## Catalyst-ionomer Interactions/AMFC Durability

## Yu Seung Kim

MPA-11: Materials Synthesis and Integrated Devices, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA





## Acknowledgment



Collaborators

Chulsung Bae (RPI) Ivana Gonzales (UNM) Michael Hibbs (SNL) Daniel Leonard (LANL) Joseph Dumont (LANL) Rex Hjelm (former LANL)

NIST neutron center LANSCE neutron center

Funding DOE EERE FCTO

## LANL Project funded by DOE FCTO

| Research Focus                          | Major Founding                                                                                             |  |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|--|
| AEM<br><mark>Stability</mark><br>(2016) | Polymer backbone degradation <sup>1</sup>                                                                  |  |
| AEMFC<br>Performance<br>(2017-2019)     | Phenyl group adsorption <sup>2</sup><br>Cation-hydroxide-water co-adsorption <sup>3</sup>                  |  |
| AEMFC<br>Durability<br>(2019)           | Oxidation of phenyl group (in the cathode ionomer)<br>Degradation of ammonium group (in the anode ionomer) |  |

<sup>1</sup>Fujimoto et al. J. Memb. Sci. 423-424, 438-449, 2012; <sup>2</sup>Matanovic et al. J. Phy. Chem. Let. 8, 4918-4924, 2017; <sup>3</sup>Li et al. Cur. Opinion in Electrochem., 12, 189-195, 2018; <sup>4</sup>S. Murya, S. Energy & Environ. Sci. 11, 3283-3291, 2019



## Adsorption of ionomer fragment on electrocatalysts





Those adsorptions are unique phenomena for alkaline ionomer because acid system uses perfluorosulfonic acid.

Li et al. Curr. Opin. Electrochem. 12, 189-195 (2018)

## Impact of phenyl adsorption on HOR catalyst on AMFC performance

2

1

0

-1

-2

-0.05

geo

i / mA cm<sup>-2</sup>

## Identification of phenyl group adsorption on Pt at HOR potential



Matanovic et al. J. Phys. Chem. Lett. 8, 4918 (2017)

**Electric field [V/A]** 

## Impact of backbone phenyl adsorption on HOR of Pt



 Backbone phenyl impacts the HOR up to 0.8 V vs. RHE, more significant than ammonium functionalized phenyl group.



Maurya et al. Chem. Mater. 30, 2188 (2018) Matanovic et al. J. Phys. Chem. Lett. 8, 4918 (2017)

## Impact of ionomer type on HOR of Pt



Maurya et al. Chem. Mater. 30, 2188 (2018)

## The adsorption energy of polymer backbone phenyl fragment on<br/>Pt(111) by DFT calculationFluorene

Adsorption energies (in eV) using optPBE-vdW

| Fragment       | E <sub>ad</sub> (eV) | rank |   |
|----------------|----------------------|------|---|
| fluorene       | -1.38                | 1    | i |
| o-terphenyl    | -1.52                | 2    |   |
| benzene*       | -1.95                | 3    |   |
| biphenyl ether | -2.19                | 4    |   |
| biphenyl       | -2.87                | 5    |   |
| m-terphenyl    | -3.61                | 6    |   |
| p-terphenyl    | -3.94                | 7    |   |

o-terphenyl Benzene Biphenyl ether Biphenyl *m*-terphenyl

Matanovic et al. Chem. Mater. in press (2019)

p-terphenyl

## Impact of phenyl group adsorption on AMFC performance



#### AMFC performance of MEAs using different ionomers



Matanovic et al. Chem. Mater. in press (2019)

Courtesy: Prof. Bae at RPI

# Impact of phenyl adsorption on ORR and OER catalysts on AMFC and AEM electrolyzer durability

## Discovery of the impact of phenyl adsorption on ORR or OER durability



• An MEA using less phenyl adsorbing ionomer (FLN) showed better AMFC durability

## Identification of phenyl group adsorption on Pt at ORR potential

ORR current changes, CV, ORR voltammograms and <sup>1</sup>H NMR analysis of BTMAOH



## Detection of the phenol group formation from cathode ionomer

<sup>1</sup>H NMR analysis of cathode ionomer (BPN) after 75 hours of AMFC operation at 0.9 V <sup>1</sup>H NMR analysis of cathode ionomer (FLN) after 230 h hours of AMFC operation at 0.9 V



• Phenyl oxidation for BPN: 1.3% after 75 h vs. 0.34% after 230 h

Maurya et al. Manuscript under review, J. Power Sources (2019)

## Phenyl oxidation at OER potential (AEM electrolysis)



 PGM catalysts have high phenyl adsorption energy and the AEM electrolyzer using the OER catalysts showed performance decay.

