(low) fuel consumption. The fact that there are two paths to low fuel consumption in this figure illustrates that 
with the diversity of technologies represented, a variety of scenarios may have desirable characteristics. The 
energy study in the next section shows that significant variation in possible energy outcomes results from the 
inclusion of deadheading (i.e., extra travel performed by ride-hailing vehicles between passenger-carrying 
trips). 
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Figure 3-72. Regression tree (for the energy study) showing major influences on energy consumption from tipping points 

scenario modeling efforts; dark blue in each pie chart indicates the fraction of scenarios that lie in the best 5% of fuel 
consumption, within simulations selected by the preceding branching criterion. 

Scenario-screening analysis results revealed influential factors for CAV adoption and energy consumption. In 
particular, technological and behavioral assumptions lead to qualitatively different end states for CAVs and 
energy: As seen in Figure 3-70, small changes in combinations of assumptions can rapidly separate end states 
of CAV adoption. Multiple evolutionary pathways can converge on similar outcomes for specific metrics, or 
conversely can diverge to scenarios that yield disparate mobility systems. Figure 3-73 shows more than 2,000 
end states with disparate energy and utility profiles: Scenarios in the upper left typically exhibit higher vehicle 
occupancy, more pooled ride-hailing, higher fuel economy, and fewer deadhead miles, while the scenarios in 
the lower right generally have lower vehicle occupancy, less pooled ride-hailing, lower fuel economy, and 
more deadhead miles. 
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Figure 3-73. Outcomes (for the comprehensive study) with higher “traveler satisfaction” (system-wide utility) tended to 
require more fuel consumption unless CAVs Level 4 travel concepts predominate. System-wide utilities showed a linear 

relationship to fuel consumption in low L4 CAV adoption scenarios, but that did not persist at high L4 CAV adoption levels. 

Overall, the three sensitivity studies from the CAV scenario generation model yielded the following insights 
into scenarios for CAVs adoption and energy use: 

• CAV adoption faces a complex landscape of overlapping stage gates where stakeholders block or 
accelerate it. Examples include interactions between manufacturer R&D, VMT accumulation for 
insurance underwriting, time for regulatory approval, vehicle costs to consumers and achieving 
economies of scale. 

• Scenario-screening analyses highlighted influential factors for CAV adoption and energy 
consumption. Consumer preference, time valuation and technology costs are particularly strong 
influencers; others include vehicle powertrain types and fuel economy, proportion of time freed by a 
particular CAV concept, amount of deadheading, willingness to pool, and road congestion. 

• Certain scenarios with high L4 CAV penetration can achieve increased “traveler satisfaction” (system-
wide utility) without increasing fuel consumption under the right combination of conditions (e.g., 
depending on other factors such as time valuation and deadheading). In the absence of high L4 CAV 
penetration, scenarios with higher system-wide utility tend to require more fuel consumption. 

• Massive data gaps and uncertainties regarding future travel behavior, characteristics of CAV 
technologies, and ownership/business models limit the effectiveness of traditional, fully quantitative 
choice modeling to assess long-term CAV adoption outcomes; however, use of scenario-based, semi-
qualitative modeling can help overcome these limitations. 

• Points of leverage fall into three categories: (1) necessary conditions for CAV adoption that impede 
adoption unless a minimum threshold of support is present, (2) conditions that proportionately 
accelerate CAV adoption, and (3) conditions not strongly affecting CAV adoption but proportionately 
affecting energy use. The model can be used to at least qualitatively identify the conditions necessary 
to reach extremes of technology penetration. 

• High adoption of Level 4 may be relatively rare (less than 30% of the scenarios modeled), given the 
wide range of plausible input assumptions regarding traveler propensities (ownership preference, 
attitude towards automation, and value of time) and technology characteristics. 

Each point represents the 
outcome of one scenario.
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• It is feasible to meld the WholeTraveler survey (refer to the SMART Mobility Mobility Decision 
Science Capstone Report – Section 2.1.1 The WholeTraveler Survey) with the National Household 
Travel Survey (NHTS) to synthesize traveler cohorts, trip mixes, local deliveries, and mode splits 
nationally and in the largest metropolitan regions. 

• Technological and behavioral assumptions lead to qualitatively different end states for CAVs and 
energy. 

• Small changes in combinations of assumptions may rapidly separate end states of CAV adoption. 
• Multiple evolutionary pathways can converge on similar outcomes for specific metrics as well as 

scenarios that yield disparate mobility systems. 
 
3.3.4 National Level Impacts and Aggregation Techniques for CAV Behaviors and Technologies 

CAVs may significantly change mobility and the utility of travel as well as result in large changes in 
transportation energy use. In SMART Mobility and related research efforts, these potential changes were 
studied using models and simulations, largely at a regional or local scale. The CAVs Pillar also explored 
methodologies for synthesizing the regional and local results to a national level. 

The following three sections describe approaches that were explored to estimate changes in travel demand 
(3.3.4.1), aggregate vehicle fuel consumption (3.3.4.2) and CAV technology adoption (3.3.4.3). The goal was 
to take the results of regional simulations of changes in travel demand, given by VMT and other metrics, and 
results of vehicle simulations under relevant conditions, and combine these with an estimated mix (stock share) 
of CAVs and other vehicle technologies to calculate the resulting energy use under scenarios with CAVs. 
While only partially successful, the results provided fuel consumption aggregation techniques and CAV 
adoption projections that were used in other SMART Mobility tasks and provided some insights into modeling 
changes in travel behavior due to CAVs that may be useful to researchers in the field. 

3.3.4.1 Transfer Travel Behavior Results from Regional to National Level 

• Extrapolating the results of detailed, activity-based, transportation system simulations to other areas or 
other populations is challenging, especially for travel metrics such as VMT, since VMT depends not 
only on traveler characteristics, but also on road network characteristics and other land use 
characteristics at local and regional geographic scales. 

• Travel behavior metrics such as trip frequency and time spent traveling can be modeled in a way to 
enable expanding simulation results to larger populations (given demographic data on the target 
populations), but it is difficult to relate these metrics to energy use. Traffic flows on road links can be 
related to energy use, and CAV-induced changes in traffic flows can be modeled at the road or link 
level, at least in the Chicago metropolitan area. These travel behavior models need further validation 
before they can be applied to any larger area, such as the entire U.S. 

Since detailed, activity-based, transportation system simulations utilize and produce rich sets of data on travel 
behavior, traveler demographics, land use, and transportation system characteristics, this work explored using 
such data from the POLARIS simulations of the Chicago metropolitan area to develop models of how travel 
behavior, especially VMT, changed under a wide range of conditions. It was hoped that such models would be 
sufficiently robust to be applicable under a wide enough range of conditions to apply nationally. Such models 
would provide inputs to the aggregation methods described in Section 3.3.4.2 (along with an assumed vehicle 
mix given by the adoption modeling described in Section 3.3.4.3) to give national-level energy impacts for 
CAV scenarios. 

This work explored ways to expand household-level travel behavior changes resulting from CAVs deployment 
from POLARIS simulations to the national level. Transferability modeling successfully yielded distributions of 
the number of trips taken per day and the time spent traveling per day at a national level by bins or clusters of 
households based on the results of baseline and CACC scenario simulations in POLARIS. However, these 
travel behavior metrics were not sufficient to estimate VMT, which was the travel behavior metric initially 
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chosen to use in the vehicle fuel consumption aggregation method. Validation testing showed that the resulting 
VMT models had very poor explanatory power and were unable to model VMT even in the Chicago 
metropolitan area. Although several model specifications were tried, it was apparent that the explanatory 
factors used in VMT modeling, which were primarily quantities available from the POLARIS inputs and 
outputs by household, were not sufficient to model VMT.  

As an alternative, another method was developed to estimate changes in traffic flows due to CAVs and was 
validated for the Chicago metropolitan area. Instead of modeling and transferring VMT for individual 
scenarios in the Chicago metropolitan area, the change in traffic flows on different links in the road network 
between a CAVs scenario and the baseline scenario was modeled. If successfully validated for other regions or 
for the entire U.S., traffic flow projections can then be combined with vehicle-level energy use analysis to give 
national-level energy use.  

Specifically, models were estimated for the changes due to CAVs in the daily flow (vehicles per day) on each 
network link. The changes in traffic flow modeled were differences between two scenarios: a baseline case 
(today’s traffic flows) and a case with full (100%) penetration by vehicles with CACC. These models take the 
results of POLARIS simulations for the base case and CACC case as inputs, along with data on the road 
network, land use, and other variables. Of the several model estimation methods evaluated, models using two 
machine learning methods yielded satisfactory results: K-nearest neighbors (KNN) and random forest (RF).  

Accurately modeling changes in average daily traffic flows (ADTs) requires extensive information about the 
road network, demographic and land use patterns surrounding each link, and information about the balance of 
trip production and trip attractions near each link. Over 50 explanatory variables were considered. Variables 
chosen were of several types: freeway, expressway, ramp, major and minor, collector, and number of lanes. 
Other link characteristics included link length, connectivity (total number of other connected links divided by 
the length of the subject link), and distance from the central business district (measured from the link centroid 
to the CBD centroid). Detailed data on road links and network by type were available from the POLARIS 
model.  

Land use variables included road density, intersection density, population, vehicle ownership, jobs per 
household, jobs within a 45-minute drive, etc.; these were obtained from the EPA Smart Location database131, 
with resolution at the census block group level. Attributes were correspondingly assigned to the links passing 
through each block group, using a length-weighted average. Additionally, detailed land-use data were obtained 
for the Chicago metropolitan area from the Chicago Metropolitan Area Agency for Planning (CMAP). CMAP 
defined eight land use categories: 1) residential, 2) commercial, 3) institutional, 4) industrial, 5) transportation, 
communication, utilities, and waste land uses, 6) agriculture, 7) open space, and 8) vacant/under construction. 
Using geographical information system analysis, the area within 150 meters of each link was analyzed and the 
percentage of area covered by each land use type was assigned to each link. An additional variable, the trip 
equilibrium index indicating the balance of trip production and trip attractions, was also obtained from the 
EPA Smart Location database and length-weighted averages were assigned to each link.  

Both the K-nearest neighbors (KNN) and random forest (RF) models were developed using a subset of the data 
(70%) for training and the remaining data (30%) for testing the model. The KNN model achieved an accuracy 
of 83.5 %, and the RF model achieved an accuracy of 87.1%. In Figure 3-74, predicted ADT values are plotted 
against test values for both KNN (a) and RF (b) models. In the RF model, factors (explanatory variables) were 
examined for their explanatory power. Ranking these factors showed that the change in ADT between the 
CACC and base cases was influenced more by link properties, network properties, and some demographic 
variables, and less by other demographic variables and land use characteristics.  
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Figure 3-74. Predicted values of average daily traffic (ADT) flows vs true values for the KNN model (a) and the RF model (b). 

These models could be used to predict changes in traffic flows on roads throughout the U.S. or at least in other 
metropolitan areas, provided that data for all the explanatory variables are available, but validation would also 
require agent-based traffic simulations, such as POLARIS modeling, for additional cities. Due to lack of access 
to such data, the models were not tested in areas outside the Chicago metropolitan area. Such testing would be 
the next step towards establishing wider applicability of the models. Once validated, the models for traffic flow 
changes could be used in a regional or national aggregation or roll-up. A remaining question is whether models 
can be generalized to predict changes in traffic flows due to deployment of CAV technologies other than 
CACC, e.g., driverless vehicles, with new users or deadhead travel. It is likely that many of the same 
explanatory variables would be relevant for modeling changes in traffic flows for these other cases, but it is 
unknown whether they would be sufficient. 

In addition to the potential usefulness of the traffic flow models developed for expanding regional results to 
larger areas, the models reveal important relationships between the changes in traffic flow and local link, 
network, demographic, transportation, and land use characteristics. Details of the links, the network, and some 
demographic variables have a significant influence on traffic flows on network links. Further examination of 
how these factors influence CAVs-induced changes in traffic flows under different conditions may be helpful 
in understanding system-level interactions between the factors how CAVs can change travel patterns and 
energy use. 

3.3.4.2 Vehicle-Level to National-Level Fuel Consumption Aggregation 

• A functional framework was developed and demonstrated for rolling up national-level energy 
consumption estimates under different scenarios. 

• This framework has been adapted and similarly used to roll up energy consumption estimates at the 
level of individual road links and/or at the level of an entire city/metropolitan area. 

The previous sub-section described efforts to transfer impacts on parameters such as VMT in prospective 
regional-level scenario analyses to the national level. This sub-section describes the methodology developed to 
estimate national-level energy consumption based on VMT and other analysis inputs. This methodology 
involves first selecting the set of vehicles to be considered in the analyses, then estimating the fuel efficiency 
of each considered vehicle over a matrix of driving conditions that may be encountered. These matrices for 
each considered vehicle can then be multiplied by the corresponding vehicle miles travelled in each driving 
condition by each vehicle type. Note that this matrix multiplication can occur at the level of an individual road 
link, at the level of a city road network, and/or all the way up to the national level. Each driving condition in 
the matrix multiplication is defined by a set of parameter dimensions, and the structure of the framework 
affords some level of flexibility in selecting the dimensions that work best for a given application. Typical 
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dimensions include factors such as road type/category, number of lanes, traffic speed/congestion level and road 
grade. Dimension selection for a specific application is influenced by the availability of disaggregated VMT 
data into consistent dimensional bins (to enable the matrix multiplication for that application). 

Within the selected dimensional framework, a given vehicle’s fuel consumption rate under each combination 
of driving conditions may be determined directly from on-road test data (as was done in the collaboration with 
Volvo Cars Corporation described in Section 3.1.4). These relationships may alternately be estimated by 
simulating a model of the vehicle over a large set of real-world driving profiles that encompass the desired 
spectrum of driving dimensions, such as running FASTSim vehicle models over driving profiles from the 
TSDC. As described in Section 3.1.6, RouteE models calibrated following this process can be used for green 
routing as well as for energy aggregation applications. 

To establish a tractable mechanism for rolling up fuel consumption calculations to the national level, a large 
database of typical hourly traffic speeds/road congestion levels across the U.S. (from the mapping company 
TomTom Technology) was conflated with daily VMT for road links across the U.S. (from the FHWA 
Highway Performance Monitoring System (HPMS) database). Details of this process and the resulting 
national-level VMT database disaggregated by road type and traffic speed/congestion level are available in a 
Transportation Research Record (TRR) journal publication.132 

A broader framework enabling exploration of the national-level energy impact of hypothetical CAV 
introductions was subsequently built around this core capability to roll up vehicle fuel consumption under 
specific driving conditions with the VMT occurring in each condition. Feature additions included integrating a 
model to track evolution of the national vehicle stock through vehicle retirements and introductions. Another 
feature modeled new vehicle efficiency improvements over time, along with driving-condition-specific 
efficiency implications from given CAV technologies as they enter the market. Figure 3-75 shows a flowchart 
of this full modeling framework, and Figure 3-76 shows that prototype application of this bottom-up 
calculation approach for a non-CAVs scenario compares favorably with the Annual Energy Outlook (AEO) 
reference case produced using a different methodology.133 
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Figure 3-75. Flowchart of the prototype modeling framework for generating bottom-up national-level energy estimates 
under different scenarios. 

 

Figure 3-76. National-level fuel consumption estimates for a preliminary non-CAVs (“No Avs”) scenario using the prototype 
bottom-up calculation framework, compared with the 2016 AEO reference case produced with a different methodology. 

While this bottom-up energy estimation approach showed promise for analyzing different national-level CAV 
scenario impacts, challenges associated with the VMT transferability work covered in the previous section did 
not allow for its timely application to scaling up detailed regional-level scenario simulations to the national 
level. Nevertheless, the approach found immediate application for estimating vehicle and link-level energy 
consumption in the San Francisco Bay area implementation of the SMART Mobility Workflow centered on 
the BEAM model (and subsequent city/metropolitan-area energy consumption aggregation under various 
evaluated scenarios). Many more details on this can be found in the SMART Mobility Modeling Workflow 
Capstone Report. 
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3.3.4.3 CAVs Technology Adoption 

• Highly automated vehicles are expected to become a large portion of projected future personal and/or 
shared-mobility fleet vehicle sales given that they offer significant consumer benefits, including 
reduced travel time costs (due to reduced personal value of travel time) through more productive use 
of travel time as enabled by a reliable automation system. 

• In addition to the reduced travel time costs, a high level of automation is valuable for limited-range 
BEVs since the gain in energy efficiency (due to more efficient vehicle driving dynamics and routing) 
results in extended range and reduced range anxiety. 

• The introduction order of personally owned highly automated vehicles versus ride-hailing based 
highly automated vehicles is important. If first adopted as personal vehicles, highly automated 
vehicles may increase personal vehicle ownership. In contrast, if highly automated vehicles are first 
adopted at a significant scale as ride-hailing vehicles, a decrease in personal vehicle ownership is 
expected. 

• Additional travel demand induced by automation could mean an increase in personal automated 
vehicles or a more moderate increase in fleet-own shared automated vehicles that are used more 
intensively at a higher occupancy. This has implications on vehicle scrappage, design and cost, and so 
is relevant for the automotive industry. 

The adoption of CAVs and their energy implications is complicated by interactions with shared mobility and 
electrification technologies. Vehicle automation may lead to additional travel demand it terms of passenger 
miles traveled (PMT), but the impact on overall vehicle miles traveled (VMT) depends on how closely and 
efficiently automation is coupled with shared mobility. Moreover, without electrification or better fuel 
efficiency, the increase in VMT due to this additional travel demand may worsen the overall energy and 
environmental impacts of personal vehicles. To model and analyze the adoption and synergy of vehicle 
automation, electrification and sharing technologies, a consumer choice model called MA3T-MC was 
developed by expanding the existing MA3T model, which focused on consumer preference for different fuel 
types, to cover consumer preference for connected and automated vehicle technologies and services.134 

Key results from MA3T-MC related to CAVs outcomes include:  

• Significant consumer benefits due to reduced travel time cost (mainly due to reduced cost of unit 
travel time or more productive use of travel time enabled by the automation system, and to a lesser 
extent due to reduced travel time from optimal routing), reduced driving stress, and reduced insurance 
premiums (an approximate but probably low estimate of safety value)  

• Extended range and thus reduced range anxiety for short to moderate range BEVs due to more 
efficient automated driving  

• A possibly significant surge in personal vehicle sales due to the significant consumer benefits of 
automated vehicles shortly after their assumed introduction to the market in 2030  

• A possible decrease of personal vehicle sales when automated ride-hailing becomes more affordable 
and reliable  

MA3T-MC estimates consumer preference based on bottom-up calculation of generalized costs. In general, the 
lower the total generalized cost of a choice, the more attractive it is to consumers. Figure 3-77 shows the 
components of consumer generalized costs for human-driven vehicles (HV) versus highly automated vehicles 
(AV) of different powertrains: spark-ignition (SI) vehicles, battery electric vehicles (BEV), and plug-in hybrid 
electric vehicles (PHEV) in 2035 and 2050. The comparison of generalized cost components between 2035 
and 2050 illustrates the underlying dynamics that lead to sales impacts. As shown, travel time cost represents 
the largest cost component. The reduction in travel time cost becomes deeper over time due to improvements 
in automation reliability and increased utilization of in-vehicle time for productive activities. The reduction in 
driving stress cost is also significant and becomes deeper over time. Insurance premium reduction is not as 
large as reduction in travel time cost or driving stress cost but is clearly greater than the reduction in energy 
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cost. The decrease in range anxiety cost in short-range BEVs (between HV-BEV100 and AV-BEV100) due to 
efficient automated driving is also noticeable. This is based on the assumption of more efficient vehicle driving 
dynamics and routing as well as a minimal energy burden from onboard sensing and computing by 2050.135 
Overall, travel time cost reduction is the most important consumer benefit, followed by reduction in driving 
stress and insurance premium. 

