

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Geothermal Technologies Office

Quarterly Update: May 28, 2020

Dr. Susan Hamm, Director

Webinar topics or suggestions? Contact us at: <u>DOE.geothermal@ee.doe.gov</u>

Торіс	Speaker
Introduction	Susan Hamm, Director
Solicitations update	Susan Hamm
Geothermal Manufacturing Prize update	Sean Porse, DMA Lead Analyst
Utah FORGE update	Lauren Boyd, EGS Program Manager
2020 Geothermal Design Challenge winners	Elisabet Metcalfe, EGS Technology Manager
Q&A	Submit your question via WebEx chat

- We are working remotely...yet we remain <u>resilient</u> <u>and responsive</u>.
- We are <u>active and connected</u> on a daily basis.

DOE COVID-19 Response

Welcome Our New Program Manager

Dr. Alexis McKittrick

- Will oversee GTO's <u>hydrothermal resources</u> and low-temperature and co-produced resources groups.
- Previously with IDA Science & Technology Policy Institute.
- Led development of the FORGE Roadmap in 2018.
- Previous Federal experience in the U.S. EPA's Climate Change Division.
- Holds a Ph.D. in Chemical Engineering from Georgia Tech.
- Mentor to young engineers and scientists; maintains an active role with SWE Board of Directors.

Budget Snapshot

USD millions

Wells of Opportunity: Closed – Currently Reviewing

Up to \$25 million in funding to advance EGS technologies and techniques.

• <u>Topic 1</u> – PILOT: Prepare and repair existing wells and test downhole tools and well stimulation technologies.

Topic 2 – AMPLIFY: Test and validate targeted stimulation techniques for purposes of producing additional energy.

Hidden Systems / AESI: Closed – Currently Reviewing

Up to \$18.8 million in funding for up to six projects.

Multiscale Systems, Inc. (Worcester, Mass.)

 Development and Application of Mechanical Metamaterials to Address Needs in Geothermal Technologies

Triton Systems, Inc. (Chelmsford, Mass.)

 Novel High Temperature Nanocomposite Elastomer for Geothermal Applications

Tetramer Technologies, LLC (Pendleton, SC)

High Temperature Elastomeric Materials

Vuronyx Technologies (Arlington, Mass.)

• Elastomeric Composite Materials

Geothermal Manufacturing Prize

Sean Porse, DMA Lead Analyst Geothermal Technologies Office

DEPARTMENT OF ENERGY

Geothermal Manufacturing Prize – LIVE!

- Launched on April 29, 2020
- \$4.65 million in prizes to spur geothermal manufacturing innovation by harnessing the potential of additive manufacturing.

- Prize Goals
 - <u>Reduce</u> design and manufacturing lead times
 - <u>Save</u> money and materials
 - **<u>Improve</u>** geothermal tool, equipment, or component performance

To learn more: herox.com/geothermalmanufacturing

Geothermal Manufacturing Prize Structure

To learn more: herox.com/geothermalmanufacturing

Geothermal Manufacturing Prize Rules

- Official Rules of the Prize are available online on the Geothermal HeroX Page.
- Located under the Guidelines as well as the Resources tabs.

American-Made Geothermal Manufacturing Prize OFFICIAL RULES

The American-Made Geothermal Manufacturing Prize is designed to catalyze manufacturing innovation in the American geothermal industry by harnessing the rapid advances additive manufacturing can provide in improving design, fabrication, and functionality. This will be accomplished through a series of prize competitions and the development of a diverse and powerful support network that leverages national laboratories, energy incubators, and other resources from across the United States.

Prize Outreach Activities

- Geothermal Prize 101 Webinar
 - May 27, 2020
 - Webinar available on HeroX

U.S. DEPARTMENT OF ENERGY

- Nation of Makers Conference
 - June 4, 2020 / 2-6 PM ET
 - Three Sessions on:
 - Geothermal energy
 - Additive manufacturing
 - Sparking collaboration

To learn more: herox.com/geothermalmanufacturing

Utah FORGE Update

The Milford FORGE Site

ANTELOPE ROAD

16A-32

58-32 (

- TD ~7500 ft
- Deep Monitoring Well
- Temperature at 200° C

78-32

68-32 TD ~925ft

TD 3280ft

- Schlumberger: 12 3C Geophones, 100ft (30.5m)
 Spacing, Straddling Granite Contact
- Silixa: Distributed Acoustic Sensor

NEW ROAD

3C 15 Hz geophone

3C Silicon Audio accelerometer

Frontier Observatory for Research in Geothermal Energy – Milford Site, Utah Solicitation 2020-1