#### iV curves of IrO<sub>2</sub> catalyzed AEM electrolyzer



Li et al. ACS Appl. Mater. Interf. 11, 9696-9701 (2019)

## Take-home message for phenyl oxidation



#### Degradation mechanism

Effect of pH on Pt ORR activity

- The concentration of phenol at the catalyst-ionomer interface is much higher than that in the bulk ionomer.
- The impact is similar to carbonation but this brings permanent damage to the cell
  → more significant than carbonation.

## Impact of cation adsorption on HOR catalysts on AMFC performance

## Identification of cation adsorption on Pt at HOR potential



• HOR activity of Pt in TMAOH decreases after exposure the electrode at 0.1 V vs. RHE

Chung et al. J. Electrochem. Soc. 163, F1503-F1509 (2019)

## Detection of TMA-water co-adsorption on Pt at 0.1 V vs. RHE





#### FTIR of highly conc. TMAOH



Harmon et al. J. Mol. Struc.

159, 255-263 (1987)

- Time-dependent cation adsorption on Pt at 0.1 V vs. RHE.
- OH stretching region indicates that the co-adsorbed layer has high concentration of cationic group vs. water.

Chung et al. J. Phys. Chem. Lett. 7, 4464-4469 (2016)

## Impact of co-adsorption on hydrogen diffusion

 $H_2$  permeability in  $H_2SO_4$  and KOH as a function of the concentration.



Ruetschi J. Electrochem. Soc.114, 301 (1967)

Impact of anode flow rate on AMFC performance



AEM (thickness): quaternized poly(terphenylene) (35  $\mu$ m), ionomer: BPN, anode catalyst: PtRu/C (0.75 mg<sub>metal</sub> cm<sup>-2</sup>) cathode catalyst: Pt/C (0.6 mg<sub>metal</sub> cm<sup>-2</sup>), cathode flow rate: 300 sccm of O<sub>2</sub>.

Li et al. Curr. Opin. Electrochem. 12, 189-195 (2018)

## Anode ionomer design aspect towards highly-performing AMFCs



Table. Self-diffusion coefficients of H<sub>2</sub> in BPN and o-BTN dispersions by PFG <sup>1</sup>H NMR

| Temperat<br>ure (°C) | Diffusion coefficient / (10 <sup>-9</sup> m <sup>2</sup> s <sup>-1</sup> ) |       |               |  |
|----------------------|----------------------------------------------------------------------------|-------|---------------|--|
|                      | BPN                                                                        | o-BPN | Fold increase |  |
| 25                   | 2.69                                                                       | 8.00  | 3.0           |  |
| 40                   | 3.24                                                                       | 12.45 | 3.8           |  |
| 65                   | 3.78                                                                       | 17.58 | 4.7           |  |
| 80                   | 4.45                                                                       | 22.30 | 5.0           |  |

Impact of anode ionomer structure on AMFC performance TEA-o-BTN (2,000 sccm H<sub>2</sub>) 1.0 TEA-o-BTN (500 sccm H<sub>a</sub>) o-BTN (500 sccm H<sub>2</sub>) 0.8 - BTN (500 sccm H<sub>2</sub>) Cell voltage (V) 0.6 0.4 0.2 80 °C 0.0 0.0 0.5 2.5 3.0 1.0 1.5 2.0 3.5 4.0 4.5 Current density (A cm<sup>-2</sup>)

 Impact of the cationic group is more significant → Research need

Park et al. unpublished (2019)

## Impact of cation adsorption on HOR catalysts on AMFC Durability

## Motivation of cation co-adsorption on AMFC durability

## Neutron reflectometry electrochemical cell\*



#### Schematic illustration of co-adsorbed layer structure on Pt after 12 h exposure at 0.1 V vs. RHE



 The concentration of the TMAOH in the co-adsorbed layer calculated from scattering length density is unusually high: the ratio of TMAOH to water = 5:1 (The highest TMAOH to water ratio in the aqueous solution is 1:1)

Dumont et al. unpublished data (2019)

## Impact of coadsorption on AMFC life



## The ionomer degradation due to the cation co-adsorption



Ar g felded p-TPN p-TPN Initial

i h

ppm

2

Ô

10

Cathode Oxidized p-TPN

p-TPN Initial

DMSO-d6

- Cathode ionomer degradation = 30% of the aromatic groups via phenyl oxidation.
- Anode ionomer degradation = 27% of the TMA cationic groups via Hoffman Elimination.

Lee et al. unpublished data (2019)

## Water management issue driven by the co-adsorption



Maurya et al. unpublished data (2019)





## Electrode performance discussion

## Subject

- Ionomer performance
- Low PGM performance
- Non PGM performance
- Electrode processing
- Liquid electrolyte

### • Area

- Fuel cells (HOR and ORR)
- Electrolyzers (HER and OER)