 
 

Figure 3-77. Components of consumer generalized cost modeled in MA3T-MC in years 2035 (left) and 2050 (right) for 
human-driven vehicles (HV) and automated vehicles (AV). 

Building on the projected generalized costs shown above, total vehicle sales, shown in Figure 3-78, for a 
scenario in which personal AVs and ride-hailing fleet AVs enter the market simultaneously (subfigures a1 and 
b1), show a rapid increase in sales of personally owned automated vehicles shortly after the introduction of 
CAVs in 2030, due to the significant consumer benefits associated with automated vehicles as illustrated on 
Figure 3-77. Following this initial increase in overall vehicle sales, the model projects a decrease in personal 
and overall vehicle sales after 2040, when automated ride-hailing becomes more affordable and begins to 
replace personal travel and vehicle purchases. Growth of PMT is assumed to accelerate after AV introduction, 
reaching 30% more than without AVs (Figure 3-78 b1) by 2050. Served by a combination of personal AVs and 
fleet-owned shared-mobility AVs, AV ride-hailing becomes more efficient and affordable and captures about 
65% of PMT by 2050. The increasingly popular AV ride-hailing services make personal vehicle ownership 
less necessary and attractive, and after 2040 begin to suppress personal vehicle purchases. 

The impact of CAVs on vehicle sales can be uncertain for many reasons, one of which is related to the timing 
and extent of AV introduction: whether personally owned vehicles or fleet-owned shared-mobility vehicles. In 
contrast to the AV2030 scenario, Figure 3-78 (a2) shows overall vehicle sales for the SAV10yr Earlier 
scenario, in which efficient and affordable TNC AVs enter the market in 2030 while the personal AV market 
entry is pushed to 2040 (possibly due to factors such as technology readiness, vehicle-level costs, company 
strategies or simply regulation). In this scenario, a significant shift in household travel towards ride-hail AVs 
can be observed in the PMT subgraph (b2) as well as a minimal increase in overall vehicle sales (a2) after 
2040 due to the higher expected utilization of ride-hail AVs (assumed to continuously run over 10 hours per 
day) versus personally owned vehicles. The personal vehicle sales drop significantly during the period 2030-
2040, when AVs are only available as fleet-own shared-mobility vehicles, as efficient, affordable AV ride-
hailing offers much greater value on travel time cost reduction and driving stress reduction than human-driven 
personal vehicles. Total vehicle sales are compensated by the sales of fleet ride-hailing AVs, but still drop 
somewhat due to the higher utilization and higher occupancy of these vehicles joining to serve the same 
amount of PMT. For the SAV10yr Earlier scenario, in which personally owned AVs become available in 2040, 
there is an increase in total vehicle sales due to personal AVs appealing to a certain segment of the population, 
but total vehicles sales are still well under the 2040 and beyond levels from the AV2030 scenario. This 
modeling result suggests that in the future, coupling rapid large-scale adoption of ride-hailing and highly 
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automated vehicle capabilities may result in a significant shift of primary personal or household travel away 
from other modes towards ride-hail AVs. Moreover, these trends carry into the future, as evidenced by the 
2050 mix of ride-hail PMT (subfigure b1 versus b2), suggesting that once the shift to ride-hailing occurs, it 
does not necessarily reset if personal AVs are later introduced. Between the two scenarios, although the total 
PMT trajectory is similar, the mix and total of vehicle sales are very different, mainly resulting from the 
relative timing of AV introduction to the personal and fleet TNC markets. This suggests that additional travel 
demand induced by automation could mean proportionally more personal automated vehicles or moderately 
more fleet-owned shared automated vehicles that likely are used more intensively at a higher occupancy. This 
increased usage intensity has implications on vehicle scrappage, design and cost and thus could be relevant for 
consideration by the automotive industry. 

 
Figure 3-78. (a1) (a2) Projected vehicle sales by powertrain and automation (ICEV: conventional internal combustion 
engine and non-plug-in hybrid electric vehicles; PEV: plug-in hybrid electric vehicles and battery electric vehicles; HV: 

human driven vehicles; AV: highly-automated vehicles), and (b1) (b2) projected passenger-miles traveled by the primary 
mode of household (HH) travel; TNC: transportation network companies, i.e., ride-hailing; Driving: driving personal vehicles. 

The top two graphs (a1) and (b1) represent the AV2030 scenario in which personal AV and ride-hailing AV both enter the 
market in 2030 and improve over time. The SAV10yr Earlier scenario shown in the bottom two graphs (a2) (b2) assume 
that fleet-owned ride-hailing AVs enter the market in 2030 with technology maturity while personal AV market entry is 

pushed to 2040. 

The results from MA3T-MC are not intended to be a perfect prediction of future CAV adoption. However, the 
results provide some important insights into the market dynamics of CAV adoption. If perceived by consumers 
as reliable and safe, as well as priced reasonably, highly automated vehicles could quickly dominate the market 
as either personally owned vehicles or ride-hailing vehicles. The assumption of perceived reliability and safety 
is critical to market adoption and could be examined by more research. Another key takeaway is that the 
impact of vehicle automation on personal vehicle ownership depends on whether highly automated vehicles 
are first used as personal vehicles or ride-hailing vehicles. This also has implications for the automotive 
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industry’s vehicle design and supply strategy. The MA3T-MC results also suggest the importance of more 
research to quantify the value of CAVs on reducing driving stress and increasing productivity of travel time, 
thereby reducing an individual’s travel time cost. 
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3.4 Harnessing Connectivity and Automation for Improved Energy Outcomes and 
Coordination 

In contrast to the previous section, which focused on impacts of CAV technologies operating within the 
current and near-term transportation infrastructure, this section directly focuses on how to leverage the new 
capabilities afforded to CAVs through improved awareness, controllability, coordination, and connectivity to 
reduce fuel consumption and increase mobility. Specifically, this section summarizes work towards the pillar’s 
third research question: “What is the best way to harness CAVs for reduced energy use and improved 
mobility in transportation?” In this section, the possible traffic flow and efficiency benefits due to the 
additional information available to and controllability afforded by CAVs are quantified in multiple scenarios 
for an individual vehicle, corridor, region, or city, including sensitivities due to different penetration levels and 
varying degrees of automation. The section begins with a study and development effort to demonstrate how 
connectivity and automation can enable energy savings through “vehicle-centric” predictive control and co-
optimization of both powertrain operation and speed. The resulting energy-saving techniques can then be 
tailored to various vehicle classes, use cases and vehicle technology scenarios (e.g., hybrids, EVs). Additional 
research in this section investigates corridor-level approaches, including advanced traffic management 
strategies and a framework for optimal vehicle coordination across a range of traffic scenarios. Finally, this 
section discusses regional-level strategies to mitigate some of the less desirable aspects of certain anticipated 
automated vehicle use cases. Broadly speaking, this section seeks to investigate how driver feedback systems, 
improved controls, situational awareness, optimized coordination, and other strategies can be combined to 
better control connected, non-automated vehicles as well as CAVs for less energy intensive and higher 
roadway throughput outcomes. 
 
Key controls insights and results include: 

• A single vehicle with intelligent powertrain and speed control algorithms developed by the SMART 
mobility consortium was shown to reduce energy/fuel consumption up to 15% alone, and up to 22% 
when integrated with Vehicle-to-Infrastructure communication of traffic signal information in real-
world driving conditions by adapting to the road topography, surrounding vehicles, and the 
sequencing of traffic lights. 

• Highlighted findings from the large-scale study to evaluate the energy impacts of various eco-driving 
algorithms in a broad range of driving conditions, powertrains, and technology time frames include:  

o Eco-driving saves more in city driving (up to 22%) than in highway driving (up to 6%).  
o Speed+powertrain eco-driving typically saves more than the speed-only eco-driving — 

between 4 and 9 percentage points more — by considering the best operating points in the 
powertrain.  

o V2I-enabled traffic light eco-approach typically increases eco-driving energy savings. In fact, 
Speed-only eco-driving with V2I saves more than the speed+powertrain without V2I for EV 
and conventional powertrains in urban and suburban conditions. 

• While energy savings from eco-driving are greater for the lead vehicle than for the following vehicle, 
non-equipped vehicles can also experience energy savings of up to 8% when following a vehicle 
equipped with eco-driving. 

• U.S. Department of Energy Vehicle Technologies Office advanced technology targets for engine 
efficiency improvements at low loads will lead to higher energy savings from eco-driving for 
conventional vehicles in future technology scenarios — up to 6 extra percentage points in the 2025 
target — compared to savings from business-as-usual technology improvements. 

• The intelligent powertrain and speed control algorithms developed and integrated within this work 
utilized RoadRunner to ensure real-world eco-driving capable systems and incorporate uncertainties, 
perturbations, and dynamics. 
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• Corridor-level microsimulations showed that ACC vehicles with V2I capability could follow roadside 
variable speed limit/advisories (VSL/VSA) to maintain a set speed, which could improve traffic 
throughput compared to traffic with 0% ACC and without V2I. For V2I capable ACC vehicle 
penetrations of 10%–30%, results in the simulated corridor showed that total travel time (TTT) could 
be reduced by ~6-7%, speed variation could be reduced by 8%, and total delay could be reduced by 
9~11%. 

• For signalized urban intersections, simulation results with and without CACC operating through a 
standard four-way signalized intersection, show a 67% capacity increase for the major approach and a 
49% capacity increase for the minor approach when the CACC market penetration increases from 0% 
to 100%. While this throughput increase is generally a positive development it is not necessarily 
optimal. In higher CACC market penetration cases the CACC string may prevent a vehicle needing to 
switch lanes or turn to find a gap upstream from the intersection and thus the vehicle is forced to make 
aggressive last-minute lane changes near the intersection leading to an interruption in queue discharge 
flow. 

• At a signalized intersection, if active coordinated traffic signal control is used to integrate the CACC 
vehicle operation with the signal control, capacity will increase with the market penetration levels of 
CACC vehicles. With 100% market penetration, this capacity increase is about 75%; fuel consumption 
would increase by 70%. 

• For vehicles operating in a controlled merging zone and amid partial penetration of CAVs and 
heterogeneous fleet (i.e., different vehicle classes from light-duty to heavy duty), the consortium-
developed optimal coordination framework for CAV merging can provide 3% to 30% fuel savings for 
a highlighted freeway merging scenario under moderate to heavy traffic. 

• For vehicles crossing a roundabout with a full penetration of CAVs, the optimal coordination 
framework can save up to ~27% fuel and between 3% to 49% of travel time depending on the traffic 
conditions. 

• For a simplified highway corridor, at full penetration of CAVs, the developed optimal coordination 
mitigates traffic jam propagation leading to travel time savings of up to 40% and improvements in fuel 
economy of up to 55% over the non-coordinated scenario. For a longer, real-world corridor, at lower 
CAV penetration levels, the developed coordination framework still achieves a significant benefit to 
overall corridor fuel consumption reduction. For example, at 20% CAV penetration, a benefit of 4% is 
achieved. 

• At the regional level, a decrease in overall fuel usage of 1.1% could be accomplished in the 
Bloomington, IL study region by subsidizing ride-hailing access to transit stops, resulting in an 11% 
increase in transit ridership. Similarly, ZOV pricing of $0.33 per mile would reduce overall ZOV 
miles by 25%, helping to mitigate the potential impacts of widespread private AV adoption 

• A regional-level coordinated platooning study found that high wait times associated with joining a 
platoon, which can increase the total time that vehicles spend in platoons, may only lead to moderate 
energy savings due to issues with platoon formation. 

 
3.4.1 Eco-Driving: Energy-Focused CAV Control Development 

• A single vehicle with intelligent powertrain and speed control algorithms developed by the SMART 
mobility consortium was shown to reduce energy/fuel consumption up to 15% alone, and up to 22% 
when integrated with Vehicle-to-Infrastructure communication of traffic signal information in real-
world driving conditions by adapting to the road topography, surrounding vehicles, and the 
sequencing of traffic lights. 

• Large-scale simulation studies have shown these benefits to vary significantly depending on scenario 
and powertrain technology, with BEVs showing up to 7% reduced consumption. 
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In addition to safety, comfort and mobility promises, driving automation can also be leveraged for increased 
energy efficiency. Most “self-driving” driving research and development has been focused on developing 
sensors, machine vision, and controls that enable safe operations in a broad range of conditions. Energy-
focused CAV controls use the speed control offered by driving automation to make the vehicle drive more 
energy efficiently. Partially automated driving features already offered on production vehicles, such as 
adaptive cruise control, can control the longitudinal speed while avoiding collisions with preceding vehicles 
and offer convenience to the driver. These controls use the information about the surrounding environment 
such as road topography (from digital maps), state of surrounding vehicles (from sensors), current and future 
states of traffic lights, traffic and vehicles beyond sensing range (from V2X communications). Energy-focused 
optimization can then compute how to best drive the vehicle for minimum energy consumption without 
negatively compromising safety, comfort, and travel time. 

RoadRunner, introduced in Section 3.2.1, serves as a simulation platform for the development of energy-
focused CAV acceleration and powertrain controls and enables the simulation of a wide range of CAV 
situations and scenarios. Several models were developed and validated from test data (3.4.1.1) to model in the 
RoadRunner simulation platform, including both existing CAV technologies and human driving. “Eco-
driving” CAV control algorithms, which optimize the driving and optionally the operations of vehicles for 
energy efficiency, were developed for vehicles with advanced powertrains (3.4.1.2) with a major focus on real-
time implementation capability (3.4.1.3). A large-scale case study (3.4.1.4) was then performed in RoadRunner 
to quantify the energy-saving potential of these algorithms for a broad range of scenarios, using the validated 
human driver as a baseline.  

3.4.1.1 RoadRunner Model Validation 

• A model of platooning trucks was developed and validated in RoadRunner from track-testing data; 
simulated energy and driving dynamics match test data within 7%.  

• The adaptive cruise control featured in a production Toyota Prius was replicated in RoadRunner, 
following data collection on a chassis dynamometer. 

• A human driver model was developed to serve as baseline for CAV studies and matches the sub-
second driving dynamics recorded in the real-world with over 95% accuracy. 

The development of new controls is done in simulation before being demonstrated and refined in the real 
world. SMART Consortium researchers developed a new platform, RoadRunner (3.2.1) specifically to enable 
research in eco-driving controls for CAVs. RoadRunner includes a collection of CAV and powertrain models 
and controls, the building of which is presented here. In order to demonstrate the soundness of the approach, 
several CAV models in RoadRunner were validated using real-world data, including truck platooning and 
light-duty adaptive cruise control. A human driver model was also developed (3.4.1.1.3), and can be used as a 
baseline for the evaluation of CAV control energy benefits. 

3.4.1.1.1 Truck Platooning Model Validation in RoadRunner 

Automated trucks can be more responsive to speed changes than manually driven trucks. As a result, 
automated trucks can safely travel at a shorter following distance, which increases roadway capacity and 
improves mobility. In addition, shorter following distances can reduce aerodynamic drag and consequently 
reduce fuel consumption. Following the test of three platooning trucks on a test track (See Section 3.1.3), a 
corresponding scenario was developed in RoadRunner and the driving dynamics, powertrain operations and 
energy consumption were validated.136 

The modeling and validation process is shown in Figure 3-79. The first step is to develop a model of the 
powertrain in Autonomie and validate it for the lead truck — the driving dynamics of the lead vehicle are 
simply modeled by using the recorded speed as the “drive cycle.” This process includes validating the gear 
shifting patterns as well as the instantaneous fuel flow rate. The lead vehicle fuel consumption was validated to 
within 1% of the test data. The second step is to focus on replicating the dynamics of the following vehicles. A 
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cooperative adaptive cruise control algorithm was developed and implemented for the two following vehicles 
and calibrated to match the behavior of the trucks in the real-world experiments. Finally, a scenario replicating 
the on-track test was simulated in RoadRunner. Figure 3-79 compares the driving and fuel consumption 
dynamics of the second vehicle in the platoon in simulation and in test. Table 3-9 summarizes the results for all 
three vehicles. Overall, the gap and fuel consumption closely matched. 

 
Figure 3-79. Speed, inter-vehicle gap and fuel consumption for middle vehicle in platoon, in test and in simulation 
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Table 3-9. RoadRunner Truck Platoon Validation Summary. 

Cycle (0–20,050 m) Travel time, sec Average gap, m 
Fuel consumption, 

L/100 km 
Veh1 
(Lead) 

Test 997.3 - 38.78 
Simulation 997.5 - 38.56 (-0.6%) 

Veh2 
(Middle) 

Test 979.9 25.9 38.57 
Simulation 972.7 25.1 (-3.1%) 38.39 (-0.5%) 

Veh3 
(Trailing) 

Test 971.0 30.3 41.05 
Simulation 969.5 29.3 (-3.3%) 39.40 (-4.0%) 

CACC #1 
(constant time gap) 

Travel time, sec Average gap, m 
Fuel consumption, 

L/100 km 
Veh2 

(Middle) 
Test 333.7 30.4 35.13 

Simulation 333.4 31.7 (4.3%) 35.31 (0.5%) 
Veh3 

(Trailing) 
Test 350.8 31.0 36.30 

Simulation 350.0 30.4 (-1.9%) 36.19 (-0.3%) 
CACC #2 

(variable time gap) 
Travel time, sec Average gap, m 

Fuel consumption, 
L/100 km 

Veh2 
(Middle) 

Test 319.9 25.6 36.88 
Simulation 318.3 25.2 (-1.6%) 38.56 (4.6%) 

Veh3 
(Trailing) 

Test 305.4 21.4 37.36 
Simulation 303.4 22.5 (5.1%) 40.09 (7.3%) 

 
3.4.1.1.2 Passenger Car Adaptive Cruise Control Model Validation in RoadRunner 

Many new vehicles already feature partial driving automation, for example longitudinal speed control for 
highway driving. With adaptive cruise control (ACC), the vehicle drives at a speed set by the driver if no 
preceding vehicle is detected (using a radar or stereoscopic cameras), and otherwise modulates its speed to 
maintain a safe distance from the preceding vehicles. The ACC feature of the 2016 Toyota Prius Prime was 
tested on a chassis dynamometer, and a model of the vehicle and the ACC was then developed within 
RoadRunner and validated. In order to test the ACC feature with no actual moving vehicles to detect, a method 
of overwriting the gap measurement from the sensor was designed and implemented. As a result, it is possible 
to test a situation where the ACC controller commands the actual vehicle on the dynamometer to follow a 
virtual lead vehicle, itself following a set drive cycle. This setup allows the CAV Pillar researchers to evaluate 
the automated driving controller in a laboratory environment. The data from the dynamometer test, and the 
inter-vehicle gap data especially, was then used to validate an ACC model in RoadRunner, in which the 
powertrain model had been validated in Autonomie.137 As shown in Figure 3-80, the inter-vehicle gap is fairly 
well matched to the data from the dynamometer.  
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Figure 3-80. Comparison of the ACC model in RoadRunner with test data from the chassis dynamometer. Vehicle 1 is 

driven by a human. Vehicle 2 is outfitted with the ACC system. 

