

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY DOE/EERE Advanced Manufacturing Office Dynamic Catalyst Science Roundtable

Connecting Atomistic Modeling, Laboratory and Industrial Scales

Lars C. Grabow grabow.chee.uh.edu grabow@uh.edu

UNIVERSITY of HOUSTON ENGINEERING

Department of Chemical & Biomolecular Engineering

Foundation of Understanding Catalysis: The Mechanism

ChBE

- > 20 intermediates and ca. 50 reaction steps
- Multiple parallel reaction pathways
- "Any" mechanism or set of parameters fits...

Grabow, Mavrikakis, ACS Catal. 1, 365–384 (2011)

UNIVERSITY of **HOUSTON**

Experimental and modeling results of NO_x uptake at 80°C and TPD on Pd(1%)/H-ZSM-5 for wet-feed (7% H_2O) and feed flowrate of 2500 sccm.

M. Ambast, K. Karinshak, B. Md. Mushfikur Rahman, L. C. Grabow, and M. P. Harold, accepted in Applied Catalysis B, 2020

Atomistic modeling hinges on the description of an active site

large & slow rigid epitaxial strain

How should we model the active site of a supported metal catalyst?

ChBE

UNIVERSITY of HOUSTON

Cluster

small & fast high mobility strain free

- Substantial restructuring of Au cluster upon propyne adsorption.
- Active sites are *not* well defined at the atomic scale!

Dynamic (transient) formation of active sites

(Low level) Ab Initio Molecular Dynamics captures transient formation of active sites.

Wang, Cantu, Lee, Li, Glezakou, Rousseau, J. Am. Chem. Soc. 2016, 138 (33), 10467–10476

DFT model:

Lattice configuration in kMC:

Interface

Overall reaction:

 $C_6H_4CH_3OH(g) + H_2(g) \leftrightarrow C_6H_5CH_3(g) + H_2O(g)$

Major elementary steps:

 $H_2(g) + 2 * \leftrightarrow 2H *$ $H_2O(g) + * \leftrightarrow H_2O *$ $H_2O * + * \leftrightarrow H * + OH *$ $H_20 * + 0 * \leftrightarrow 20H *$ $OH * + * \leftrightarrow O * + H *$ $C_6H_4CH_3OH(g) + * \leftrightarrow C_6H_4CH_3OH *$ $C_6H_5CH_3(g) + * \leftrightarrow C_6H_5CH_3 *$ $C_6H_4CH_3OH * + * \leftrightarrow C_6H_4CH_3 * + OH *$ $C_6H_4CH_3OH * + H * \leftrightarrow C_6H_4CH_3 * + H_2O *$ $C_6H_4CH_3OH * + H_2O \leftrightarrow C_6H_4CH_3 * + OH * + H_2O(g)$ $C_6H_4CH_3 * + H * \leftrightarrow C_6H_5CH_3 * + *$ $A * + * \leftrightarrow * + A *$ $A * + B * \leftrightarrow B * + A *$

Reduction rate enhancement by H₂ activation at the interface

Surface evolution during Ru/TiO₂ reduction at 723 K

UNIVERSITY of HOUSTON ChBE ١Ĥ

The devil is in the detail

UNIVERSITY of HOUSTON

Charge unbalanced system, but regular

ChBE

Charge balanced system, but irregular

	Steady- state	Transient	TAP
Active site '*'	Static	Dynamically formed	
Temperature	E_{app}	TPD, TPR	\checkmark
Partial Pressure	Reaction order	Pulse response	$\sqrt{}$
Isotopes	Kinetic isotope effects	SSITKA	

Morgan, K.; Maguire, N.; Fushimi, R.; Gleaves, J. T.; Goguet, A.; Harold, M. P.; Kondratenko, E. V.; Menon, U.; Schuurman, Y.; Yablonsky, G. S. Forty Years of Temporal Analysis of Products. *Catal. Sci. Technol.* **2017**, *7* (12), 2416–2439.

Dynamics in catalysis: Intrinsic (atomic scale)

Pt(110); $P(O_2) = 4 \times 10^{-4}$ mbar, p(CO) = 1.2×10⁻⁴ mbar, T = 548 K, 360×360 µm.

Pt(100); P(O₂) = 1×10^{-2} mbar, p(CO) = 1.85×10^{-3} mbar, T = 528 K $f \approx 0.2$ Hz $\frac{\mathrm{d}x}{\mathrm{d}t} = \alpha_1 x - \alpha_2 x y, \quad \frac{\mathrm{d}y}{\mathrm{d}t} = \beta_1 x y - \beta_2 y$

Figure 17. The Lotka–Volterra model describing the observation in Figure 16.

- Dynamics at surfaces at the atomic scale are well documented.
- Controlled by surface coverage, e.g., oxygen rich/lean

Ertl, G. Angew. Chemie Int. Ed. 47, 3524–3535 (2008). UNIVERSITY of HOUSTON ChBE

• CH₄ oxidation light-off temperature is substantially reduced when cycling between lean/rich conditions.

Data courtesy of Dr. Harold

Dynamics in catalysis: Intentionally introduced (industrial scale)

Dynamics in catalysis: Intentionally introduced (atomic scale)?

Ardagh, M. A., Abdelrahman, O. A. & Dauenhauer, P. J. ACS Catal. 9, 6929–6937 (2019) UNIVERSITY of HOUSTON ChBE

Dynamics in catalysis: Practical opportunities

- Modifying the binding properties of a catalyst at ~10 Hz is challenging
 - Alternating electric fields
 - Mechanical strain

- Changing chemical potentials, i.e. reaction conditions, is more practical
 - Partial pressure variations, pulsing
 - Local heating, fast temperature switching
 - Vibrational excitation by intermittent light exposure, microwaves, etc.

ĮĥĮ

- Need for mathematical framework
 - When is resonance behavior expected?
 - How does the characteristic frequency relate to the temperature-dependent rate constants in the reaction network?
 - Can we use this to identify rate determining steps?
 - Does it relate to the lifetime of transiently formed intermediates or active sites?
- Opportunities for new kinetic characterization approaches
 - Amplitude, frequency modulation at different temperature
 - Characteristic frequencies (*cf.* resonance)

UNIVERSITY of HOUSTON

• Can this be used to determine a turn over frequency without counting or defining active sites?

Outlook

- Time-resolved, transient, dynamic information is much richer and contains mechanistic information that is not available from steadystate data.
- Can provide more rigorous tests and benchmarks for mechanism-based kinetic models.
- Robust kinetic models can span multiple length scales ranging from the atomic scale, over the lab scale to the industrial scale.

Convergence of length scales

- Dynamic reaction conditions
 - intrinsic to the reaction system;
 - in response to external constraints, or
 - introduced on purpose

offer interesting opportunities.

- Dynamic reaction network analysis
- Increased activity or selectivity
- Attractive for small scale, distributed manufacturing.

Novel mechanistic knowledge with practical relevance

Acknowledgments

Financial Support

Computing Resources

UNIVERSITY of HOUSTON CENTER FOR ADVANCED COMPUTING & DATA SYSTEMS

