

OFFICE OF

Los Alamos National Laboratory's **Chromium and RDX Projects Update for** Northern New Mexico Citizens' Advisory Board

September 25, 2019

Danny Katzman Remediation Manager N3B Los Alamos

Presentation Topics

- Groundwater Setting
- Where did the chromium come from and where is it now?
- What is being done to address the plume?
- Project Status
- What's next?
- Summary

Simplified Depiction of Groundwater beneath Chromium Project Area

EM-LA

Chromium in Groundwater Beneath LANL

Potassium dichromate used in cooling towers at a Laboratory power plant
Up to 160,000 lb released from 1956-72 in hexavalent form [Cr(VI)]

- 3 groundwater zones
- Plume is 900–1,000 feet below canyon bottom in deepest groundwater zone (regional aquifer)
- Size is approximately 1 mile x 1/2 mile x <75-100 feet thick
- Estimated downgradient plume edge is approximately 1/4 mile from the closest drinking water well

What is being done about the plume? "Interim Measure"

ENERGY OFFICE OF ENVIRONMENTAL Goal of the Interim Measure

EM-LA

Extraction, Treatment & Injection Loop

U.S. DEPARTMENT OF OFFICE OF ENVIRONMENTAL MANAGEMENT

Current Plume Depiction

Interim Measure Status

 The Interim Measure along the southern edge of the plume near the boundary with the Pueblo de San Ildefonso has been underway for about a year

LACHE

 The most recent samples at regional aquifer well R-50, near the Laboratory boundary with San Ildefonso, show chromium levels at 44.9 parts per billion (ppb)

- Chromium levels at the southern boundary are now under the state groundwater standard of 50 ppb
- This indicates that the Interim Measure's hydraulic plume control approach is effective

- Full implementation of the IM is scheduled in calendar year 2019
- This past spring, crews installed another monitoring well, R-70, to help monitor the interim measure's performance along the eastern portion of the plume
- The well is located in between CrEX-5 and the nearest county drinking water well (PM-3)
- Initial sampling results from R-70 have helped better characterize the distribution of chromium in that portion of the plume
- Continue studies to evaluate final remedy
- Corrective Measures Evaluation Report scheduled for September 2021

RDX Project Overview

RDX Project Overview Presentation Topics

Presentation Topics

- Background
 - Groundwater setting
 - Source and history
 - Remediation conducted to date
- Extent of RDX in Groundwater
- Next Steps

Background

- TA-16 facilities established in early 1950s to develop high explosive (HE) formulations
 - Explosives (RDX, HMX, TNT) were casted and machined for nuclear weapons in 260 Bldg starting in 1951
 - Several million gal/yr of HE-contaminated water discharged to Cañon de Valle between 1951 – 1996
- Groundwater investigations first identified RDX (below screening level) in perched and regional groundwater in the late 1990s
- Present-day RDX concentrations are low in nearby springs, surface water, and shallow groundwater

260 Building

EM-LA

la:(c)

RDX Remediation Activities NAGEMENT **Conducted** to Date

- Surface soil cleanup conducted in outfall area in 2000 2001 under an Interim Measure, and in 2009 – 2010 under a Corrective **Measures Implementation**
- More than 1500 yd3 HE-contaminated soil excavated and disposed offsite
- Significantly reduced contamination in surface soils

OFFICE OF

- Injected grout in permeable rock layers to cut off infiltration pathways
- Remedy Completion Report 2017
 - Documentation of no further action necessary for cleanup for RDX in surface setting
 - Long-Term Monitoring Plan and reporting requirements for surface water, springs, shallow alluvial wells

Simplified Depiction of Groundwater Beneath RDX Project Area

RDX in Regional Aquifer

· RDX is present in perchedintermediate and regional groundwater monitoring wells

U.S. DEPARTMENT OF

ENERGY

Several perched-intermediate wells • have RDX above NMED's tap-water screening level of 9.66 ppb

OFFICE OF

VIRONMENTAL MANAGEMENT

E

- Two regional aquifer monitoring wells (R-68 and R-69) have RDX above the tap-water screening level
 - R-68~14 ppb
 - R-69~18 ppb
- RDX is not present in Los Alamos ٠ County (LAC) water-supply wells (~3 miles away)
- DOE collects groundwater samples from water-supply wells for RDX analysis
- Sampled since 1998 ٠
- Current semi-annual sampling supplements Los Alamos County's sampling efforts

- Installation of monitoring wells to investigate "nature and extent" of deep groundwater contamination
 - 12 perched-intermediate groundwater monitoring wells (~600-1000 ft bgs)
 - 9 Regional aquifer groundwater monitoring wells (~1200-1400 ft bgs)
- Studies to refine the conceptual model and understand the hydrology and "fate and transport" (movement) of RDX

OFFICE OF

AGEMENT

- Tracer studies
- Aquifer tests
- Groundwater flow \sim 20 40 ft/yr; RDX in groundwater slightly slower

Conceptual Model

Deep Groundwater Investigation Report

- Submitted to NMED in August 2019
- Objectives/Findings
 - Nature and extent of RDX in deep groundwater
 - Updated conceptual model
 - Assess potential risk to human health
 - Determined no imminent risk to human health exists because contamination is not present near existing water-supply wells or Laboratory boundary

Reporting

EM-LA

Upcoming Activities

- Fate and Transport and Risk Assessment Report in 2020
- Potential for long-term migration of RDX in regional aquifer (i.e., predictions for whether and how much the plume footprint could grow)
- Increase sampling of regional groundwater monitoring wells around the downgradient portion of the RDX plume
- If remediation is necessary, a Corrective Measures Evaluation Report will be developed to evaluate alternatives and propose an approach

Questions

ENVIRONMENTAL MANAGEMENT SAFETY & PERFORMANCE & CLEANUP & CLOSURE

Produced by Los Alamos Legacy Cleanup Contractor, N3B Los Alamos on behalf of DOE's Environmental Management Los Alamos Field Office