3.4.1.1.3 Human-Driver Model Validation in RoadRunner 

Modeling the human driver is critical for the development and evaluation of powertrain/driving controls 
relying on automation and connectivity. With a high-fidelity human driver model, it is possible to model in 
simulation an energy-optimized vehicle surrounded by modeled vehicles realistically replicating human 
driving behavior. A good human driver model is also necessary to serve as a baseline when evaluating the 
potential benefits of new control algorithms. As a result, combining data-driven and analytical approaches, a 
high-fidelity dynamic human driver model was developed and integrated into the RoadRunner framework.138 
The design of the model was driven by three key considerations: 1) simplicity, for computational efficiency, 2) 
accuracy, describing the detailed dynamics of driving, and 3) variety resulting from internal (e.g., driving 
style) and external factors (e.g., traffic signals). 

To this end, the human driver model consists of two parts: a perception and decision (P&D) model and an 
action model, as shown in Figure 3-81. The P&D model aims to capture the cognitive process occurring in the 
human brain. The P&D model determines the driving regimes (e.g., accelerating to increase speed, cruising to 
maintain speed, braking to stop) and its timing and duration based on the current situation. On the other hand, 
the action model aims to capture human driving behaviors impacting the state of the vehicle (position, speed, 
and acceleration) based on Newtonian laws of motion. The action model is bounded by the regimes and 
conditions computed by the P&D model. 
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Figure 3-81. Schematic diagram of the human driver model: perception & decision model (left) and action model (right). 

The initial focus of this work was the action model development and validation using on-road testing data 
collected by a highly instrumented vehicle. The assumption that drivers prioritize driving comfort, while 
avoiding any collisions with the preceding vehicle and obeying traffic rules, leads to the formulation of human 
driving as an optimal control problem minimizing jerk (the derivative of acceleration) using the vehicle 
longitudinal dynamics model of the triple integrator. Deriving analytical optimal solutions by employing 
optimal control theory enables the efficient computation of vehicle state trajectories, and adding the state 
constraint imposed by the vehicle in front can describe car-following features that depend on the actions of the 
preceding vehicle.  

Data was collected from a highly instrumented vehicle — driven by a human driver and equipped with a dash 
video camera, GPS tracker, and radar — and then processed to make the data usable for validation, as shown 
in Figure 3-82. The goal was to collect information about the surrounding environment affecting the driving, 
such as type of road, speed limits, surrounding vehicles, and intersection controls. The radar detects up to 13 
surrounding objects (e.g., oncoming vehicles, surrounding vehicles) simultaneously, both in longitudinal and 
lateral positions. However, this data needs be filtered to isolate the signal corresponding to the state of the 
preceding vehicle and to validate car-following scenarios. The recorded geographical coordinates are “map-
matched” with HERE maps139, to augment the recorded data with road attributes such as speed limit, road 
type, position of traffic lights, etc. A machine-vision algorithm powered by deep learning helps retrieve 
information about traffic signal states from the image data recorded by dashcam videos. Finally, in order to 
crosscheck the post-processed data, a visualization tool linking the various data sources was developed. 

 

 
Figure 3-82. Post-processing of raw on-road testing data for human driver validation. 

The vehicle trajectories in the post-processed data were clustered into four distinct driving regimes: 
accelerating, cruising, coasting, and braking. Assuming a perfect P&D model, the information required by the 
action model (i.e., boundary conditions) was extracted for each driving regime.  

The action part of the human driver model was then developed and implemented in RoadRunner. Information 
from the experimental data such as speed limit, location of other cars, and location of intersections is then used 
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to set the stage to test the human-driver model. Results for 27 segments between two intersections demonstrate 
that trajectories generated by the action model of the human driver using this information matched well with 
those of experimental data, as shown in Figure 3-83.  

 

 
Figure 3-83. Normalized cross correlation power (NCCP) between experimental and simulation data for 27 segments (top) 

and example for one sample (bottom). 

3.4.1.2 Optimal control theory applied to the eco-driving problem 

• An eco-driving algorithm that smooths vehicle speed (“speed-only”) was developed; the algorithm is 
computationally fast and works with any powertrain. 

• An eco-driving algorithm that minimizes the energy consumption of the vehicle by acting on its speed 
and on its powertrain (“speed+powertrain”) was developed for a conventional vehicle, electric 
vehicle, and hybrid-electric vehicle, and is designed to provide maximum energy savings. 

Energy consumption related to a vehicle takes place in three stages: “well-to-tank,” “tank-to-wheel,” and 
“wheel-to-miles” (the way the vehicle drives for a given route). The eco-driving problem is related to the 
“wheel-to-miles” stage and aims at minimizing the vehicle kinetic energy. There is, however, opportunity for 
additional savings if the “tank-to-wheel” aspect, i.e. the on-board energy efficiency, is considered as well. Two 
eco-driving control strategies were developed: the speed-only eco-driving optimization focuses mostly on the 
“wheel-to-miles” stage, while the speed+powertrain eco-driving optimization considers the “tank-to-wheel” 
and “wheel-to-miles” stages as a compound problem.  

In both cases, eco-driving is formulated as an optimal control problem (OCP): The goal is to minimize an 
energy-related cost function by acting on the commands of a dynamic system, subject to stated constraints 
imposed by speed limits, the preceding vehicle and intersections. This is summarized in Table 3-10. When 
solving the OCP, the constraints and boundary conditions are assumed to be known and fixed and form the 
future horizon (i.e., future time/position interval). Section 3.4.1.3 will detail how these theoretical solutions are 
applied to perform in a real-time controller that can be evaluated in RoadRunner. 
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Table 3-10. Optimal control problem formulation for the speed-only and speed+powertrain eco-driving algorithms  
(see Table 6-5 for a version with equations). 

 
3.4.1.2.1 Speed-only Eco-Driving 

In the speed-only eco-driving strategy, the command is the vehicle acceleration, and the vehicle longitudinal 
dynamics model is a double integrator linking position, speed, and acceleration. The cost function to minimize 
is the acceleration energy (the sum of the acceleration squared). This simple formulation allows the control 
problem to be solved by derivation of analytical closed-form optimal solutions that are functions of the 
boundary conditions. The resulting acceleration is a piecewise linear function of time. No numerical solvers 
are required, making this algorithm computationally efficient. Moreover, this control can be applied to all 
types of vehicles, regardless of powertrain type.  

As shown in Figure 3-84, the connected and automated vehicle (CAV) can eco-accelerate from a stop to reach 
the desired cruising speed (Eco-Acceleration ①). Then, the CAV maintains the desired cruising speed (Eco-
Cruising ②). It can decrease or increase the speed following changes in speed limits (Eco-Deceleration ③ or 
Eco-Acceleration ①). When approaching signalized intersections, the CAV equipped with V2I 
communication receives information about signal phase and timing (SPaT) from the traffic signal and uses it to 
plan and follow future speed so that it can pass the next traffic signal on the green phase without unnecessary 
stops (Eco-Approach ④). Finally, the CAV can decelerate to a complete stop when arriving at stop signs 
(Eco-Arrival ⑤). 

 

Optimization Speed-only Speed + powertrain 

Powertrain Any EV ICEV HEV 

Control variables Acceleration 
Gear shifting and braking force 

Motor torque Engine torque Motor + engine torque  

Cost function to 
minimize 

Acceleration 
“energy” Battery energy Fuel mass Equivalent energy 

consumption 

su
bj

ec
t t

o 

System dynamics Vehicle dynamics Vehicle dynamics including powertrain operation 

State constraints 
Preceding vehicle 

Speed limits 

Interior-point 
constraints Traffic signal phase and timing (SPaT) (when V2I enabled) 

Boundary conditions Final position and final speed given initial position and initial speed 
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Figure 3-84. Speed (top) and acceleration (bottom) trajectory of speed control optimization for a simple scenario where 

there are two stops (vertical magenta lines) and one traffic signal (vertical green line). Red dotted line is the varying 
maximum speed limit. 

3.4.1.2.2 Speed+Powertrain Eco-Driving 

For the speed+powertrain strategy140,141,142, the objective of the control is the explicit minimization of the 
energy consumption: either fuel, electricity or a combination of both (see Table 3-10). Direct control of the 
powertrain components, such as engine torque and gear for a conventional vehicle, allows for the discovery of 
the most energy-efficient operation areas. In addition to incorporating the efficiency map of powertrain 
components, the powertrain-aware eco-driving control has a better understanding of kinetic energy 
recuperation through regenerative braking, due to its detailed modeling of the powertrain.  

As the problem is much more complex than in the speed-only eco-driving case, a closed-form analytical 
solution (i.e., a “formula” giving the solution as a function of time) cannot be formulated. Instead, optimal 
control theory reduces the global problem to a local problem, at each step combining minimization and a 
dynamic equation, while still making the algorithm implementable on real-time hardware control units. 

In the absence of other vehicles and traffic light intersections, the algorithm creates the state and command 
trajectory for the entire horizon, and follows these steps, as shown in the left part of Figure 3-85: 

1. Split the trip into constant grade and constant speed limit segments (Figure 3-85 a). 
2. Adjust steady-state speed (𝑣𝑣ss∗ ) for each route segment based on varying road grades and speed limits 

according to the general target cruising speed (𝑣𝑣set∗ )(i.e., a desired travel speed set by the driver) 
(Figure 3-85 b). 

3. Develop solution trajectories of acceleration, deceleration and constant speed between junction points 
(Figure 3-85 d). 

4. Calculate junction speeds at borders of route segments relying on the continuity condition derived 
from optimal control theory (Figure 3-85 b). 

5. Form the speed transition curves in the route segments and connect them together (Figure 3-85 c) 
In order to deal with various road and traffic situations in the real world, the algorithm needs to be augmented 
to comply with constraint conditions. When V2I is enabled and SPaT is available, the target cruising speed 
(𝑣𝑣set∗ ) at the approach of a traffic light is adjusted to optimize the crossing time to avoid stopping and to pass at 
the green phase (Figure 3-85 e). In the presence of a preceding vehicle, the steady-state speed is set to avoid a 
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collision in the predicted trajectory of the front vehicle (Figure 3-85 f). The workflow of the algorithm to find 
(𝑣𝑣set∗ ) is summarized in the right part of Figure 3-85. 

 

 
Figure 3-85. The speed+powertrain eco-driving algorithm combines eco-approach to connected traffic lights, collision 

avoidance, and free-flow optimization. 

3.4.1.3 Implementable Real-Time Control 

• A model predictive control concept for eco-driving was developed and integrated into controllers 
within RoadRunner, allowing implementation of the speed-only and speed+powertrain algorithms. 

• This setup ensures that the eco-driving algorithms can work in real-world systems with uncertainties, 
perturbations, and dynamics. 

The algorithms described above provide a way to compute the optimal trajectory of commands and states for a 
given known horizon. There are, however, several barriers to real-world implementation in real-time 
controllers on actual vehicles. The optimization relies on accurate knowledge about the future driving 
conditions — the horizon, which comes from various sources: digital maps (road attributes), sensors (other 
vehicles) or V2X communications (future states of road or vehicle controls). There are many limitations in 
how far and how accurately the vehicle can “see” into the future. In particular, it is not possible to predict with 
certainty the behavior of preceding vehicles, especially if they are human-driven. In addition, the models used 
for optimization are simplified, and there are many software and physical layers between a command and its 
execution. A result, the vehicle does not respond exactly as the optimization thought it would. To overcome 
these barriers and make the optimal controllers discussed in Section 3.4.1.2 implementable in the real world, a 
model-predictive control (MPC) approach is adopted. MPC control theory is based on the iterative, finite-
horizon optimization of a plant model towards a specific objective function within a set of additional 
constraints. Controls are calculated for optimal results over the finite-horizon, yet only the controls for the 
current time-step are implemented and the controls are then again optimized. By comprehending future 
outcomes via the finite horizon, MPC has shown improved performance for a range of systems, particularly 
those that include large time-delays and more complex dynamics.143 
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3.4.1.3.1 Concept of Model Predictive Control for a CAV Controller 

Optimal controllers are implemented within a predictive framework with a receding horizon.144 At each time 
step, the optimization algorithms solve the eco-driving problem over an entire finite horizon (e.g., 250 m), but 
only apply the first step of the solution. At the following time/distance step or event-based trigger (such as a 
change in speed limit), the horizon window moves one step further and the optimization is performed again, 
thus creating a feedback loop that is critical to the stability of the system. Figure 3-86 illustrates the concept of 
the receding horizon.  

 
Figure 3-86. Concept of receding horizon: The prediction window at position 𝒙𝒙𝒙𝒙 (left) advances at the following step, 𝒙𝒙𝒙𝒙+𝟏𝟏 

(right). 

The CAV controller, shown in Figure 3-87, includes a horizon generator that combines the various signals 
from the perception and sensing block (representing different data sources, such as sensors and machine 
vision) into a receding horizon. The speed and powertrain control block computes the powertrain commands 
(engine/motor torques, gear, friction brake, and clutch) executed within the vehicle model, which then provides 
a feedback of the resulting vehicle states back to the controller.  

The speed and powertrain control block has a different structure depending on whether it is a speed-only 
(Figure 3-88) or speed+ powertrain (Figure 3-89) implementation of eco-driving. Both types, however, include 
a reference generator that outputs the ideal state and command trajectories, using one of the optimization 
algorithms from Section 3.4.1.3.2 or 3.4.1.3.3, and a tracking controller that adjusts for modeling errors and 
perturbations.  

 
Figure 3-87. Architecture of the CAV controller. 

3.4.1.3.2 Implementation of Speed-Only Optimization 

In the speed-only eco-driving strategy (Figure 3-88), the reference generator (i.e., the eco-driving speed-only 
algorithm) computes the optimal acceleration and speed trajectories over the horizon. The preceding vehicles, 
if any, are assumed to maintain their current acceleration over that horizon. The speed trajectory from the 
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reference generator is then fed into a PIDiv tracking controller, which converts this command to pedal 
position. The pedal position is then the input to the baseline Autonomie supervisory powertrain controller, 
which is not optimized. Thanks to the analytical formulation of the optimal eco-driving solution, this loop can 
be executed at every clock step. 

 
Figure 3-88. Speed and powertrain control architecture in the speed-only eco-driving case. 

3.4.1.3.3 Implementation of Speed+Powertrain Optimization 

In the case of the speed+powertrain optimization, the optimization algorithm is more computationally 
demanding. As a result, there are two steps in the optimization, as shown in Figure 3-89. In the receding 
horizon, a 250 m preview of the road grade and next intersection information are collected. If a front vehicle 
exists within the preview horizon, its behavior is predicted via an intelligent driver model (IDM).145 The 
reference generator (i.e., the eco-driving speed+powertrain algorithm) solves the optimal control for the 
horizon, generating reference trajectories for speed and position, as well as optimal intermediate parameters 
used in the optimization. A second real-time stage is executed more frequently and combines computation of 
the optimal commands (PMP feedforward controller) for powertrain components such as engine, motor, and 
brake on the one hand, and tracking of the speed (PID tracking controller) for correcting for perturbation and 
errors on the other hand. 

 
Figure 3-89. Speed and powertrain control architecture in the speed + powertrain eco-driving case. 

3.4.1.4 Large Scale Case Study Results 

An unprecedented large-scale study was carried out to evaluate the energy impacts of various eco-driving 
algorithms in a broad range of driving conditions, powertrains, and technology time frames. The results 
include the following insights: 

• Eco-driving saves more in city driving (up to 22%) than in highway driving (up to 6%) 
• Speed+powertrain eco-driving typically saves more than the speed-only eco-driving — between 4 and 

9 percentage points more for most of the cases in the large-scale study — by considering the best 
operating points in the powertrain.  

• V2I-enabled traffic light eco-approaches often increases eco-driving energy savings, especially for the 
speed-only eco-driving (up to 10 percentage points increase).  

• Speed-only eco-driving with V2I saves more than speed+powertrain without V2I for EV and 
conventional powertrains in urban and suburban conditions. 

                                                     
iv PID: proportional-integral-derivative controller, a widely used control loop mechanism 
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• While energy savings are greater for the lead vehicle than for the following vehicle, non-equipped 
vehicles can also experience up to an 8% energy savings when following a vehicle equipped with eco-
driving. 

• U.S. Department of Energy Vehicle Technologies Office advance technology targets for engine 
efficiency improvements at low loads will lead to higher energy savings from eco-driving than from 
business-as-usual technology improvements for conventional vehicles in future technology scenarios 
— up to 6 extra percentage points in the 2025 target.  

The energy benefits of eco-driving strategies for a midsize car, and for a variety of driving scenarios and 
powertrain technologies, were evaluated in a large-scale study with over 4,000 simulations, summarized in 
Table 3-11.. Each simulation includes two vehicles, one following the other. One or both vehicles feature an 
advanced control while the other uses the baseline control — the realistic, data-driven human driver model 
described in Section 3.4.1.1.3. Each control has two versions, with or without vehicle-to-infrastructure (V2I) 
connectivity. With V2I, the vehicle receives signal phase and timing (SPaT) information, which it uses for 
“eco-approach and departure” to avoid idling at red lights. The “baseline with V2I” corresponds to a “better” 
driver who can perfectly follow an eco-approach speed recommendation and drives at perfectly constant speed 
during cruise segments, but otherwise shares the algorithm of the baseline (without V2I) driver. 

Each vehicle includes the Autonomie powertrain model corresponding to a vehicle created for the SMART 
Modeling Workflow (refer to the SMART Mobility Modeling Workflow Capstone Report – Section 3 
Common Scenarios and Assumptions). Two powertrain technology scenarios were examined, both for a mid-
size car: current technology and short-term future with U.S. Department of Energy Vehicle Technologies 
Office targets. 

Table 3-11. Summary of the main variables in the eco-driving case study. 

Variable/Parameter Description 

Powertrain (PT) • Conventional: powered by an internal combustion engine  

• HEV: parallel pre-transmission hybrid electric  

• BEV: battery electric vehicle with 200-mile range  

PT technology 
scenario 

• Current technology 

• Short-term future technology: better engine/motor efficiency, lighter battery, etc. 

Control • Baseline: no optimization 

• Speed-only eco-driving (EcoDrv Spd/Accel) 

• Speed+powertrain eco-driving (EcoDrv PT+Spd) 

Connectivity • No vehicle-to-infrastructure (V2I) information: Vehicle does not receive any information 
from the outside.  

• V2I: Vehicle receives information about signal phase and timing. 