Solicitation Issue Date:	April 30, 2020
Informational Webinar:	1:00 PM Mountain Time, May 6, 2020
Submission Deadline for Concept Papers:	2:00 PM Mountain Time, May 27, 2020
Encourage/Discourage Decision Notification:	June 15, 2020
Deadline for Solicitation Questions:	2:00 PM Mountain Time, August 3, 2020
Submission Deadline for Full Applications:	2:00 PM Mountain Time, August 10, 2020
Expected Date for Selection Notifications:	November, 2020

Торіс	Title	Potential Funding	Potential Number of Awards	
1	Devices suitable for sectional (zonal) isolation along both cased and open-hole wellbores under geothermal conditions	\$12,000,000	1 to 3	
2	Estimation of stress parameters	\$3,000,000	1 to 3	
3	Field-scale characterization of reservoir stimulation and evolution over time, including thermal, hydrological, mechanical, and chemical (THMC) effects	\$8,000,000	1 to 4	
4	Stimulation and configuration of the well(s) at Utah FORGE	\$12,000,000	1 to 3	
5	Integrated laboratory and modeling studies of the interactions among THMC processes	\$11,000,000	1 to 6	

Solicitation 2020-1: Award Information

Total Amount to be Awarded	Up to \$46,000,000	
Expected Number of Awards	Up to 18	
Types of Funding Agreements	University of Utah Subaward Agreements	
Period of Performance	Up to 36 months	
Periodic Evaluation	Periodic Go/No-Go review Details finalized during award negotiation	
Cost Share Requirement (Percentage of Total Allowable Costs)	 0% Institutions of Higher Learning, Nat'l Labs, FFRDCs, Domestic Non-Profits 20% For profit institution 	

Web Access: utahforge.com

Want to stay current on what is happening at Utah FORGE? Subscribe here to receive updates.

Other FORGE Events

Newsletter

AT THE CORE The Utah FORGE Newsletter

Quarterly Newsletter to keep the community up-to-date on happenings at Utah FORGE.

Every issue will include updates from the Principal Investigator, technical discoveries, outreach news, announcements, data, events, etc.

https://utahforge.com/atthe-core/

Webinars

The Utah FORGE Team recently introduced a series of webinars; the first provides an overview of the geological setting of the Milford site and geoscience datasets acquired at Utah FORGE and available to the public.

Modeling Forum

An open forum to present modeling and simulation, both completed and planned, as well as activities conducted by the Utah FORGE Team.

These meetings are recorded and available for later viewing.

https://utahforge.com/2 020/05/18/modelingand-simulation-forum-2/

https://utahforge.com/2 020/05/13/geoscienceof-utah-forge/

Geothermal Design Challenge 2020

U.S. Department of Energy

Challenge: How can GIS improve the way we <u>visualize and communicate</u> geothermal energy?

1st Place Digital: "UW Cart Lab" University of Wisconsin-Madison

1st Place Print: "Flying Squirrels" Northern Virginia Community College

To learn more about the winning entries, visit: inl.gov/geothermalchallenge

University of Wisconsin-Madison

Northern Virginia Community College

Geothermal Locality Index Where to Find "The Heat beneath Our Feet"

The Challenge

For the 2020 Geothermal Design Challenge on GIS Mapping, we developed a Geothermal Locality Index to pinpoint potential geothermal resources near people who need heat and energy the most.

Geothermal energy often is overlooked as a renewable resource because it has greater financial and regulatory barriers than solar and wind power Geothermal energy is often associated with western hydrothermal resources, where heated water is close to the surface. But low-temperature, geothermal reserves-those between 30°C and 150°C-also may be a viable option, even though they lack enough rock permeability, water flow, or both, to extract their steady

Low-temperature, enhanced geothermal (LTEG) energy needs to be "enhanced" to make it accessible. Two recent developments have unlocked LTEG reserves. The first is fracking, which is used in the extraction of fossil fuels but can also be used for LTEG. Engineers inject water to increase rock porosity, absorb the heat, and carry it back upward. The second development is the advent of binary power plants. Once heat arrives at the surface, binary plants can harvest temperatures as low as 80°C to heat a fluid that has a lower evaporation point than water, producing enough vapor to power turbines and generate electricity

The energy potential of this "heat beneath our feet" far exceeds that of national demand.1 Estimates of total LTEG resources between 30°C and 150°C have ranged up to 2.8 million exajoules.2 Meanwhile, he estimated residential and commercial low-temperature heat demand in the United States is only 0.01 exaioules per year.3

Geothermal energy can help communities diversify their energy portfolios to include more renewable resources. Its reliability makes it an ideal back-up for emergency situations and critical infrastructure like medical facilities, data centers, and government buildings.⁴ Finally, it has a negligible footprint for carbon dioxide and other chemicals that contribute to global warming.6

Model

We developed a fuzzy membership GIS model with weighted components. The index ranked 3,108 localities based on the following criteria: 1. depth to 80°C temperatures

- 2. amount of heat down to 3,000 meters below mean
- sea level (Accessible Resource Base or ARB) 3. located near people who need it the most
- 4. located near densely populated areas

We calculated "the heat beneath our feet" or the total Accessible Resource Base (ARB) of LTEG with temperatures above 80°C located down to 3,000 meters below mean sea to be 1.2 million exajoules. The total U.S. energy consumption for 2018 was estimated at only 107 exajoules.10 This suggests that, if harvestable, geothermal heat alone could meet U.S. energy needs. Where should we focus efforts?

