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IN THEORY THERE IS | really didn’t say
NO DIFFERENCE BETWEEN everything | said
THEORY AND PRACTICE ~Yogi Berra

IN PRACTICE THERE IS




ARPA-E AEM Performance Targets

ID Metric Value
>1000 hours with £2% loss in ion exchange
3.1 Membrane chemical stability (at 280°C immersed in a pH>14  |capacity, ionic ASR, spectroscopic measures
) solution)? of membrane state, and mechanical
properties
Component area over which property values are achieved to
. . . . . Z
32 | ithin 290% uniformity® 100 cm2
3.3 lonic ASR (hydroxide form, 80°C, liquid equilibrated) <0.04 Ohm-cm?2
X Py—— ; S

3.4 lonic ASR (80°C, £50% RH, under air exposure, i.e., in presence <0.08 Ohm-crm2

of 400 ppm CO,)
3.5 Mechanical durability during humidity cycling® 220,000 RH cycles
3.6 Electronic ASR >1000 Ohm-cm2
3.7 Humidity Stability Factor® >5
3.8 Swelling in liquid water at 25°C <50%
3.9 Pressure differential (bar) >1
3.10 H, crossover and O, crossover <25 nmol/cmz2-s
3.11 Cosjc foEr membrane that can be practically integrated in a <20 $/m2

device
3.12 Membrane break strength" > 15 MPa at 50 C and 50% RH

A For a discussion of spectroscopic and mechanical tests that may be done to characterize degradation see [19] or [82]

B Component development and testing work may be done on areas smaller than that defined in metric 3.2, but a scientifically principled approach to scale-up must be developed and components with the area in metric 3.2 must be made and tested by the end of the project.

€ The RH testing procedure is described in reference [83]. Membrane mechanical properties must be sufficiently retained during RH cycling; the most important metric for this is the membrane’s ability to maintain low levels of gas crossover, as defined in metric 3.10.

D Definition: (Strain at breaking point at 25°C and 50% RH) / (Linear swelling at 100°C in liquid water). This metric is a rough check to ensure that a membrane can stretch more at 25°C than it naturally swells when fully hydrated at 100°C, and has been found to correlate with RH
cycles to failure. See references [84] and [85] for further discussion.

E At a production capacity to supply 100,000 fuel cell vehicles per year. “Practically integrated” refers to the mechanical properties required for handling and device manufacturing.
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A Few Words About PFSA
Conductivity



Nafion Published Conductivity

original reports

Red stars are the maximum
value of proton
conductivity reported in

each report
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Fig. 5. The trend to improve the proton conductivity of Nafion membranes in recent 13 years. The line across years linked the mean of the proton conductivity over the
records reported in the corresponding year. The red stars are the maximum value of proton conductivity reported in each report. The black dash line is the threshold of
proton conductivity with 21.5 S/m. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Liu, L., Chen, W., Li, Y.; J. Membrane Sci. 504 (2016) 1-9



80°C Conductivity and Water Uptake
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Liu, L., Chen, W., Li, Y.; J. Membrane Sci. 504 (2016) 1-9



Conductivity and Humidity

3M 800 EW PFSA - 80°C ) v
« “Gold Standard*” Vaisala gauge
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Swell Estimated from Lambda for
Conductivity/Resistance Conversions
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In-Plane and Through Plane at 80°C

3M 725 EW 22um no Support
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What about AEMs?



ARPA-E AEM Performance Targets

ID Metric Value

Ionic ASR (hydroxide form, 80°C, liquid equilibrated) <0.04 Ohm-cm?2 l

A For a discussion of spectroscopic and mechanical tests that may be done to characterize degradation see [19] or [82]
B Component development and testing work may be done on areas smaller than that defined in metric 3.2, but a scientifically principled approach to scale-up must be developed and components with the area in metric 3.2 must be made and tested by the end of the project.
€ The RH testing procedure is described in reference [83]. Membrane mechanical properties must be sufficiently retained during RH cycling; the most important metric for this is the membrane’s ability to maintain low levels of gas crossover, as defined in metric 3.10.

D Definition: (Strain at breaking point at 25°C and 50% RH) / (Linear swelling at 100°C in liquid water). This metric is a rough check to ensure that a membrane can stretch more at 25°C than it naturally swells when fully hydrated at 100°C, and has been found to correlate with RH
cycles to failure. See references [84] and [85] for further discussion.

E At a production capacity to supply 100,000 fuel cell vehicles per year. “Practically integrated” refers to the mechanical properties required for handling and device manufacturing.
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Effect of Dry vs Wet Dimensions

l
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Swell and Water Uptake

Actual vs Estimated Mass Uptake
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Assume ionomer density and water density are 1 g/cm?3
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3M and PSU Conductivity Round Robin

RT in liquid water

3M vs PSU and NREL Conductivity
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Typical IC calibration data
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lon Exchange Studies

01-231 lon Extraction Study
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lon Exchange Issues
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. -
lon SE'ECtIVIty Assumptions:
IEC 2mmol/g
Relative affinities of various anions (compared with the hydroxide ion) on polystyrenic
strongly basic anion exchange resins, both Type 1 and Type 2. Mass 059
lon Type 1 Type 2 NaX ™
Lot 1.0 [ 10 Vol 50 ml
Benzene sulfonate 500 75
Salicylate 450 65
Citrate 220 23
- 175 | 17
Phenate 110 27
gl%?f ?j 12 i} . ion excess * Spy_ . . lon excess * S¢;_
app excess’ = app excess’ =