Scenario Two vehicles, one following the other 

Routes Real-world routes extracted from HERE maps: 16 highway, 9 suburban, 9 urban, 10 
mixed (combining all road types) 
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Figure 3-90 shows the speed profiles for various driving control strategies for the same example route for a 
BEV. All three controllers with V2I connectivity have information about the current and future state of the 
second traffic light (at 1670 meters), and slow down before the light so as not to stop and idle, unlike the 
baseline case without V2I, which has to stop. The two vehicles with eco-driving controllers have smoother 
speeds than the two baseline controllers. 

 

 
Figure 3-90. Speed traces for a BEV with different control strategies on a short segment with traffic light at 1,670 m. 

All simulations include two vehicles, one following the other, with zero, one, or two vehicles with an 
optimized control rather than the baseline. Figure 3-91 shows four combinations of interest for analysis. First, 
an optimized vehicle is compared to a baseline vehicle in the lead position that has no other preceding vehicle. 
In the second and third cases, the optimized vehicle is still compared with the baseline, but in both cases, it is 
following a lead vehicle that is either a baseline (second case) or an optimized one (third case). Finally, it is 
also interesting to compare the effect of the control on non-equipped vehicles by comparing two baseline 
vehicles following either an optimized or a baseline vehicle. 
 

 
Figure 3-91. Description of the four comparison cases. 

In Figure 3-92, the focus of the analysis is on one type of vehicle (HEV) and one type of control 
(speed+powertrain eco-driving, no V2I) to focus on the position and equipment level. The trends presented 
here generally hold for other powertrains and controls as well, with changing magnitudes. Eco-driving leads to 
the greatest energy savings for the lead vehicle in all four cases considered, saving more in urban conditions 
(18%) than in highway driving (6%,) because there are more acceleration/deceleration cycles in city driving 
that eco-driving can optimize. When the eco-driving vehicle is following another vehicle, the savings are lower 
(12%–14% in urban driving) because the preceding vehicle adds constraints to the control problem. As there is 
no vehicle-to-vehicle connectivity, the eco-driving vehicle cannot anticipate the preceding vehicle’s 
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movements and must occasionally brake to avoid collisions, as does the non-optimized vehicle in the same 
position. Finally, non-equipped vehicles are either essentially not affected or actually save energy when the 
preceding vehicle is equipped with eco-driving (3.6% in highway conditions). This suggests beneficial impacts 
of eco-driving even at partial penetrations. 

 
Figure 3-92. Fuel savings for the HEV (current technology) with speed+powertrain eco-driving and no V2I in various 

scenarios.  

When comparing all types of controllers for the lead vehicle (Figure 3-93), it appears that speed+powertrain 
eco-driving with V2I generally shows the highest energy savings (22% for conventional, urban). The savings 
for the conventional and the HEV vehicles are comparable, but are lower for the EV — 10% at most. 

 

 
Figure 3-93. Energy consumption savings compared to baseline control for a vehicle in the lead position, with current 

powertrain technology, for various powertrains.v 
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3.4.1.4.1 Impact of Connectivity 

V2I connectivity allows vehicles to receive SPaT information and use it to cross a traffic light intersection in 
its green phase. In the case study, it was assumed that either all traffic lights are connected or none of them are. 
In urban driving, with large numbers of traffic lights with relatively short distances between them, V2I 
connectivity brings significant savings. The “baseline with V2I” on urban roads, for example, consumes 
between 7% and 12% less energy than the baseline vehicle (Figure 3-93). The “baseline with V2I” includes a 
simple eco-approach algorithm and cruises at constant speed, and the baseline human driver model includes 
some added noise compared to the “baseline with V2I.” V2I connectivity also increases the savings of the eco-
driving controllers up to 10 additional percentage points for speed-only eco-driving with V2I (vs. non-V2I) for 
the conventional powertrain in urban conditions, as shown in Figure 3-94, and up to 7.7% for the 
speed+powertrain algorithm with the same road type and powertrain. In fact, speed-only eco-driving with V2I 
saves more than speed+powertrain without V2I for EV and conventional powertrains in urban and suburban 
conditions.  

There are, however, instances in which the V2I-enabled eco-approach leads to lower savings than the non-V2I 
case (e.g., HEV in mixed and suburban cases and BEV in the suburban case for the speed-only algorithm; cf. 
Figure 3-93). In these cases, the controller does not compute truly energy-optimal trajectories, because of its 
limited “preview” of the future and because the objective of the optimal control in the speed-only case is not 
the explicit minimization of energy but of acceleration. Secondly, the calibration of the controller, which 
affects not only energy consumption but also travel time, drivability, safety, etc., was not optimized in this case 
study. Finally, the non-optimized Autonomie baseline energy management strategy for the HEV may affect the 
“without V2I” and “with V2I” cases in different ways. 

 
Figure 3-94. Difference in percentage of energy consumption saving between a controller with V2I and the same controller 

without V2I for a vehicle in lead position, with current conventional powertrain technology. 

3.4.1.4.2 Impact of Powertrain Inclusion on Optimization 

The addition of powertrain dynamics to the optimization (speed+powertrain vs speed-only) generally leads to 
greater energy savings, especially in urban scenarios for conventional vehicles and HEVs (3%–6% and 4%–
9% additional, respectively), as shown in Figure 3-93. Some of these extra savings are explained by improved 
component operating conditions.  

For example, in the case of the HEV in lead position, engine and motor efficiencies are higher by up to 2 and 
up to 5 percentage points, respectively, in non-highway scenarios when compared to speed-only eco-driving, 
as shown in Figure 3-95. This is achieved by adjusting the degrees of freedom, such as vehicle speed, power 
split, and gear. Gear shifting in particular occurs more often (2.5 times more shifts compared to the baseline). 
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The calibration of the control can be adjusted to reduce the number of shifts for better driving comfort, but that 
generally also reduces the energy savings.  

The difference in optimization objectives also explains the differences in operations. As shown in Figure 3-96 
for one urban driving example, the speed-only strategy uses the engine mostly in the lower torque region 
because it simply minimizes the acceleration energy. The speed+powertrain strategy, on the other hand, shifts 
the engine operating points to a higher, more efficient torque region through stronger accelerations. While the 
stronger accelerations lead to greater component efficiency, they may occasionally result in more undesired 
braking in the absence of V2I/SPaT information. For example, the speed+powertrain controller will command 
stronger acceleration to reach cruising speed on the assumption of a green light, but then has to brake when the 
light turns red. As a result, the speed+powertrain without V2I occasionally performs comparatively worse than 
the speed-only controller in some non-urban cases (e.g., conventional, suburban, shown in Figure 3-93). 

 
 

Figure 3-95. Various component operation metrics for the HEV in a lead position (current technology). 

 
Figure 3-96. Engine operating points (density as a percentage of total energy) for a HEV (current technology) in lead 

position, for speed-only (left) and speed+powertrain (right) eco-driving strategies in one urban driving example. 

3.4.1.4.3 Impact of Powertrain Technology Improvements Scenario  

Eco-driving affects energy savings differently depending on the powertrain technology scenario. Figure 3-97. 
shows the difference in energy consumption savings between the 2025 technology (future) and 2019 
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technology (current) scenarios. Eco-driving savings are up to 6 percentage points higher for a conventional 
vehicle in the future technology scenario. One reason is that eco-driving tends to reduce overall tractive effort 
and thus the engine load, which often leads to lower engine efficiency; the future technology case assumes 
strong improvements in efficiency in these low-load areas. This is especially true for the speed-only control, in 
which lower engine loads are most prevalent.  

For the BEV, however, relative savings resulting from eco-driving are the same for both technology scenarios. 
A similar conclusion can be drawn for the HEV, except for the speed+powertrain eco-driving controller: It 
brings less relative energy saving in future years than in the current scenario compared to the respective 
baselines. It still brings energy savings compared with the baseline in the same technology scenario, but 
comparatively less than in the current scenario, because the future baseline it is compared against has already 
taken advantage of the improved engine efficiency. 

 
Figure 3-97. Difference in percentage of energy consumption savings between a 2025 and a 2019 vehicle in lead position 

for various types of controllers. vi 

3.4.1.4.4 Impact on Non-equipped Vehicles 

As suggested earlier for the HEV case (Figure 3-92), eco-driving can also benefit non-equipped vehicles. 
When a non-optimized baseline vehicle follows a vehicle equipped with eco-driving, as shown in Figure 3-98, 
it can save up to 8% in energy consumption (conventional vehicle, urban) compared to the baseline. The 
following vehicle especially benefits from anticipating the driving of the lead vehicle (with V2I) or the 
“smoother” driving of the lead vehicle. The savings are greater for the conventional vehicle, which always 
benefits from reduced braking. The speed-only eco-driving strategy is generally better for the following 
vehicle, as speed+powertrain takes into not only account kinetic energy optimization but also onboard energy 
management. The non-optimized vehicle following the optimized speed+powertrain vehicle “sees” only a 
different speed, which may not be beneficial in itself if it is not accompanied by the optimized energy 
management that the lead vehicle uses. 
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𝐸𝐸𝐶𝐶2025𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� − �1 − 𝐸𝐸𝐶𝐶2019∗

𝐸𝐸𝐶𝐶2019𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏� where %𝐸𝐸𝑆𝑆𝑋𝑋 is relative energy savings in year X, and 𝐸𝐸𝐶𝐶𝑋𝑋 is the 
energy consumption in year X; the * refers to the controller of interest (as opposed to the baseline) 
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Figure 3-98. Energy consumption of following baseline vehicle (lead: control versus baseline) with current technology and 

various powertrains 

3.4.1.5 Perspective 

A common risk of control-driven energy improvement research is to overestimate energy savings by fine-
tuning the controls for small sets of scenarios. In this work, this risk was mitigated by integrating robustness to 
broad ranges of uncontrolled situations in the control design and by using high-fidelity models in a large 
number of real-world trip scenarios to find representative estimations of the benefits of CAV-enabled eco-
driving controls. It should be noted, however, that the results and trends identified in the analysis still include a 
certain level of uncertainty, originating from multiple sources described below. Suggested future research 
could further reduce these uncertainties. 

Scenario: The benefits of the eco-driving algorithms vary significantly depending on the scenario, the type of 
route, its topography, the placement and timing of traffic lights, etc. Figure 3-99 shows the distribution of 
energy savings for one example of powertrain, technology level and road environment. A larger sample of 
scenarios would reduce the impact of potential outliers. 
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Figure 3-99. Distribution of energy savings for lead vehicle (conventional, current technology, urban scenarios). 

Sub-optimality: The eco-driving controllers do not necessarily produce true optimum results, for several 
reasons. First, knowledge about the future is only partial (even in the case of V2I, knowledge of SPaT is 
limited to a 250 m range). Deviations between anticipated (e.g., green traffic light) and actual (e.g., red light) 
predictions can lead to actions (a sudden braking event) that negatively impact energy consumption. Future 
research could investigate whether better horizon prediction can help mitigate these occurrences. 

Calibration: Each eco-driving controller includes calibrations that define constraints (e.g., maximum 
acceleration rate) or parametrization of controls that are not optimized (e.g., speed tracking). Relative savings 
can be affected and trends modified by changes in calibration. Further work could include developing 
calibration optimization methods. 

Controller heterogeneity: The controllers that are compared as part of this study are significantly different 
from each other and were created in parallel development tracks. Because of different levels of complexity, 
maturity, and “manual” calibration optimization effort, bias in the comparison may exist and may skew the 
results. In future developments, further maturation of the more complex controllers and common sets of 
controller-independent metrics could be adopted for consistent calibrations across all controllers to ensure 
“fair” comparisons. 

3.4.1.6 Summary 

The work presented in this section has led to several contributions to the study of energy-focused CAV control 
development. New models were developed and then validated in RoadRunner to simulate not only existing 
CAV technologies (e.g., ACC) but human driving as well. The latter is important, as it serves as the baseline 
against which other forms of CAV control are compared. Novel eco-driving controls that leverage connectivity 
and automation to drive more efficiently were developed — including ones that optimize both the driving 
dynamics and the powertrain operations — for EVs, conventional engine-powered vehicles and hybrids. These 
controls were developed with implementation in mind: They are designed to work in a variety of situations 
(e.g., when following other vehicles), include realistic prediction horizons, and have feedback loops to account 
for perturbations and model errors. 

A large-scale case study demonstrated: 

• CAV-enabled eco-driving algorithms can reduce energy use up to 22% when compared to a simulated 
human baseline. 
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B-V2I: Baseline + V2I 
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S-V2I: EcoDrv Spd/Accel, V2I 

PS: EcoDrv PT+Spd  
PS-V2I: EcoDrv PT+Spd,V2I 

 

En
er

gy
 c

on
su

m
pt

io
n 

(%
 D

iff
. v

s.
 b

as
el

in
e)

 

Energy cons. difference for individual route 

Average energy cons. difference over all routes 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

148 

• Controls that optimize powertrain operation as well as speed generally perform better than controls 
that focus only on speed.  

• Knowledge of traffic light sequences enabled by V2I generally makes eco-driving more beneficial.  
• Non-equipped vehicles can also save energy when they follow vehicles equipped with eco-driving 

controls. 
 

3.4.2 Corridor and Vehicle Level Coordination Strategies 

• Simulation showed that ACC vehicles with V2I capability could follow roadside variable speed 
limit/advisories (VSL/VSA) to maintain a set speed, which could improve traffic throughput or 
increase TTD (total travel distance) compared to the traffic with 0% ACC and without V2I. 

• At a signalized intersection, if an active coordinated traffic signal control is used to integrate the 
CACC vehicle operation with the signal control, capacity will increase with the market penetration 
levels of CACC vehicles. At 100% market penetration, this capacity increase is about 75%; fuel 
consumption in mpg would increase by 70%. 

• With partial penetration of CAVs and a heterogeneous fleet (different vehicle classes from light-duty 
to heavy duty), the optimal coordination framework developed by the CAVs Pillar provided fuel 
savings of 3% to 30% for a highlighted freeway merging scenario under moderate to heavy traffic. 

• At lower CAV penetration levels, in a real-world corridor, the developed coordination framework still 
achieved a significant overall corridor fuel consumption reduction. For example, at 20% CAV 
penetration, a fuel consumption reduction of 4% was achieved. 

The goals of energy efficient mobility systems are to alleviate congestion, reduce energy use and emissions, 
and improve safety. At the vehicle and corridor level, core technologies include vehicle connectivity, vehicle 
automation, and the notion of a cooperative transportation infrastructure enabled by these advanced mobility 
technologies. Intersections, merging roadways, speed reduction zones, along with the drivers’ responses to 
various disturbances, are currently the primary sources of bottlenecks that contribute to traffic congestion and 
stop-and-go driving with significant implications in both fuel consumption and traffic stability.146,147,148,149 In 
2017, congestion caused people in urban areas in U.S. to spend 8.8 billion hours more on the road and to 
purchase an extra 3.3 billion gallons of fuel, resulting in a total cost estimated at $166 billion.150 Connected 
and automated vehicles (CAVs) provide a promising opportunity for enabling uses and operators to better 
monitor transportation network conditions and to improve traffic flow via a range of coordination methods 
starting with providing improved information to drivers to full automation to better coordinate traffic flows. 
CAVs can be controlled at different transportation-system levels, e.g., intersections, merging roadways, 
roundabouts, speed reduction zones, and can assist drivers in making better operating decisions to improve 
safety and reduce pollution, fuel consumption, and travel delays. 

3.4.2.1 Active Traffic Management Strategies for Corridor-Level Traffic Improvements 

• Simulation showed that ACC vehicles with V2I capability could follow roadside variable speed 
limit/advisories (VSL/VSA) to maintain a set speed, which could improve traffic throughput or 
increase TTD (total travel distance) compared to the traffic with 0% ACC and without V2I. 

• For penetrations of about 10-30% of ACC in the simulated corridor:  
o Total travel time (TTT) could be reduced by ~6-7% 
o Speed variation could be reduced by 8%  
o Total delay could be reduced by ~9-11% 

These improvements may indicate that even with low penetration of CAVs, benefits in energy saving, 
emission reduction and safety may be realized with V2I capability. 
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Section 3.3.1 of this report and several other studies151,152,153 have indicated that increased ACC market 
penetration will aggravate traffic and lead to more energy consumption since ACC, as a longitudinal 
autonomous driving mode, has inferior performance compared to experienced drivers when following other 
vehicles. There are two reasons for this conclusion: (a) experienced drivers will have a much better perception 
of and prediction ability for traffic in front of them, which will lead to a shorter time gap, safer performance 
and reduced cumulative delay, and (b) ACC strings will have cumulative delays from downstream to upstream 
since there is no V2V between those ACC vehicles. The cumulative delay is detrimental to vehicle safety and 
driver comfort. Therefore, ACC vehicles usually operate with longer time-gap settings.154 Adding to the traffic 
aggravation, the time gaps are usually large so the vehicles can respond in time. Although CAVs (with V2V) 
can effectively avoid those deficiencies and improve traffic mobility and safety, low market penetration of 
CAVs will not bring many opportunities for CACC/platooning-capable vehicles to get together for platooning 
or CACC strings. Therefore, most CAVs will have to be operated in ACC mode until there is a higher 
penetration of CAVs enabled with CACC.  

In this context, the following investigation is intended to improve traffic mobility and safety as well as energy 
consumption using a V2I type of VSL/VSA. Results showed that although ACC will have longer time gaps 
between vehicles, which is detrimental to traffic, V2I types of VSL/VSA could compensate for this by 
increasing overall performance at the system level. 

The approach is as follows: an active traffic management (ATM) strategy, VSL, is adopted to optimize the 
downstream bottleneck flow.155 It is assumed that all the automated or partially automated vehicles have 
vehicle-to-infrastructure connection (V2I) but not vehicle-to-vehicle connections. This connection can be 
implemented with a simple cellular phone API. The cellular phone can connect via the vehicle’s Bluetooth® 
connection. With those connections, the VSL determined by the traffic management center (TMC) can be 
passed to the vehicle and used as the set-speed of the ACC vehicle. It can also be displayed to the driver, and 
the driver can follow this set speed based on the actual traffic situation. The determination of the VSL for each 
road section is achieved by model predictive control (MPC)156, which utilizes an iterative, finite-horizon 
optimization of a plant model to optimize the objective function and specify the current control action while 
remaining cognizant of future outcomes over the finite horizon. For this work, the plant model is based on the 
speed dynamics of the second order METANET model.157 The model can be reduced in practice to an in-field 
implementation. For validation of the algorithm, a well-calibrated Aimsun microscopic traffic simulation 
model of eastbound I-66 inside the Washington, D.C. Beltway was used as the case study.158 The road 
geometry for the study is depicted in Figure 3-100.The design procedure can be divided into the following 
steps:  

Step 1: Divide the freeway network into cells based on section length, number of lanes, on-ramp locations 
and traffic detector locations 
Step 2: Determine the desired speed near the most downstream bottlenecks using a simple regulator 
feedback control 
Step 3: Determine the VSL in other cells using an MPC approach discussed below 

It was assumed that all the ACC vehicles had V2I capability in the sense that the VSL determined by the TMC 
(or roadside) was passed to the ACC vehicles and used as the set speed. The driver behavior of ACC vehicles 
was excluded. The simulation was run for different market penetration of ACC vehicles: 0%, 10%, 30%, and 
50%. Each scenario was run for 10 replications (random seeds).vii All the performance parameters obtained 
were averaged over the 10 replications. The following parameters are used to evaluate of the performance of 
the VSL strategy (Figure 3-100):  

  

                                                     
vii The initial flow and demands afterword from the mainline upstream and on-ramp are statistically distributed to verify the 

robustness of traffic management strategy. 
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• TTT – total travel time (wish to reduce)  
• TTD – total travel distance (wish to increase)  
• TD – Total delay (wish to reduce)  
• Spd Var – speed variation (wish to reduce)  
• Ave # of Stops – average number of stops (wish to reduce)  
• Flow@Syc – Flow at onramp merging bottleneck from Sycamore (wish to increase the most 

downstream bottleneck flow) 
• Flow@Merge – Flow at the bottleneck of freeway merge of I-66 EB and VA 267 (this flow may be 

reduced to some extent to allow downstream to operate at its maximum flow) 

 
Figure 3-100. Road geometry for microscopic traffic simulation: I-66 EB inside the Beltway, with two bottlenecks marked 

with red spots. 