Geothermal Locality Index

Results

Every locality in the United States except for three reached 80°C levels within a depth of 3,000 meters. The Geothermal Locality Index scored them against each other, ranking them from 2.1 to 7.8. Marshall, Minnesota, was the lowest, and San Francisco was the highest. It is optimal for using LTEG resources because it has a dense population so heating and cooling services would lose minimal energy on the way to customers. It also would have lower drilling costs because the 80°C reservoir is only 575 meters deep. Other western counties in the top 20 are similar. Localities along the Gulf of Mexico, Florida, and the Great Lakes also are strong candidates for LTEG resources. Only six eastern counties made the top 20, all because of their dense population and high heat demand. However, their 80°C reservoirs are not close to the surface, meaning that extraction costs would be higher than for those of their western counterparts.

Top 20 Localities								
Excitorinal Locality Index	Locatty	4144	Pagett.	"The Heat Instant"	Real Descent	Pagasistia		
			-	without \$7%	and a street of the	per uport a l		
1.00	Derfranzen	California	240	94,903		1.04		
8.67	Para Territ	Date figh	2.000		4.44	14.0		
1.00	Cronos	Cartrete		040-409	100	1.3		
1.00	That Make	California	8/10	805.178				
6.88	Atenanta	California	79	1,075,000				
6.81	Warranging	District of Columbus	2.48		- 14			
6.60	Earcar	Conterlando	1.4%	60.845	80	- 0		
	Manual Votes	Name Work	7.9%	1.1.001	100	10.0		
	Hings.	here tools	2,990	8.2001	545	12.0		
	Contra Contra	California		1,003,000		- 518		
	Breaklast	Colevale	1.070	18-410				
	Status Clarks	Cathorite	1.74	1.010-000	10			
***	Rightson City	Brite shared	2.444	101.008	24	1.0		
	Bast Dags	Englished		6.645.000	- 10			
8.74	Calut-CA	Necata		180.071				
4.70	Carrie Cruz	California		990-014				
	BLLING CR	Manual		16.556	- 40			
	Lonkopter	Calificia	1,810	3,044,050	54			
	Matte	Culture		414 416		10		
	the December	Catholis	1.44	10.002.000				

Conclusion

Most U.S. localities have an ARB that far exceeds heat demand. There is a constant supply of 18 million times more energy under our feet than we expended in 2018. The Geothermal Locality Index identifies 20 promising localities based on heat accessibility and population factors. It could be used to prioritize public education efforts as well as regulatory, policy, and financial incentives to consider use of an often-overlooked renewable resource: low-temperature, enhanced geothermal energy

ges (Mice (UN) (MN) Gestions, Harassong the heat been

webs, health, and safety gummines, for

-0.3430/vic72381 (M. Morres, K. Young, and Y. Reter. (2018) Ne extension of the resource pome entral resources of the United States for direct use applications. Collect, Coloral

ergs Laborating on, T. Rober, K. R. Yoang, (2016). Characterizing U.S. treat demonst lie potential application of Commercial Responses Locality Transactions, v. 40.

alon. Rollward from loga, down convertions) drag. (2010). Handbook of best practices for performed writing. Sanda Rational Lakovali

Rational Born Mars forced and provide and programmer EDS Resulting Laboratory (2016) (05 [con-Temperature EDS Resulting

Geothermal energy is:

- indefinite: renewable
- reliable: always available
- stable: production rates are steady unless there is human error
- independent: does not fluctuate with political or economic changes

U.S. Department of Energy 2020 Geothermal Design Challenge **GIS Mapping**

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Questions?

We always welcome your feedback. DOE.geothermal@ee.doe.gov

The **Geothermal Technologies Office (GTO)** works to reduce the cost and risk associated with geothermal development by supporting innovative technologies that address key exploration and operational challenges.

By advancing the value stream for grid (electricity) production and deep direct-use, GTO aims to make geothermal energy a cost-competitive, widely available, geographically diverse component of the national energy mix.

Visit us at: www.energy.gov/eere/geothermal