NO5- 65 8 Sx_ Sy_
Br- 50 b
CN- 28 3
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Residual I in Aging Study
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ARPA-E AEM Performance Targets

lonic ASR (80°C, <50% RH, under air exposure, i.e., in presence

34 of 400 ppm CO:;

<0.08 Ohm-cm2

A For a discussion of spectroscopic and mechanical tests that may be done to characterize degradation see [19] or [82]
B Component development and testing work may be done on areas smaller than that defined in metric 3.2, but a scientifically principled approach to scale-up must be developed and components with the area in metric 3.2 must be made and tested by the end of the project.
€ The RH testing procedure is described in reference [83]. Membrane mechanical properties must be sufficiently retained during RH cycling; the most important metric for this is the membrane’s ability to maintain low levels of gas crossover, as defined in metric 3.10.

D Definition: (Strain at breaking point at 25°C and 50% RH) / (Linear swelling at 100°C in liquid water). This metric is a rough check to ensure that a membrane can stretch more at 25°C than it naturally swells when fully hydrated at 100°C, and has been found to correlate with RH
cycles to failure. See references [84] and [85] for further discussion.

E At a production capacity to supply 100,000 fuel cell vehicles per year. “Practically integrated” refers to the mechanical properties required for handling and device manufacturing.
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More Round Robin 3M and NREL
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CO, and Carbonate
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CO, and Carbonate

% OH"vs CO, ppm in environment
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More CO, and Carbonate
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ARPA-E AEM Performance Targets

3.5 Mechanical durability during humidity cycling® >20,000 RH cycles

A For a discussion of spectroscopic and mechanical tests that may be done to characterize degradation see [19] or [82]
B Component development and testing work may be done on areas smaller than that defined in metric 3.2, but a scientifically principled approach to scale-up must be developed and components with the area in metric 3.2 must be made and tested by the end of the project.
€ The RH testing procedure is described in reference [83]. Membrane mechanical properties must be sufficiently retained during RH cycling; the most important metric for this is the membrane’s ability to maintain low levels of gas crossover, as defined in metric 3.10.

D Definition: (Strain at breaking point at 25°C and 50% RH) / (Linear swelling at 100°C in liquid water). This metric is a rough check to ensure that a membrane can stretch more at 25°C than it naturally swells when fully hydrated at 100°C, and has been found to correlate with RH
cycles to failure. See references [84] and [85] for further discussion.

E At a production capacity to supply 100,000 fuel cell vehicles per year. “Practically integrated” refers to the mechanical properties required for handling and device manufacturing.
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RH Cycle Cell Design

Mechanical Membrane Cycling-Configuration

EXIT

- E—[;a-' Configuration 1
I @ Al ave
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=Single Flow (2 slm Air) wrap
around
ECTOR = Automated off-valve and leak

MrFC T S measurement MFC
! Al Vaive

EXIT

*Pumps turn on/off’ for wet
cycle to dry cycle

Configuration 2

*Double Flow (2 slm Air)
*Automated off-valve and leak
measurement MFC
*Crossover Valves (while one
cell is wet the other 1s dry)

Membrane Durability Testing and Electrode Development s 3 Fuel Cell Components



RH Cycle

Compare RH Cyde Station Configuration

Exat Dew Points
100 Mechanical Membrane Cycling-Configuration
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Membrane Durability Testing and Electrode Development s 3 Fuel Cell Components



RH Cycle

Leak Rate {sccm)

Membrane Lifetime Comparison for the Mechanical
RH Cycle Test Using Two Different Flow Fields

—e—Standard Quad Serp. Flow Field

—=—Standard Quad Serp. Flow Field
Straight Flow Wide Channel Flow Field
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Unsupported and Supported PFSA

Relative Humidity Cycle Lifetime Durability Testing
80°C cycle 2min 150%RH and 2min dry
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RH Cycle on AEM membrane

b 12
10 4 o

Relative humidity cycling test. PAP-TP-85 membrane (25 pm, bicarbonate form)
was assembled in 5cm’ fuel cell test hardware using SGL 39BC gas diffusion layers ]
and polytetrafluoroethylene (PTFE)-coated fibre glass gaskets. Air at 11min' was
passed through both flow fields and the cell was held at 80°C. The gas streams —_ 8 1 P
were cycled between dry (humidifier bypass) and 90°C dewpoint with 2 min at g i pry ..
each step. Crossover was measured every 100 wet dry cycles by applying a 20kPa b P
pressure differential, closing the cathode inlet, and measuring the flow at the - 6 ® o ®
cathode outlet by mass flow meter. o o
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Wang, J., Zhao, Y., Setzler, B., Rojas-Carbonell, S., Yehuda, C., Amel, A., Page, M., Wang, L., Hu, K., Shi, L., Gottesfeld,
S., Xu, B., Yan, Y. Nature Energy doi 10.1038/s41560-019-0372-8



Summary/Recommendations

» Relevant tests and methods for AEMs are likely to be different than PEMs
= Many routine measurements are harder to do well than they appear.
» Accurate relative humidity measurements are critical for RH dependent conductivity

» Conductivity measurements should specify conditions used for dimensional measurements (wet,
dry, etc)

* Jon exchange methods especially important for iodide or other high affinity cations
= RH Cycle testing is both empirical and highly dependent on system design

* Even competent, conscientious, labs are prone to measurement errors...
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