Table 3-12 shows the percentage changes, compared to baseline traffic, for traffic improvement (green) or 
worsening (red) with ACC penetration of 10%, 30% and 50%, assuming that all of the ACC vehicles have V2I 
connections. 
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Table 3-12. Averaged performance parameter improvements for each penetration level of ACC vehicles over 10 
replications (random seeds) market 

Market Penetration TTT (%) TTD (%) TD (%) Spd. 
Var. (%) 

Ave. # of 
Stops (%) 

Flow@Syc. 
(%) 

Flow@ 
Merge (%) 

10% -6.0 0.8 -9.4 -8.4 -3.5 1.8 -0.2 

30% -7.0 1.3 -11.0 -8.3 -4.2 2.4 -0.1 

50% -8.9 1.4 -13.7 -9.3 -4.9 2.2 -0.1 

Mean -7.3 1.2 -11.4 -8.7 -4.2 2.1 -0.1 

 

It can be observed from the table that an improvement has been achieved in all metrics, even with 10% 
penetration of ACC vehicles. The most downstream of the two bottlenecks (marked as red spots), the 
Sycamore on-ramp, is critical. Some minor flow reduction at an upstream freeway merge is necessary to 
improve the flow at the most downstream bottleneck that determines the throughput of the whole corridor. 
Note that CACC operation was not assumed here, so the potential benefit is due to the V2I type of VSL only.  

This work confirmed the benefits of improving traffic through V2I variable speed limit (VSL) guidance even 
for relatively low penetrations of ACC or CACC vehicles. This approach uses currently available road traffic 
detector information and ACC vehicle capabilities (with V2I capability) to calculate a VSL for each small 
section of the freeway corridor, which is then passed back to the ACC vehicle through V2I and used as the set-
speed. Simulation showed that total travel time could be reduced by ~6-7% and speed variation could be 
reduced by 8% when the penetration of ACC was about ~10-30%. This approach has promise to improve 
traffic when the penetration of CAVs is low. 

3.4.2.2 Active Coordinated Traffic Signal Control for Mixed Traffic at Signalized Intersections 

• For signalized urban intersections, simulation results with and without CACC operating through a 
standard four-way signalized intersection, show a 67% capacity increase for the major approach and a 
49% capacity increase for the minor approach when the CACC market penetration increases from 0% 
to 100%. While this throughput increase is generally a positive development it is not necessarily 
optimal. In higher CACC market penetration cases the CACC string may prevent a vehicle needing to 
switch lanes or turn to find a gap upstream from the intersection and thus the vehicle is forced to make 
aggressive last-minute lane changes near the intersection leading to an interruption in queue discharge 
flow. 

• At a signalized intersection, if an active coordinated traffic signal control is used to integrate the 
CACC vehicle operation with the signal control, capacity will increase with the market penetration 
levels of CACC vehicles. At 100% market penetration, this capacity increase is about 75%; fuel 
consumption in mpg would increase by 70%. 

The microsimulation vehicle-following model for CAVs described above was also used to identify the effects 
of CACC on urban signalized intersections, using the VT-Micro model for energy consumption evaluation. 
The simulation depicted the performance of a four-way signalized intersection with and without CACC and a 
cooperative signal control algorithm.159 The test intersection had a major southbound/northbound approach and 
a minor westbound/eastbound approach. The major approach had two through lanes and a dedicated left turn 
lane, while the minor approach had one through lane and one left turn lane. The major approach traffic was 
95% through movement and 5% left turn movement, while the traffic in the minor approach was 45% left turn, 
45% right turn, and 10% through movement. The baseline simulation was performed with 0% CACC vehicles. 
The intersection’s signal was controlled by a typical actuated signal controller. In addition to the baseline 
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simulation, scenarios of 20%, 40%, 60%, 80%, and 100% CACC market penetration with and without the 
cooperative signal controller were analyzed. 

The intersection capacity at various CACC penetrations is shown in Figure 3-101. The data were collected 
without activating the cooperative signal controller. The results therefore depict the isolated impact of CACC. 
There was a 67% capacity increase for the major approach and a 49% increase for the minor approach when 
the CACC market penetration increased from 0% to 100%. The capacity of the major approach was 
substantially larger than the minor approach because the major approach had more lanes and was assigned a 
longer maximum green time. For the major approach, the capacity first increased quadratically as the CACC 
market penetration changed from 0% to 40%. After that, the increase followed a linear trend.  

The rate of increase no longer follows the quadratic trend because of the influence of lane-changing behaviors 
that occurred near the intersection stop bar (stop line). When a vehicle needs to make a left turn at the 
intersection, it makes mandatory lane changes towards the left turn lane. In higher CACC market penetration 
cases, where the CACC string operation may prevent that vehicle from finding a gap upstream of the 
intersection, the lane-changing vehicle was often forced to make aggressive last-minute lane changes near the 
intersection. This would greatly interrupt the queue discharging flow (the flow at the immediate downstream 
section of the intersection) of the CACC strings. As a result, the capacity benefit that could have been provided 
by the CACC string operation was substantially decreased. It can be observed that the minor approach 
movement did not have capacity increases when the CACC penetration level was 20% or lower. It started to 
increase only when the CACC penetration was over 40%. This was partially because the traffic on the minor 
approach was weighted less than the major approach in the overall traffic throughput optimization and partially 
because a CACC-capable vehicle would likely drive in ACC mode for low CACC penetrations.  

 

 

Figure 3-101. Capacity impact of CACC on an urban signalized intersection without a cooperative signal controller. 

The influence of the cooperative signal control algorithm developed by the CAV Pillar was investigated under 
various CACC market penetrations as well. In the simulation runs, the traffic demand input for the major 
approach in the 0% CACC case was 1,800 vehicles per hour, and the demand for the minor approach was 350 
vehicles per hour. Average vehicle fuel efficiency (mpg) was used to depict the effects of the algorithm on 
both the traffic flow and vehicle fuel consumption.  
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Vehicle speed and fuel efficiency variations by CACC market penetration levels are shown in Figure 3-102 
and Figure 3-103. The results showed that the proposed cooperative signal control algorithm could assign 
green light time more efficiently than the default actuated controller. Consequently, the queued vehicles could 
be released from the intersection within a control cycle even in cases with 20% or lower CACC vehicles. For 
this reason, the algorithm brought about great performance improvement even in the 0% and 20% CACC 
cases. Notably, the algorithm performed well in the 0% CACC case in which the SPaT computation relies 
completely on the vehicle count and speed data obtained from fixed traffic sensors. With such limited datasets, 
the algorithm could still generate green time distributions that substantially improved speed and mpg and 
demonstrated the robustness of the proposed algorithm. 

 

Figure 3-102. Average vehicle speed at an urban signalized intersection under various CACC market penetrations with 
and without cooperative signal controller. 

 

Figure 3-103. Average vehicle fuel economy (MPG) at an urban signalized intersection under various CACC market 
penetrations with and without cooperative signal controller. 

To simulate mixed traffic with CAVs at signalized intersections, this work also considered incorporating 
trajectory planning for CAVs with active signal control.160 
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An intersection cooperative traffic signal control, as studied for the urban intersections mentioned above, is an 
aggregated control approach in the sense that it tells the vehicles of the corresponding phase and movement 
whether they should proceed or should not proceed, but it does not provide the vehicles with optimal trajectory 
assignments. For CACC-capable vehicle operation at the intersection, the central controller could provide a 
reference trajectory for each vehicle. The CAV Pillar researchers implemented this more detailed control in an 
attempt to better regulate individual vehicles and therefore the overall traffic. 

Upon implementing the combined cooperative signal control algorithm with a vehicle trajectory planning 
strategy that minimizes the subject vehicle’s fuel consumption, the added energy saving attributable to the 
implementation of the trajectory planning is not significant. Table 3-13 shows the average vehicle mpg when 
the CACC market penetration is 100%, and the traffic demand is 10% and 100% of the intersection capacity 
(measured in the manual driver case). Vehicle fuel efficiency shows only a minor increase when the demand is 
10% of the intersection capacity, and the overall fuel economy becomes even worse when the demand is 100% 
of capacity. This means that when the intersection traffic is close to saturated, even the combined strategy with 
coordinated signal control and trajectory planning could be less effective in overall traffic optimization for 
energy saving than the cooperative signal only case, which means the trajectory planning algorithm can be 
improved.  

In the 100% of capacity case, the trajectory planning algorithm asks the subject vehicle to start decelerating 
earlier than it does in the baseline case. At the signal initiated by the leader, the algorithm also causes the 
following vehicles to join the now-accumulating queue. Because of the early start of the queue accumulation, 
more vehicles upstream from the subject vehicle will be affected by the queue. Many of the queued vehicles 
would have passed the intersection without slowing down if the trajectory planning were not implemented. In 
this case, the benefit of the trajectory planning for individual subject vehicles is largely offset by the energy 
loss of the extra queued vehicles. Such an energy loss trend becomes greater as the traffic demand increases. 
This analysis indicates that the trajectory planning algorithm should be improved such that it optimizes both 
the fuel consumption of the subject vehicle and the overall traffic flow. 

Table 3-13. Average vehicle MPG under traffic inputs of 10% and 100% intersection capacity (100% CACC). 

 10% Capacity 100% capacity 

 Cooperative 
Signal Only 

Cooperative 
Signal Plus 
Trajectory 
Planning 

∆ Cooperative 
Signal Only 

Cooperative 
Signal Plus 
Trajectory 
Planning 

∆ 

Overall 31.4 31.5 0.1% 29.4 29.2 -0.8% 

NB 32.1 32.1 0.0% 30.1 29.8 -0.9% 

SB 32.0 32.1 0.3% 29.8 29.5 -0.8% 

WB 20.6 20.5 -0.6% 19.9 19.7 -1.3% 

EB 18.5 18.3 -1.3% 20.8 20.7 -0.4% 

 
Traffic microsimulations have been developed and applied to show the significant potential for energy savings 
through use of cooperative vehicle following automation (CACC) — and the potential for adverse effects when 
the automation is non-cooperative. These tools were used for specific scenarios in specific freeway corridors, 
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but now that they have been developed and refined, they are available for use to represent a much wider range 
of CAV scenarios, including higher levels of automation. When high percentages of the passenger cars on a 
freeway use cooperative vehicle following, they can dramatically reduce congestion and increase the effective 
throughput of the highway, yielding significant energy savings.  

The performance of a cooperative signal control algorithm has been tested against an actuated signal control 
with a simulated four-way intersection. The test results show that the algorithm can improve both the average 
intersection speed and the average vehicle mpg. The most significant impact was observed in the lower CACC 
market penetration cases. In those cases, the algorithm can substantially improve traffic mobility and vehicle 
fuel economy by reducing or eliminating the need to wait for multiple cycles before passing the intersection. In 
the medium and high CACC market penetration cases (Figure 3-103), the algorithm performs best when the 
traffic demand is close to the intersection capacity measured under the actuated signal control. A preliminary 
analysis was performed that quantifies the intersection performance when the proposed signal control 
algorithm is combined with a vehicle trajectory planning algorithm. However, the results show that the 
trajectory planning algorithm cannot create extra benefits when implemented with the signal algorithm. This 
finding suggests that there is a need to develop more advanced trajectory planning (or eco-approaching) 
algorithms to enhance the proposed cooperative signal control algorithm. 

3.4.2.3 CAV-Enabled Optimal Coordination Strategies and Impacts for Highlighted Traffic Scenarios 

• With partial penetration of CAVs and a heterogeneous fleet (different vehicle classes from light-duty 
to heavy duty), the optimal coordination framework developed by the CAVs Pillar provided fuel 
savings of 3% to 30% for a highlighted freeway merging scenario under moderate to heavy traffic. 

• With full penetration of CAVs, the optimal coordination framework developed by the CAVs Pillar 
enabled the vehicles crossing a roundabout to reduce fuel use ~27% and travel time between 3% and 
49%, depending on the traffic conditions. 

• In a simplified highway corridor with full penetration of CAVs, the developed optimal coordination 
mitigated traffic jam propagation, leading to travel time savings of up to 40% and improvements in 
fuel economy of up to 55% over the non-coordinated scenario. 

• At lower CAV penetration levels, in a longer, real-world corridor, the developed coordination 
framework still achieved a significant overall corridor fuel consumption reduction. For example, at 
20% CAV penetration, a fuel consumption reduction of 4% was achieved. 

The goals of energy-efficient mobility systems are to alleviate congestion, reduce energy use and emissions, 
and improve safety. At the vehicle and corridor level, core technologies include vehicle connectivity, vehicle 
automation, and the notion of a cooperative transportation infrastructure enabled by these advanced mobility 
technologies. Intersections, merging roadways, speed reduction zones (SRZs), and the drivers’ responses to 
various disturbances are currently the primary sources of bottlenecks that contribute to traffic congestion and 
stop-and-go driving, with significant implications in both fuel consumption and traffic stability. In 2017, 
congestion caused people in urban areas in the United States to spend 8.8 billion hours more on the road and 
purchase an extra 3.3 billion gallons of fuel, resulting in a total cost estimated at $166 billion.161 

CAVs provide a promising opportunity for enabling users to better monitor transportation network conditions 
and improve traffic flow. CAVs can be controlled at different transportation segments, such as intersections, 
merging roadways, roundabouts, and SRZs, and can assist drivers in making better operating decisions to 
reduce pollution, fuel consumption, and travel delays as well as improve safety. 

Most of the current research related to the control and coordination of CAVs has focused on safety and travel 
time. Several studies have attempted to quantify the energy implications of proposed control and coordination 
strategies with the assumption of full penetration of CAVs. However, the implications of partial penetration 
rates of CAVs on energy and travel time have been an under-explored aspect within the research community. 
This work explores the impacts of an optimal coordination framework for CAVs162 in the presence and 
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absence of interactions with human-driven vehicles (i.e., assuming partial and full penetration rates of 
optimally coordinated CAVs) under different traffic conditions. The main focus areas of this work are (1) the 
development and expansion of a simulation framework to capture the interaction of CAVs with human-driven 
vehicles under different traffic volumes for a range of traffic scenarios, and (2) the analysis of the impact that 
different penetration rates of CAVs have on fuel consumption, travel time, and traffic flow when the optimal 
coordination framework is applied. 

3.4.2.3.1 Speed Harmonization through Optimal Coordination-Full Penetration of CAVs 

• The proposed optimal coordination algorithm significantly reduced fuel consumption for each vehicle 
in a speed harmonization (SPD-HARM) scenario by 19%–22% over the baseline scenario and showed 
improved performance compared with other SPD-HARM strategies proposed in the research 
literature. 

To evaluate the effectiveness of the CAVs Pillar developed optimization framework for SPD-HARM, a single-
lane freeway corridor was implemented in the Vissim application programming interface as shown in Figure 
3-104 and Figure 3-105. The corridor was 2,000 m long, including an SRZ 300 m long located downstream. 
Because capacity dropped at the entrance of the SRZ, stop-and-go congestion was meant to be generated under 
the baseline scenario even without feeding additional volumes through ramps. The speed limit inside the SRZ 
was set to be 15.6 m/s. Upstream of the SRZ, a 300 m control zone (CZ) was defined. Neither the speed limit 
at the SRZ nor the length of the CZ affected the analytical solution for system optimality.163 However, varying 
the length of the CZ or the speed limits might yield different quantitative results for fuel consumption, travel 
time, and throughput. 

 
Figure 3-104. Automated vehicles within a control zone approaching a speed reduction zone. 
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Figure 3-105. Traffic network developed in VIssim for the speed harmonization case. 

The following traffic flow scenarios were considered: (1) 1,620 veh/h, (2) 1,800 veh/h, and (2) 1,980 veh/h, 
with a total simulation time of 1,000 s, and the following three approaches were compared: (1) a baseline 
scenario with human drivers (Wiedemann car-following model), (2) a state-of-the-art variable speed limit 
(VSL) algorithm called speed controlling algorithm using shock wave theory (SPECIALIST164), and (3) the 
vehicular-based SPD-HARM algorithm proposed by the U.S. Department of Transportation.165 The results for 
fuel consumption, travel time, and throughput for each approach and simulated traffic flow are shown in 
Figure 3-106. The proposed control algorithm significantly reduced the fuel consumption of each vehicle over 
the combined CZ (300 m) and SRZ (300 m) by 19%–22% over the baseline scenario, by 12%–17% over the 
VSL algorithm, and by 18%–34% over the vehicular-based SPD-HARM algorithm for the three traffic volume 
cases considered. When the vehicular-based SPD-HARM was used, fuel consumption was not statistically 
different from that of the baseline scenario for Scenarios 1 and 2. For Scenario 3, fuel consumption increased 
by 18% over the baseline scenario.  

With the optimal control, travel time and throughput were improved over the baseline scenario, VSL, and 
vehicular-based SPD-HARM algorithm for all traffic volumes. In particular, travel time was improved by 
26%–30% over the baseline scenario, by 3%–19% over the VSL algorithm, and by 31%–39% over the 
vehicular-based SPD-HARM algorithm for the three traffic volumes. Both the VSL and the proposed control 
algorithm reduced the travel time and improved the vehicle throughput under all three traffic volumes. The 
proposed control algorithm also reduced travel time by 19% and throughput by 3% compared with the VSL 
under Scenario 3. 
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Figure 3-106. Comparisons of the baseline scenario (human-driven vehicles), VSL, and optimal control algorithm. 

3.4.2.3.2 Vehicle Merging at a Highway On-Ramp  

• At full penetration of CAVs and with a homogeneous vehicle fleet (i.e., light-duty vehicles (LDVs)), 
the developed optimal coordination framework reduced fuel consumption more than 40% while also 
reducing travel time. 

• With partial penetration of CAVs and a heterogeneous fleet (i.e., different vehicle classes from light- 
to heavy-duty), the optimal coordination framework developed by the CAVs Pillar provided fuel 
savings of 3%–30% in moderate to heavy traffic.  

• With low traffic and lower CAV penetration rates, a high level of uncertainty existed regarding 
whether or not the benefits of optimal coordination and fuel consumption could increase. At higher 
market penetration rates (MPRs) of CAVS with low traffic, the fuel savings varied from 2% to ~12%. 

3.4.2.3.2.1 On-Ramp Merging — Full Market Penetration of CAVs 

A single on-ramp (Figure 3-107) scenario was simulated in MATLAB as a first step in assessing the impact of 
optimal coordination of CAVs in different traffic conditions166 considering (a) a baseline case with 0% CAV 
penetration, and (b) an optimal case with 100% CAV penetration. In the baseline case, the drivers’ behavior 
was represented by the Gipps car-following model.167 In the optimal case, CAVs behaved according to the 
developed optimization framework for merging coordination.168 
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Figure 3-107. Simulated merging on-ramp. 

The two cases were simulated considering different traffic demands. For each simulation, traffic data (travel 
time, traffic volume, average speed, and queue) were aggregated at 30 s intervals and used to capture the 
macroscopic traffic flow and density for both scenarios. The total fuel consumption and total travel time for all 
the vehicles crossing the control and merging zone (total length of 430 m) were used as measures of 
effectiveness. To quantify the total fuel consumption, a polynomial metamodel was applied that calculates 
vehicle fuel consumption as a function of speed and acceleration.169 

The left plot in Figure 3-108 shows that the optimal merging coordination framework enabled CAVs to 
significantly reduce fuel consumption under all the simulated traffic demands. The total system-level fuel 
savings compared with the 0% CAV scenario varied widely depending on the traffic conditions, but overall, 
under lower traffic demands, the savings were about 35%–40%. The higher fuel savings were found in average 
traffic, given that the vehicles still had some freedom to accelerate/decelerate in an optimal way, as opposed to 
the case of heavy traffic, in which the vehicles were more constrained in their responses. Therefore, in heavier 
traffic, the vehicles experienced smaller headways, and the idling condition (i.e., the vehicle engine was 
running and consuming fuel while the vehicle was stopped) started dominating, thus reducing the potential to 
save fuel. Still, the average fuel savings in heavier traffic were about 20%.  

 
Figure 3-108. System-level fuel consumption (left) and travel time (right) savings for different traffic demands (traffic flow 

volume was the same on the main and ramp roads). 

However, the total travel time (Figure 3-108 right) remained very close for the 0% and 100% CAV cases in 
low traffic conditions, but varied widely in the 100% penetration case for medium and high traffic compared 
with the baseline case.  
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3.4.2.3.2.2 On-Ramp Merging — Partial Market Penetration of CAVs 

The overall objective of the optimal lane merging coordination was to enable smoother driving patterns by 
controlling the merging sequence and optimizing the vehicles’ speed profiles. The fuel and emissions 
implications of such optimal coordination for an on-ramp (Figure 3-109) modeled in Vissim were assessed. 
The CZ was 400 m long and the main road was 1 km long. For the human-driven vehicles, the drivers’ 
behavior was represented by the Wiedemman car-following model.170 The estimates for fuel consumption and 
emissions were obtained using the vehicle models and fleet distribution used in the SMART workflow baseline 
Base0, representing the current day (refer to the SMART Mobility Modeling Workflow Capstone Report 
Section 3.2.2 - Common Scenarios and Assumptions-Vehicle Assumptions and Fleet Distribution). 

 

Figure 3-109. Merging on-ramp used for assessment of fuel, energy and emissions implications. 

Three traffic volumes were simulated (1,800 veh/h, 2,000 veh/h, and 2,200 veh/h) and a 60% to 40% split 
between the main and ramp roads was assumed. To account for different CAV market penetration rates, the 
penetration scenarios described in Table 3-14 were used. 

  

50 m 
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Table 3-14. Simulated CAVs market penetration scenarios 

 
CAV Market Penetration Scenarios 

 
Baseline 2 3 4 5 6 7 8 9 10 11 12 

% Light-Duty 
CAVs 0 0 5 10 20 40 50 60 80 90 95 100 

% Heavy 
Duty CAVs 0 100 100 100 100 100 100 100 100 100 100 100 

 
The results shown in Figure 3-110 show that the benefits were sensitive to traffic demand. The higher benefits 
in terms of average fuel consumption (5% to ~30%), occurred in scenarios with moderate congestion (e.g., 
2,000 veh/h) because the vehicles still had some freedom to accelerate/decelerate in an optimal way. At lower 
traffic demands (e.g., 1,800 veh/h), the reduced traffic on the main road allowed more human-driven cars to 
merge without conflicts in the baseline scenario, avoiding significant acceleration/deceleration changes. This 
success resulted in smoother travel patterns than in moderate traffic and thus reduced opportunities for 
improvement. However, the benefits at lower traffic volume in average fuel savings and fuel economy at full 
penetration exceeded 10%. In heavy traffic, the vehicles were more constrained in their responses because of 
the smaller headways and because the idling condition started dominating, reducing the potential to save fuel 
and improve the average fuel economy. Still, the average fuel savings in heavier traffic varied between 2% and 
17%. 
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Figure 3-110. Average fuel consumption, driving distance, fuel economy, and emissions changes compared to baseline 
over the 1 km corridor for three traffic demands (1,800 veh/h, 2,000 veh/h, and 2,200 veh/h; 60%–40% split between 
the main and ramp roads) with various CAV market penetration rates (numbers in the legend identify the percentages of 

light- and heavy-duty CAVs). 

For higher penetration rates (over 60%), the coordinated operation of an increasing number of CAVs on the 
road allowed an almost proportional increase in fuel consumption savings and average fuel economy. In 
addition, the total distance all the vehicles in aggregate could travel during a set simulation period increased 
with the penetration rate when the traffic demand was moderate to high and remained almost constant for the 
lower traffic demand. Since at moderate to high traffic demand, coordinated operation allowed vehicles to 
travel faster than in the baseline, the vehicles traveled farther in the same simulation time and more vehicles 
were able to enter the simulation, increasing the total traveled distance.  
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At lower penetration rates, for all the simulated traffic demands, increased uncertainty and performance 
variability exist regarding the fuel consumption savings and average fuel economy. This result suggests that 
low market penetration scenarios will likely also see higher variability in performance in the real world. As the 
number of CAVs increases, more vehicles will be trying to communicate and merge in a coordinated way. 
However, they will still be constrained by the “random” behavior of human drivers and the lack of accurate 
information about their decisions and intentions. In these mixed partial penetration scenarios, CAVs need to 
rely on their own estimations (through sensors) to ensure collision-free trajectories. Thus, CAV efficiency will 
be adversely affected by the unsmooth driving of the human-driven vehicles when attempting to merge and 
will be required to perform harder acceleration/deceleration and stopping maneuvers to ensure safety, which 
will affect the downstream traffic. These erratic maneuvers result in variable fuel consumption trends.  

The authors applied the control in a receding horizon fashion, which implies that the optimal control was 
updated at every sample time of the simulation to account for the behavior of the human-driven vehicles. With 
this approach, a CAV on the main road could start following the optimal control, but a human driver on the on-
ramp, initially positioned to merge behind the CAV, could decide to accelerate to merge in front. In a situation 
like this, as soon as the CAV becomes aware of the human-driven vehicle, it will have to update its optimal 
control law (i.e., slow down to ensure a safety gap behind the new leader). This required deceleration comes at 
the price of additional acceleration needed later to arrive at the merging zone at the desired speed. Required to 
ensure safety, these changes in acceleration will affect the upstream traffic, increasing the fuel consumption. 
Furthermore, as the MPR increases, more vehicles are following the optimal control, which changes the 
behavior of the human drivers, thus increasing the uncertainty. 

The plots in Figure 3-111 illustrate this type of situation in the simulation through three consecutive vehicles. 
Scenario 1 represents 0%:0% (LDV:HDV) MPR or baseline, Scenario 6 represents 40%:100% MPR, Scenario 
8 represents 60%:100% MPR, and Scenario 12 represents 100%:100% MPR. Red and blue plots illustrate the 
behavior of CAVs and non-CAVs (human drivers), respectively, and the green shaded area indicates the length 
of the CZ for CAVs. The speed traces in the baseline scenario illustrate how the human (VehID 25) will brake 
suddenly when approaching the merge area at 800 m to accelerate again later to reach the desired speed. This 
sudden braking event is amplified in the two followers (VehID 26 and 27), which have to reduce their speed to 
close to 0 and accelerate again until reaching the desired speed.  

In Scenario 6 (where 40% of the LDVs were CAVs), vehicle 25 was a CAV and anticipated a vehicle merging 
in front of it, thus starting the braking phase at the beginning of the CZ. Although this anticipation already 
smoothed out the speed and acceleration profiles, a readjustment of the optimal speed profile was needed 
before the 700 m marker because of unanticipated behavior of the merging vehicle. In Scenario 8 (when 60% 
of the LDVs were CAVs), the readjustment of the optimal profile happened after the 700 m marker and 
required another braking event from vehicle 25, making the speed and acceleration profiles more erratic than in 
Scenario 6. The erratic speed of vehicle 25 once again shaped the response of the human followers. In contrast, 
although a small readjustment of the optimal control was observed in Scenario 12, the speed and acceleration 
profiles were significantly smoother than in the previous case. Scenario 12 still followed a receding horizon 
approach to account for potential unexpected events on the road (not likely to happen in simulation) and delays 
in the vehicle response, which can be more critical for HDVs.  
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Figure 3-111. Speed and acceleration profiles for three consecutive vehicles in  

scenarios 1, 6, 8 and 12 described in Table 3-14. 
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Future work could investigate the benefits of integrating human behavior predictions and how to enhance 
interactions between human drivers and CAVs to reduce the uncertainty found with low MPRs. Furthermore, 
additional work could be done to better understand the implications of optimal merge coordination on vehicles 
with electrified powertrains. Finally, scenarios considering short-term and long-term vehicle fleets 
distributions could be analyzed to understand the potential benefits of coordination in the future.  

3.4.2.3.3 Roundabout Coordination — Full Penetration of CAVs 

• With full penetration of CAVs, the optimal coordination framework developed by the CAVs Pillar 
enabled the vehicles crossing a roundabout to save up to ~27% in fuel and between 3% and 49% in 
travel time, depending on the traffic conditions.171  

This work simulated a simple roundabout network of 310 m (Figure 3-112). To evaluate the impacts of optimal 
coordination of CAVs for different traffic conditions, two scenarios were created: (a) a network with 0% CAV 
penetration (baseline) and (b) a network with 100% CAV penetration. Additionally, to test the control’s 
effectiveness under different traffic conditions, a set of east and west entry volumes varying from 300 veh/h to 
1,000 veh/h were investigated. The CAV Pillar-designed optimal coordination algorithm in was implemented 
using Vissim172 to represent the CAV operations, and the Wiedemann car-following model173 was selected to 
represent the drivers’ behavior in the baseline case. Every 60 s, the aggregated data, including travel time, 
volume, and queue, were recorded for network performance evaluation. 

 
Figure 3-112. Simulated roundabout. 

In low traffic, the headways between westbound traffic were generally large enough that few eastbound 
vehicles needed to stop before entering the roundabout. In the baseline scenario, as entry volume increased, 
eastbound traffic experienced more difficulty in finding proper gaps into which to merge, resulting in a queue 
built up until the end of the simulation. With the proposed control algorithm, network throughput was 
improved, and the eastbound vehicles could merge into the roundabout without stops, even with a high 
circulating flow. As shown in Figure 3-113, the queue for eastbound traffic was eliminated with the proposed 
approach. Therefore, the total number of vehicles exiting the roundabout increased, leading to improved 
roundabout capacity (e.g., 25% improvement with 1,000 veh/h per lane entry volume). 
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Figure 3-113. Average queue length for eastbound traffic, volume given in veh/h. 

Through vehicle coordination, the large variation in traffic conditions was minimized and the overall network 
travel time (Figure 3-114) improved significantly. Therefore, under different traffic conditions, travel time 
savings of 3%–49% was observed for the entire network. Furthermore, by eliminating stop-and-go driving for 
eastbound traffic, transient engine operation was minimized, leading to direct fuel consumption savings as 
shown in Figure 3-114.  
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Figure 3-114. Total fuel consumption and total travel time vs. entry volume. 

3.4.2.3.4 Optimal Intersection Coordination — Full Penetration of CAVs 

• With full penetration of CAVs, because vehicles no longer need to stop, and acceleration is optimized 
in the CZ, the optimal coordination framework applied to an intersection achieved a fuel consumption 
improvement of 47%, and the travel time was improved by 31%.  

The optimal coordination framework was adapted to coordinate the vehicles crossing an intersection, as 
illustrated in Figure 3-115. To evaluate the effectiveness of the coordination algorithm in this case, two actual 
intersections in tandem located in Boston were implemented in Vissim. The authors modeled a case in which 
434 vehicles were coordinated to cross the intersections. The proposed solution was compared with a baseline 
scenario in which the intersections had traffic lights with fixed switching times. To quantify the impact of the 
vehicle coordination on fuel consumption, the authors used the same polynomial metamodel.174 
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Figure 3-115. Two intersections in tandem used in the work with connected and automated vehicles. 

Only one lane in each direction was modeled. The authors set the CZ length to 245 m (when possible) and the 
merge zone to 35 m for both intersections. Since the shapes of the actual intersections were not regular, the 
distance between them was not the same for different directions: The distance in the westbound lane (traffic 
flow from the east) was 160 m, and the distance in the eastbound lane (traffic flow from the west) was 145 m. 
In this work, the coupling of the two intersections was not considered when selecting optimization parameters. 
The vehicle arrival rate was assumed to be given by a Poisson process with a traffic flow of 450 veh/h for each 
lane. A comparison with the baseline scenario using traffic lights is shown in Figure 3-116. The fuel 
consumption improvement was 46.6%, and the travel time was improved by 30.9%. The fuel consumption 
improvement was due to the following: (1) the vehicles did not come to a full stop, thereby conserving 
momentum, and (2) each vehicle traveled with the minimum acceleration/deceleration in the CZ, so transient 
engine operation was minimized with direct benefits in fuel consumption.175  
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Figure 3-116. Fuel consumption and average travel time improvement for the 434 vehicles passing through the simulated 

intersections. East-west and west-east corridors were 440 m and 425 m long, respectively. 

3.4.2.3.5 Urban Corridor Coordination — Full CAVs Penetration 

• Through the developed optimal control algorithm, average fuel consumption savings of 35% to ~42% 
per vehicle was achieved for the urban corridor in moderate to heavy traffic.  

• With the objective of minimizing energy consumption and keeping safer gaps between the vehicles, 
the average corridor travel time slightly increased (~3%) in light traffic, given that most human-driven 
vehicles in the baseline case could find appropriate gaps to merge into mainline traffic flow without 
stops. 

Using Vissim, the CAVs Pillar defined a study corridor in the University of Michigan’s Mcity176 that consisted 
of a highway on-ramp, an SRZ, a roundabout, and an intersection (Figure 3-117). 

 
Figure 3-117. Simulated urban corridor. 
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Vehicles entered the network via the on-ramp, joined the traffic on the highway with a desired speed of 25 m/s 
(~55 mph), and then entered the SRZ, where the speed limit drops to 11 m/s. Exiting from the highway 
segment, the vehicles traveled through the roundabout, where a desired speed of 13 m/s was in effect until the 
vehicles crossed the intersection to reach the end of the path (corridor length 1.26 km). To evaluate the 
network performance with the proposed control algorithm, two cases with different traffic demand levels were 
analyzed. Case 1 represents the baseline scenario in which all vehicles in the network were non-connected and 
non-automated, and a traffic light controlled access to the intersection. In this case, the Wiedemann car-
following model built into Vissim was applied. A time headway of 1.2 s was adopted given the minimum 
allowable following distance. Case 2 represents the optimal case (100% market penetration of CAVs), where 
all the vehicles followed the proposed optimal control algorithm. The control framework was applied in this 
case to recommend optimal acceleration/deceleration for each CAV in the network. The same time headway as 
in case 1 was applied in the optimal control model. Table 3-15 summarizes the traffic scenarios created (and 
evaluated) for the baseline and optimal cases. 

Table 3-15. Summary of traffic scenarios. 

 
 
 
 
 
 
 
The speed profile plots for the baseline and optimal control cases for all the vehicles in the corridor are shown 
in Figure 3-118. The locations of the on-ramp, SRZ start and end positions, roundabout entry point, and 
intersection are also marked in the figure. For baseline cases, where no control was in effect, the vehicles had 
to yield to mainline traffic and wait for a green light in the intersection. When mainline traffic flow was low, 
merging vehicles could often find gaps to merge into the mainline flow without stopping (e.g., baseline case in 
Scenario 01 in Figure 3-118). As the traffic demand increased, more vehicles had to stop before merging, and 
the queues backed up in the intersection, leading to a further delay in the baseline cases. In addition, under the 
high traffic demand condition, a large variation in baseline vehicle speed profiles existed, leading to 
unbalanced traffic flow and underused corridor capacity. 

On the other hand, in the optimal control cases, traffic information for the entire corridor was shared with all 
vehicles, so the vehicles traveling along the corridor could drive more smoothly and avoid hard 
acceleration/deceleration for any merging or speed reduction events in the path. With an increased traffic 
demand, CAVs had to decelerate/accelerate harder before entering the conflict zones to create proper gaps for 
each other to successfully merge without stopping.  

Scenario Ramp 
(veh/h) 

Highway 
(veh/h) 

Urban 
(veh/h) 

1 200 600 300 
2 300 1000 500 

3 400 1400 600 
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Figure 3-118. Speed profiles for the vehicles in the urban corridor under different scenarios. 

Although CAVs were immediately preparing for following conflict zones, the human-driven vehicles travelled 
with higher speeds until they were aware of the downstream conflict zones. CAVs coordinated with each other 
to create gaps for merging and crossing the intersection, while human-driven vehicles had to stop for mainline 
vehicles and wait for a green light to cross the intersection. As the traffic demand increased, a large speed drop 
was unavoidable even in the optimal control cases. Nevertheless, through the optimal control algorithm, a 35% 
to ~42% savings in average fuel consumption per vehicle was achieved over the length of the corridor (1.26 
km) during the simulation period (Figure 3-118). With the objective of minimizing energy consumption and 
keeping safer gaps between the vehicles, the average corridor travel time was slightly increased (~3%) in the 
light traffic conditions in which most human-driven vehicles in the baseline case could find gaps to merge into 
the mainline traffic flow without stops. 

3.4.2.3.6 Simple Highway Corridor Coordination 

• At full penetration of CAVs, for a simplified highway corridor, the developed optimal coordination 
mitigated traffic jam propagation, leading to travel time savings of up to 40% and improvements in 
fuel economy of up to 55% compared with the non-coordinated scenario. 

• Introducing high penetrations of optimally coordinated light-duty CAVs (i.e., 60%–80%) smoothed 
major traffic flow bottlenecks at corridor on-ramps, but some secondary impacts may occur at other 
ramps within a corridor. 

3.4.2.3.6.1 Simple Highway Corridor - Full Market Penetration of CAVs 

The effectiveness of the proposed optimal coordination framework was assessed on a highway corridor (2.5 
km long) with two on-ramps and one off-ramp (Figure 3-119) modeled in Vissim. The authors implemented 
the optimal coordination framework and simulated the corridor considering 0% (baseline) and 100% (optimal) 
CAV market penetration. Human driver behavior in the baseline scenario was simulated using the Wiedemann 
car-following model included in Vissim. The desired speeds in the CZ for on-ramps 1 and 2 were set to 50 
km/h and 60 km/h, respectively. The traffic demand for the main road and on-ramp 1 was set to 1,400 veh/h, 
and three different traffic demands were considered for on-ramp 2: 1,200 veh/h, 1,500 veh/h, and 1,800 veh/h. 
Finally, the exit rate of vehicles on the off-ramp was set to 30% of the main ramp volume.  

The average fuel economy and travel time results are shown in Figure 3-120. By following the optimal control 
inputs, the vehicles followed smoother acceleration patterns and avoided the frequent stop-and-go driving 
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commonly observed in baseline scenarios when the on-ramp vehicles attempt to merge onto the main road. The 
optimal coordination mitigated the traffic jam propagation, leading to travel time savings of up to 40% and 
improvements in fuel economy of up to 55% over the non-coordinated scenario, as shown in Figure 3-120. 

 
Figure 3-119. Simulated highway scenario. 

 

Figure 3-120. Average fuel economy and travel time results for the simulated highway corridor (2.5 km). 

3.4.2.3.6.2 Simple Highway Corridor - Partial Market Penetration of CAVs 

The simple corridor implemented in Vissim (Figure 3-119) was used to test the operational performance of the 
optimal controller in mixed traffic. The longitudinal driving behavior of humans in the baseline scenario was 
simulated with the psycho-physical driver behavior model developed by Wiedemann.177 Simulations were 
conducted using fixed traffic demands for main and ramp roads of 1,200 veh/h, 1,000 veh/h, and 600 veh/h. A 
fixed 90%:10% ratio was assumed for LDVs:HDVs and different penetration rates (0%, 60%, and 80%) of 
optimally coordinated light-duty CAVs were used. The penetration rates of heavy-duty CAVs was assumed to 
be 100% (10% of the vehicles in the traffic network were assumed to be connected and automated trucks). The 
exit rate at the off-ramp road was set at 30% of the traffic flow. The spatiotemporal distribution plots for mean 
speed are shown in Figure 3-121. In the baseline case (Figure 3-121 top), the main road vehicles reduced their 
speed to below 30 km/h near the two merging zones. The worst traffic congestion was observed on ramp 1, 
where the vehicles approaching the merging zone performed stop-and-go driving while trying to find a safe 
gap into which to merge. This erratic behavior propagates up the ramp, slowing down the throughput. In 
contrast, by introducing high penetrations of optimally coordinated light-duty CAVs (i.e., 60% and 80%), the 
mean speed increased on ramp 1. Nevertheless, some effects were observed on the main road and ramp 2 
where the average speed was slightly decreased. 
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0  
Figure 3-121. Spatial-temporal distribution of mean speed plots of main and ramp roads. Top: 0%, middle: 60% and 

bottom: 80%. 
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3.4.2.3.7 Optimal Coordination for a Real-world Corridor Segment (I75 corridor) 

• Optimally coordinated CAVs in the realistic corridor scenario exhibited the ability to enhance traffic 
flow and improve overall corridor fuel consumption across all levels of CAV penetration. 

• At 100% penetration of CAVs, the optimal coordination framework provided a 7% reduction in 
overall corridor fuel consumption. 

• At lower penetration levels, the coordination framework still achieved a significant benefit to overall 
corridor fuel consumption reduction. For example, at 20% CAV penetration, a fuel consumption 
reduction of 4% was achieved.  

Based on traffic data availability, the authors modeled a 6.9 mi segment of the I-75 corridor in Vissim (Figure 
3-122) and calibrated it to resemble real traffic conditions. The longitudinal driving behavior of humans in the 
baseline scenario was simulated with the psycho-physical driver behavior model developed by Wiedemann. 
Traffic data, including volume, speed, and on/off ramp traffic, were obtained from the Tennessee Department 
of Transportation’s traffic sensors and cameras. These data were then used to calibrate vehicles’ speed 
distributions as the measure of effectiveness, considering a 1 h period. The Vissim model was calibrated so 
that vehicles’ speed distribution in the simulation model was comparable to the field observations. 

Figure 3-122. Corridor modeled in VISSIM and histogram of observed vs simulated vehicle speeds in the 20.5 N mile 
marker. 

As part of the calibration process, the authors used the Latin hypercube design, a design of experiment 
sampling method, to select 100 comprehensive parameter sets for the initial calibration. Each parameter set 
was simulated in Vissim with a different random seed. Results based on these simulation settings, in terms of 
vehicle traveling speeds and the observed speeds from radar sensor data, are shown in Figure 3-122 (bottom 
right corner). The average traffic demand for the main and ramp roads was set to 2688 veh/h, 1400 veh/h, and 
771 veh/h. The simulation time was set to 1,200 s.  

The impacts of optimal CAV coordination were assessed considering the current day fleet distribution scenario 
defined in the SMART Mobility Modeling Workflow Capstone Report. Eight MPRs were studied, as defined 
in Table 3-15. The percentage of electrified vehicles for the chosen fleet distribution scenario was <2%. 
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Table 3-16. Market penetration rates considered for assessment. 

Scenario Baseline 2 3 4 5 6 7 8 

% Light-duty 
CAVs 0 0 5 10 20 50 80 100 

% Heavy-duty 
CAVs 0 100 100 100 100 100 100 100 

 

The fuel savings shown in Figure 3-123 increased steadily with increased penetration when more than 10% of 
the vehicles on the road were CAVs. The increase reached a maximum of about 7% at full CAV MPR. 
Although electrified vehicles were considered in this work, the sample size was too small; thus there were not 
statistically significant data from which to draw generalizable conclusions. Additional scenarios could be run 
with larger samples of electrified vehicles to investigate overall trends. 

 

Figure 3-123. Fuel consumption results for the current time fleet distribution scenario. 

The available traffic data was more representative of free flow conditions and light traffic, and, as such, the 
benefits of applying coordination will be moderate. Future work could consider additional baseline scenarios 
for an intra-city corridor under different traffic conditions (i.e., from moderate to heavy congestion) to get 
more insights into the full range of benefits attainable through coordination. A need also exists to find better 
ways to quantify the direct benefits of coordination in interconnected scenarios and to explore how far 
upstream and downstream from the merging point traffic is affected/improved by the coordination itself. 
Corridors with shorter segments between on-ramps may render higher percentages of improvement under 
similar traffic conditions if the same metrics used here are applied. This could occur because (1) the percentage 
of the road over which the vehicles are optimally controlled will be larger with respect to the entire corridor, 
and (2) the effects of the merging vehicles on the main road’s upstream traffic will be more prominent in the 
baseline and low penetration scenarios than the other scenarios. 
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3.4.3 Regional Level Strategies for CAV Impact Mitigation 

• Transit ridership in Bloomington, IL could be increased by 11% by subsidizing ride-hailing access to 
transit stops, decreasing overall fuel use by 1.1% 

• ZOV pricing of $0.33 per mile would reduce overall ZOV miles by 25%, helping to mitigate the 
potential impacts of widespread private AV adoption 

• Coordinated platooning with high wait times can increase the total time that vehicles spend in 
platoons, but only leads to moderate energy savings due to issues with platoon formation 

As discussed earlier in Section 3.3.2, high levels of vehicle automation can possibly lead to increased overall 
energy consumption within a region, due to significantly elevated VMT and possibly more congestion due to 
the overall number of additional trips enabled by automation. Fully automated driverless vehicles are 
particularly susceptible to these increases in VMT and were shown to enable certain scenarios of greatly 
elevated VMT and thus increased energy usage. While the vehicle optimal control strategies employed in the 
preceding section offer some solutions at the vehicle-to-corridor level, this section seeks to highlight some of 
the regional level strategies investigated to mitigate some of the less desirable aspects of certain future highly 
automated vehicle use cases. The study results shown below are not intended to cover all possible mitigation 
strategies, but rather to highlight some of the promising options uncovered and evaluated within this work. 

3.4.3.1 Low-Cost Ride-Hailing Access to Transit 

• Transit ridership in Bloomington, IL could be increased by 11% through subsidizing ride-hailing 
access to transit stops, decreasing overall fuel use by 1.1% 

One of the mitigation strategies looked into the impact of providing very low/no cost ride-hailing trips to 
public transit stops/terminals to facilitate transit access for travelers. Utilizing the same Bloomington Illinois 
region discussed in the earlier implications section (3.3.2.2), a study investigated the regional changes when 
ride-hailing drop-offs at bus stops were provide at zero cost. In this scenario, overall transit ridership was 
increased by 11%, with a resulting 1.4% decrease in overall VMT and 1.1% decrease in overall fuel use, 
suggesting that providing very low cost transit access (likely enabled by CAV technologies) can provide some 
regional benefits relative to overall energy use. Additionally, these free transit-access rides appear to offer 
some travelers in outlying regions increased access to transit, with additional benefits related to overall 
productivity and access to jobs. 

 
Figure 3-124. Bloomington Illinois zero-cost ride-hailing transit access study overview. 

3.4.3.2 Zero Occupancy Vehicle Pricing 

• VOZ pricing of $0.33 per mile would reduce overall ZOV miles by 25%, helping to mitigate the 
potential impacts of widespread private AV adoption 
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Given that ZOV operation is one of the main drivers of the elevated VMT in several of the highly automated 
future scenarios investigated for this work178, a strategy of pricing zero occupancy vehicle miles at a rate of 
$0.33 was investigated as a possible lever to perhaps mitigate some of the increased VMT due to high levels of 
automation. Depending on the penetration of AVs, the $0.33/mile ZOV charge shows a very significant — 
approximately 25% — reduction in ZOV miles traveled for both high (65%) and low (37%) AV penetration 
scenarios run for the Bloomington area in POLARIS. This ZOV VMT reduction corresponds to an overall 
reduction in VMT of up to 4%, as shown in Figure 3-125. 

 

 
Figure 3-125. Summary of ZOV scenarios (low and high AV penetration) and the associated impacts of a ZOV per-mile 

charge. 

3.4.3.3 Coordinated Platooning 

• Coordinated platooning with high wait times can increase the total time that vehicles spend in 
platoons, but leads to only moderate energy savings due to issues with platoon formation. 

One of the expected benefits of AVs is their platooning capabilities; however, vehicle platooning has been 
studied mainly in terms of single platoons. To analyze the energy impact(s) of coordinated platooning vehicles 
at the regional level, i.e., modifying trajectories and departure times for many vehicles to increase time spent in 
a platoon, an optimization model developed by Argonne researchers was adopted.179 The optimization model 
schedules platoons’ formation and dissolution given the demand for vehicle travel. To correctly simulate the 
platoons’ movements, the POLARIS code was updated to accommodate changes in travel times and 
trajectories. POLARIS was first manually linked to the optimization model (involving many pre- and post-
processing steps), and then it was enhanced so it would automatically and continuously call the optimization 
model (with the POLARIS vehicles’ trajectories as inputs) and also update their movements according to the 
optimization model results. Because optimization models are computationally intensive and tax computing 
resources, a clustering algorithm was also developed to group vehicles into multiple bins and thereby improve 
performance. This approach breaks the big problem into smaller ones, which, in turn, reduces the size of the 
optimization model problems and improves performance. In addition, Autonomie was updated to take into 
account the reduction in energy consumption attributable to the reduction in aero drag on vehicles in platoon. 
Two case studies were conducted for a sample of the Detroit region in addition to the Bloomington, Illinois, 
analysis (shown in Table 3-17). 
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Table 3-17. Bloomington, IL, mobility and energy impacts from platooning at low penetration rate. 

 
 
Preliminary results indicate that with increases in wait times, the chances for platooning to occur increase 
significantly. In addition, given the assumptions and models used for estimating the reduction in drag 
coefficients, the savings in energy consumption increases by 0.5% and 1.5% for 60-second and 200-second 
wait times, respectively. With a wait time of 600 seconds, 4.5% of all trips and 2.6% of all miles could be 
platooned, leading to a fuel savings of 1.0%, with some of the in-platoon fuel savings offset by platoon 
formation factors, as the car waits to join and accelerates to join the platoon.  
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4 Summary and Conclusions 
Dedicated to furthering the understanding of the energy implications and opportunities of advanced mobility 
technologies and services, the U.S. Department of Energy’s Systems and Modeling for Accelerated Research 
in Transportation (SMART) Mobility Consortium was formed to create tools and generate knowledge about 
how future mobility systems may evolve and how these evolutions will impact overall mobility, energy, and 
productivity. Specific to the efforts described in this report and in support of the Connected and Automated 
Vehicle (CAV) Pillar of the Consortium, this report detailed research, development, and analysis to identify 
the energy, technology, and usage implications of connectivity and automation and develop efficient CAV 
solutions at a range of scales. To address these goals, the Pillar used a broad and multidisciplinary approach, 
utilizing wide-ranging experimental testing, mobility-centric model expansion and development, advanced 
controls and optimization at the vehicle-to-regional level, and a range of newly developed and more traditional 
analytical approaches. Experimental results and insights described in this report span both heavy-duty and 
light-duty vehicles and employ a mix of laboratory, track, in-field, and large-scale fleet data collection and 
experiments. The CAV-specific modeling adaptations and expansions discussed in these efforts build upon 
more than 15 years of modeling and simulation expertise within the DOE and integrate DOE’s high-fidelity 
and validated modeling tools and approaches with state-of-the-art CAV data, capabilities, and controls. The 
simulation and controls efforts investigated CAV technologies at the vehicle-level, corridor-level, regional-
level, and national-level in terms of both the implications related to introducing CAVs technologies into 
current transportation systems as well as an evolving transportation ecosystem that can directly leverage the 
new information, connectivity and/or automation afforded by connected and automated mobility technologies 
to reduce energy usage and improve mobility. Since the transition to a highly connected and automated 
transportation future will not be overnight, the Pillar’s simulation and controls efforts spent particular attention 
on assessing impacts and developing controls for mixed traffic environments with varying penetrations of 
manually and automatically driven vehicles. 

The CAVs Pillar sought to answer three major questions regarding CAVs technologies and their implications 
as well as provide a synthesis of both internal and external new and emerging research findings related to 
CAVs and their subsequent impact at a range of scales. This section summarizes the primary research results 
and insights from the CAVs Pillar, addressing each of the research questions posed in the introduction. It is 
expected that these results will be beneficial to a range of stakeholders including transportation system 
planners, mobility engineers, vehicle developers, and the transportation research community at-large.  

A common theme observed across multiple research insights created from this work is that CAV technologies 
offer a significant potential for improving vehicle-level efficiency, yet if higher-level coordination is not 
properly implemented in a given strategy or technology these benefits may not be seen at the corridor level or 
regional level. For example, several studies within this report describe strategies and technologies that may 
increase overall system-level consumption despite reducing individual-level energy consumption due to 
creating instabilities and larger disturbances for other vehicles operating in the surrounding environment. With 
this issue in mind, many of the findings in this report strongly suggest a systems-centric approach is necessary 
to more robustly identify energy savings opportunities that are applicable across multiple scales. Further 
expanding on this insight, another significant high-level conclusion from these efforts suggests that the 
promising strategies and technologies utilized for increased vehicle-level and transportation-level efficiency 
are at risk of being negated by an increase in overall miles traveled, due to possible rebound effects (driving 
more because connectivity and/or automation makes it easier and/or cheaper) as well as new usage cases 
associated with widespread connectivity and automation 

4.1 Summary of Findings and Their Implications 
4.1.1 How will connected and automated vehicles and systems behave in the real world? 

The results and data provided by the Consortium’s efforts relative to experimentally derived Class-8 truck 
platooning impacts are one of the most comprehensive and rigorous investigations of platooning energy 
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consumption to date. The average savings across a three-truck platoon under realistic operating conditions was 
found to be between 5% and 13% depending on the gap distance between vehicles. For a two-truck platoon, 
the average saving was found to be between 2% and 5%, again depending on the gap between vehicles. 
Combining a national-level assessment of platooning opportunities discussed in this report with the 
experimentally observed fuel savings potential suggests that truck platooning could be an effective fuel saving 
strategy nationally. Platoons of three close-following trucks achieving a combined 13% fuel consumption 
reduction could save up to nearly 2.1 billion gallons of fuel per year – a 7% reduction in heavy duty fuel use. 

The CAVs Pillar’s experimental efforts also investigated the fuel consumption sensitivities and specific 
electrical loads associated with the sensing, processing, and actuation systems of automation systems. 
Laboratory-based testing of select vehicles supplemented with additional publicly available test data for a wide 
range of MY2019 BEVs and ICE-based vehicles found that the energy consumption sensitivities related to 
electrical loads vary significantly depending on cycle average power consumption and the type of driving 
where they are applied. More aggressive driving showed a lower impact relative to a given additional electrical 
load, whereas driving with a significant portion of idling was particularly strongly impacted. For example, a 
2000W additional load showed overall real-world increases in consumption ranging from 17% to 30% for 
BEVs, yet if this load was applied over the UDDS cycle (a lower power, increased idle percentage cycle), the 
consumption increase was 38% to 70%. Experimental testing also observed real-world, in-use electrical loads 
associated with AV systems for two different AV technologies. Field testing of a Cadillac CT6 with Super 
Cruise, a L2+ automation system, found automation system loads of 101-104W during on-road usage. 
Interestingly, the CT6’s overall electrical loads changed minimally when Super Cruise was deactivated, 
suggesting that for lower-level automation capabilities, the true electrical load penalty associated with certain 
automated eco-driving capabilities may be minimal if these systems are already in use as part of safety 
features. Field testing of an automated vehicle prototype, provided by an industrial project partner, found 
automation loads ranging between 300W and 400W for functionalities including hands-free highway operation 
(L3) and fully self-driving operation and navigation at lower speeds (L4). While the loads required for true 
driverless vehicle operation across a wide range of Operational Design Domains are still subject to significant 
uncertainties due to the rapid pace of vehicle development and refinement, the experimentally observed 
electrical load levels discussed in this report suggest that many of the capabilities related to automated eco-
driving may be implementable at electrical loads ranging from 100W to 400W, depending on the required 
capabilities. 

Large-scale light-duty fleet data collection and analysis efforts undertaken within the CAV’s Pillar also 
highlighted the real-world opportunities and impacts of several CAV functionalities. In partnership with Volvo 
Cars and their DriveMe study of ACC vehicles operating in Gothenburg, Sweden, the pillar found that, at the 
individual-vehicle level, ACC-operating vehicles consumed 5%–7% less fuel than the manually driven 
vehicles operating within the same designated driving network. It is important to recall that gains on the 
individual level do not necessarily translate to overall system improvements, but this individual-vehicle level 
data still serves as an important validation of the possible opportunities for AVs to reduce energy consumption.  

Leveraging data from 45,000 actual light-duty vehicle trips, the CAVs Pillar also found that a “green-route” 
(algorithmically creating a more efficient route for a given destination) existed for about one-third of all trips 
evaluated. These more efficient routes provided, on average, 12% lower energy consumption versus the 
originally selected route. Interestingly, roughly half of the “greenest” route alternatives in the study also had 
lower travel times, suggesting a “double win” of both faster and more efficient travel. 

4.1.2 What are the implications of connectivity, automation, and connectivity combined with 
automation as applied to current and near-term transportation systems?  

A major insight from these efforts is the differentiation between connected and automated technologies and 
“autonomous” systems (i.e. an automated vehicle with no connectivity). For example, at the freeway corridor 
level, automation without V2V connectivity applied to the current transportation system may lead to more 
congestion and increased consumption due to traffic instabilities created by the unconnected automation 
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systems and lack of information from surrounding vehicles. In contrast, cooperative operation enabled by both 
automation and connectivity (V2V in this case), shows increasing benefits to both congestion and energy 
consumption as market penetration of the enabled vehicles increases, ultimately removing most if not all traffic 
congestion at current demand levels. 

At the regional level, fully automated, privately owned vehicles, if introduced into our near-term transportation 
system, have the potential to substantially impact traffic and energy use through induced demand and zero 
occupancy vehicles (ZOV), which travel empty due to vehicle repositioning. Regional-level modeling based in 
Bloomington, IL, done within the CAVs Pillar indicates that that the presence of fully automated privately 
owned vehicles would increase trips more than 27% (at low penetration rate/high cost) and 39% (at high 
penetration rate/low cost). With the combined effect of ZOV travel, this would increase system level VMT by 
42% and 63%, respectively. Relatedly, these findings and other regional-level modeling results from the CAVs 
Pillar also show that value of travel time (VOTT) is a critical parameter for understanding and assessing the 
outcomes of CAVs technologies since as VOTT is reduced (via higher levels of vehicle automation or other 
means), significant travel increases can occur. 

While efforts within the CAVs pillar found methods to directly expand regional-level simulations to national-
level estimates of CAV impacts difficult and not necessarily robust, a range of high-level analyses provided 
insights into the complex landscape faced by increased CAV adoption and development. While CAVs appear 
to provide an appealing set of characteristics to a range of consumers and manufacturers, the dynamics of their 
long-term integration and adoption into the larger mobility and transportation market place is still filled with 
considerable uncertainties.  

4.1.3 What is the best way to harness CAVs for reduced energy use and improved mobility in 
transportation? 

Building upon the modeling efforts discussed above, the CAVs Pillar explored how vehicle controls, active 
traffic management, connectivity, optimized vehicle coordination, and regional level strategies can be used to 
capitalize on CAVs technology to reduce energy use and improve mobility in a transportation system. At the 
individual vehicle level, a large-scale study of advanced vehicle controls for a range of powertrain types and 
usage scenarios showed that automation and connectivity combined with energy-focused control results in 
significant energy/fuel consumption savings of up to 22% for internal combustion engine vehicles. These 
results are highly dependent on the type of road and scenario in which the controls are applied, with highway 
showing a 6% improvement in contrast to the city’s 22%. Vehicle-to-infrastructure (V2I) connectivity enables 
better knowledge of a vehicle’s future horizon and can improve the performance of the controls optimization, 
especially the eco-driving strategies that incorporate detailed powertrain information. 

At the corridor level, active traffic management strategies and optimized coordination were also shown to 
enable opportunities for improved traffic flow and reduced energy use. Specifically, results from this report 
regarding connectivity enabled active traffic management strategies showed improved traffic flow even for low 
market penetrations of CAV technologies. Similarly, the developed optimized coordination algorithms for 
automated vehicles were also shown to be effective at improving overall corridor efficiency and mobility at 
penetration levels as low as 20%. At full market penetration of CAVs, increased efficiency and mobility 
benefits can be observed while also enabling new opportunities for more active intersection and corridor 
control. 

At the regional level, a range of mitigation strategies were identified and assessed to offset some of the less 
desirable high-level impacts of CAV technologies that can increase energy usage. Strategies developed and 
assessed include ZOV optimization, improved transit access, leveraging connectivity and automation for 
improved situational awareness, and large-scale traveler coordination. Strategies identified to be particularly 
effective included subsidizing ride-hailing access to transit stops, as well as modifying ZOV pricing to 
incentivize more intelligent vehicle-sharing and route planning. Interestingly, coordinated platooning with high 
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wait times (to allow for larger platoons to form) can increase the total time that vehicles spend in platoons, yet 
may only lead to moderate energy savings due to issues with platoon formation dynamics. 

4.2 Recommendations for Future Work 

Within both the private and public sector, significant funding is being directed towards large-scale 
implementation and development of connectivity and automation related technologies in the form of new 
prototypes, products, test beds, and commercial-scale projects. Many municipalities, states, and regional 
coalitions are beginning to develop and operate large-scale connected and situationally aware roadway systems 
along major corridors and roadways and these real-world applications offer a strong motivation for continued 
data collection and experimentation to gain real-world insight and provide updated validation data for 
improved modeling capabilities. Relatedly, connectivity and automation technologies continue to become more 
available to consumers and fleets, thus additional data-collection and experimental efforts are also suggested. 
Given the rapid pace of technology developments in the mobility industry in general, it is crucial that DOE 
continues to investigate and support the creation of real-world data regarding state-of-the-art technologies and 
transportation system solutions. Furthermore, a range of emerging technologies, such as aerial and ground-
based delivery drones, micro-mobility vehicles, and last-mile focused good transport vehicles are being 
introduced into the marketplace; these vehicles represent a dramatic expansion of what a vehicle can and may 
do within a mixed freight and personal mobility system. 

While these efforts did address some of the synergies between vehicle electrification and CAV technologies, 
much more work could be done to more deeply assess additional opportunities for electrified, connected and 
automated mobility solutions and to study the impact sensitivities of these technologies. Additionally, 
scenarios considering short term and long term vehicle fleet distributions and their associated efficiency 
characteristics could be analyzed to better understand the potential benefits and sensitivities of coordination in 
the future. Building on the foundational efforts in this report, future work could also more deeply investigate 
the benefits of integrating human behavior predictions and how to enhance interactions between human drivers 
and CAVs in an overall optimization framework. Better understanding of human behavior would also likely 
reduce some of the uncertainties found under low market penetration rates within these efforts. Furthermore, 
additional work could be done to better understand the implications of more broadly applied optimal 
coordination with vehicle actively changing lanes, creating openings for other vehicles and actively managing 
traffic flow within a large corridor.  

Future work could also consider additional baseline scenarios for intra-city corridor operations under a wider 
range of natural traffic conditions. This would allow for more insights into the full range of benefits attainable 
through coordination as well as more robust benefits across a larger range of expected operational 
environments. There is also a need to find more strategies and methods to quantify the direct benefits of 
coordinating larger interconnected scenarios and explore how far upstream and downstream from a control 
point traffic is affected or improved by coordination. Similarly, validating the behaviors and insights described 
in these efforts through additional field studies and data collection activities would strengthen the overall body 
of knowledge and further validate the modeling approach and tools developed in this effort. Lastly, expanding 
these efforts to additional geographic locations within the United States (including urban, suburban, and rural 
use cases) would further identify and support areas for continued DOE research, investigation, and validation. 
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6 Appendices 
6.1 Appendix A — CAV Scenario Generation Model 

Table 6-1. CAV Deployment Mobility and Energy Results 

 

Table 6-2. Within-Household AV-Sharing Results 

Unserved 
Trips  

Scenario 1 Flex 
= 0 min  

Scenario 2 Flex = 
5 min  

Scenario 3 Flex 
= 10 min  

Scenario 4 Flex = 
15 min  

Scenario 5 Flex = 
20 min  

0  1,220  37%  1,420  43%  1,609  49%  1,740  53%  1,887  57%  

1  1,107  33%  1,053  32%  1,002  30%  972  29%  900  27%  

2  661  20%  583  18%  496  15%  437  13%  394  12%  

3  193  6%  171  5%  149  5%  115  3%  90  3%  

4  78  2%  51  2%  36  1%  34  1%  30  1%  

5  33  1%  24  1%  14  0%  8  0%  5  0%  

Run AV 
Penetration 

VOTT 
Reduction 

VMT 

(millions) 

VHT 

(millions) 
Avg. Travel Time (min) Avg. Trip 

length (mi) 

Base 0% 0% 268.0 8.17 23.4 11.79 Fuel Use (MM 
gallons) 

0.2 36.1% 0% 291.2 7.86 22.2 12.50 4.85 

0.3 75.5% 0% 292.0 7.96 22.5 12.73 5.34 

1.1 10.1% 30% 306.5 8.37 23.7 13.38 5.32 

1.2 36.1% 30% 324.6 9.04 25.5 14.21 5.62 

1.3 75.5% 30% 337.7 9.64 27.3 14.82 5.94 

2.1 10.1% 50% 319.2 8.74 24.7 13.99 6.14 

2.2 36.1% 50% 357.8 10.45 29.9 15.77 5.85 

2.3 75.5% 50% 387.4 11.92 34.5 17.40 6.55 
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Unserved 
Trips  

Scenario 1 Flex 
= 0 min  

Scenario 2 Flex = 
5 min  

Scenario 3 Flex 
= 10 min  

Scenario 4 Flex = 
15 min  

Scenario 5 Flex = 
20 min  

6  13  0%  4  0%  1  0%  1  0%  1  0%  

7  1  0%  2  0%  2  0%  2  0%  3  0%  

8  3  0%  2  0%  1  0%  1  0%  0  0%  

9  1  0%  0  0%  0  0%  0  0%  0  0%  

Total  

Unserved 
Trips  

3,603  
  

3,110  
  

2,683  
  

2,395  
  

2,130  
  

Reduction%  0    -14%    -26%    -34%    -41%    

 

Table 6-3. Comparison to baseline for Level 4 and 5 CAVs for various fleet assumptions 
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6.2 Appendix B — CAV Scenario Generation Model  

Appendix material on the CAV Scenario Generation model (described in Section 3.3.3): 

The following summaries describe methodological approaches for the structural elements or modules that 
compose the CAV Scenario Generation model: 

• Population tracks population growth trends and shifts in preferences for various CAV and non-CAV 
concepts for each population cohort. Population growth differentially increases the number of persons 
in each cohort, aging of the population may shift persons between cohorts (depending on the age 
dependence of cohort membership), and changes in cohort members’ utilities for the various travel 
concepts alters the fraction of the cohort that uses each travel concept. 

• Activities tracks activity patterns and their changes resulting from consumer choice, population shifts, 
latent demand for each population cohort, CAV/non-CAV concept, and trip purpose. In addition to 
accounting for the shift in number of activities caused by changes in the population and their choices 
of travel concepts, the realization of latent demand may increase the overall number of activities 
performed by cohorts. Locations of activities can be considered to change only in a general sense that 
cohorts can be defined to have a geographic element, such as urban core or suburban. 

• Energy tracks energy use by the CAV/non-CAV concept, population cohort, and trip purpose. The 
energy consumption of each vehicle type results from its frequency of use, its fuel efficiency, and the 
distance traveled per activity. 

• Travel Choice models traveler choice of the CAV/ non-CAV concept using a logit formulation. 
Utilities for the travel concepts within each cohort depend on the capital and operating costs for travel, 
the time taken, vehicle occupancy, and demand for travel. 

• Travel Time and Distance track vehicle and traveler distance and time traveled, accounting for 
deadheading and total vehicle occupancy. Each activity in each cohort is realized using the cohort’s 
distribution of travel concepts. 

• Infrastructure models the allocation of infrastructure investments and their effect on the availability of 
CAV concepts, on travel distances, and on travel times. Infrastructure investments draw on an 
annually replenished fund that is allocated to travel concepts based on the remaining infrastructure to 
be built in support of those concepts and upon the relative value of such improvements. 

• Vehicles and Vehicle Requirement track vehicle stock for the various CAV/non-CAV concepts, 
including changes resulting from new vehicle sales, used vehicle sales, and hardware/software 
upgrades to vehicles. In addition to altering vehicle quantities resulting from purchases and 
retirement/salvage, vehicles may be sold by members of one cohort to members of another or may be 
upgraded from one CAV concept to a more advanced one. 

• Manufacturers models research and development (R&D) investment in CAV concepts and cost 
reductions in vehicle technologies. Costs for CAV concepts decay exponentially toward an asymptote, 
but at a rate determined by investment in R&D, which is in turn dependent on prospective adoption of 
the CAV concept. 

• Regulators models the regulatory workflow required for use of CAV concepts. A fixed annual 
capacity for regulation may limit the rate at which new CAV concepts are approved for general use. 

• Insurers models insurance premiums and payouts for CAV/non-CAV concepts, including the 
influence of safety and incidents. Insurance rates for different concepts depend on their incident rates 
and the funds available in an insurance pool, but rates are adjusted for the use of new CAV 
technologies and underwriting is only available after sufficient on-road experience. 
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• Safety tracks real and perceived safety benefits of CAV concepts. Safety benefits are tracked in 
addition to the cost of incidents. 

The developed systems simulation provides detailed multi-dimensional time-series outputs for the key variable 
in each module, including time series of technology adoption and outcomes, stakeholder actions, and timing 
and characterization of bottlenecks at stage gates. The time series of CAV adoption and outcomes include 
CAV concept share, activity counts, vehicles (sales, resales, retrofits, and stock), time and distance traveled, 
and energy use. Each of these series spans 2020 through 2050 for each traveler cohort, traveler activity, and 
CAV concept. Stakeholder actions include manufacturing R&D and technology cost reduction associated with 
R&D and learning-by-doing, as well as infrastructure development. 

Table 6-4. Sensitivity ranges for variables in the three CAVs Scenario Generation studies 

Variable Range in Screening Study Range in Energy Study Range in Comprehensive 
Study 

Value of time $4/hr to $60/hr $4/hr to $60/hr $4/hr to $60/hr 

Multiplier for cost of 
insuring CAVs 50% to 200% Not varied 50% to 200% 

Accident rate of CAVs 
relative to L0 20% to 200% Not varied 20% to 200% 

Consumer utility for 
using CAVs -$10,000 to +$40,000 -$10,000 to +$40,000 -$10,000 to +$40,000 

Variable cost of using 
CAVs relative to L0 

-$0.50/mile to 
+$1.50/mile 

-$0.50/mile to 
+$1.50/mile 

-$0.50/mile to 
+$1.50/mile 

Minimum cum. travel 
prior to insurance 

underwriting 
108 miles to 109 miles Not varied 108 miles to 109 miles 

Rate of CAV cost 
reduction 0%/year to 20%/year 0%/year to 20%/year 0%/year to 20%/year 

Initial infrastructure 
readiness for L4 50% to 100% 50% to 100% 0% to 100% 

Fraction of passenger 
time freed by L4 50% to 100% 50% to 100% 40% to 90% 

Valuation of safety by 
CAV-averse travelers 100% to 1000% Not varied 100% to 1000% 

Valuation of safety by 
CAV-prone travelers 10% to 100% Not varied 10% to 100% 

Multiplier for vehicle 
occupancy Not varied 30% to 300% 30% to 300% 



CONNECTED AND AUTOMATED VEHICLES CAPSTONE REPORT 

198 

Variable Range in Screening Study Range in Energy Study Range in Comprehensive 
Study 

Multiplier for L4 
deadheading Not varied 100% to 200% 100% to 200% 

Relative cost of transit to 
L0 Not varied $0.25/mile to $3.00/mile $0.25/mile to $3.00/mile 

Relative cost of L0 taxi to 
L0 Not varied $0.50/mile to $4.00/mile $0.50/mile to $4.00/mile 

Relative cost of non-
vehicular replacements 

to L0 
Not varied -$10/mile to $0/mile -$10/mile to $0/mile 

Relative cost of 
automated highway Not varied Not varied $0/mile to $3/mile 

Multiplier for L4 fuel 
efficiency Not varied 50% to 150% 50% to 150% 
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6.3 Appendix C — Detailed Optimal Control Problem Formulation for Eco-driving 
Algorithms 

Table 6-5. Optimal control problem formulation for the speed-only and speed+powertrain eco-driving algorithms (detailed 
version of Table 3-10) 

Optimization Speed-only Speed + powertrain 

Powertrain Any EV ICEV HEV 

Control variables Acceleration (𝑎𝑎) 

Gear shifting and braking force (𝛾𝛾𝑖𝑖, 𝐹𝐹b) 

Motor torque (𝑇𝑇m) Engine torque (𝑇𝑇e) 
Motor + engine torque 

(𝑇𝑇m, 𝑇𝑇e) 

Cost function to 
minimize 

Acceleration 
“energy” 

� 𝑎𝑎2
𝑡𝑡𝑓𝑓

𝑡𝑡0
𝑑𝑑𝑑𝑑 

Battery energy 

� 𝑃𝑃bat(𝛾𝛾𝑖𝑖𝑣𝑣,𝑇𝑇m)
𝑡𝑡f

𝑡𝑡0
𝑑𝑑𝑑𝑑 

Fuel mass 

� �̇�𝑚f(𝛾𝛾𝑖𝑖𝑣𝑣,𝑇𝑇e)
𝑡𝑡f

𝑡𝑡0
𝑑𝑑𝑑𝑑 

Equivalent energy 
consumption 

� 𝑃𝑃fuel(𝛾𝛾𝑖𝑖𝑣𝑣,𝑇𝑇e)
𝑡𝑡f

𝑡𝑡0+ 𝜆𝜆E𝑃𝑃bat(𝛾𝛾𝑖𝑖𝑣𝑣,𝑇𝑇m)𝑑𝑑𝑑𝑑 

Su
bj

ec
t t

o 

System 
dynamics 

Vehicle dynamics 

�̇�𝑠 = 𝑣𝑣, �̇�𝑣 = 𝑎𝑎 

Vehicle dynamics including powertrain operation 

�̇�𝑠 = 𝑣𝑣, �̇�𝑣 = 𝑚𝑚−1[𝛾𝛾𝑖𝑖𝜂𝜂𝑇𝑇𝑑𝑑 − 𝐹𝐹b − (𝑐𝑐0 + 𝑐𝑐1𝑣𝑣 + 𝑐𝑐2𝑣𝑣2 + 𝑚𝑚𝑚𝑚 sin𝛼𝛼)] 

𝑇𝑇𝑑𝑑 = 𝑇𝑇m 𝑇𝑇𝑑𝑑 = 𝑇𝑇e 𝑇𝑇𝑑𝑑 = 𝑇𝑇m + 𝑇𝑇e 

State 
constraints 

Preceding vehicle (𝑠𝑠(𝑑𝑑) + 𝑠𝑠𝑑𝑑(𝑑𝑑)− 𝑠𝑠𝑝𝑝(𝑑𝑑) ≤ 0) 

Speed limits (𝑣𝑣𝑚𝑚𝑖𝑖𝑚𝑚(𝑠𝑠) ≤ 𝑣𝑣(𝑑𝑑) ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)) 

Interior-
point 

constraints 

Traffic signal phase and timing (SPaT) [when V2I enabled] 

(𝑠𝑠(𝑑𝑑1) = 𝑠𝑠1, 𝑠𝑠(𝑑𝑑2) = 𝑠𝑠2,…, 𝑠𝑠(𝑑𝑑𝑁𝑁) = 𝑠𝑠𝑁𝑁, where N is the number of traffic lights) 

Boundary 
conditions 𝑠𝑠�𝑑𝑑𝑓𝑓� = 𝑠𝑠𝑓𝑓, 𝑣𝑣�𝑑𝑑𝑓𝑓� = 𝑣𝑣𝑓𝑓 given 𝑠𝑠0 and 𝑣𝑣0 
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