

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Hydrogen and Fuel Cell Perspectives

Dr. Sunita Satyapal, Director, U.S. Dept. of Energy Hydrogen and Fuel Cells Program

Clean Energy Ministerial's (CEM) Nuclear Innovation: Clean Energy Future (NICE Future) Initiative, Hydrogen Initiative (H2I), International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) Joint Webinar March 18, 2020

Hydrogen – One Part of a Comprehensive Energy Strategy

High energy content by mass Nearly 3x more than conventional fuels Specific Energy Comparison (kWh/kg)

Low energy content by volume

Clean, sustainable, versatile, and efficient energy carrier

Fuel Cell Basics

Fuel cells can operate on hydrogen or other fuels and do not involve combustion so have high electrical efficiencies

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Example of Well-to-Wheels Analysis: Petroleum Use and Emissions

Petroleum Use, BTUs/Mile

Program Record #13005: http://www.hydrogen.energy.gov/pdfs/13005_well_to_wheels_ghg_oil_ldvs.pdf; shows future (2035) technology pathways; updates underway will include heavy duty vehicles- focus for H2

H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

Guiding Legislation and Budget

Energy Policy Act (2005) Title VIII on Hydrogen

- Authorizes U.S. DOE to lead a comprehensive program to enable commercialization of hydrogen and fuel cells with industry.
- Includes broad applications: Transportation, utility, industrial, portable, stationary, etc.

Program To Date

- \$100M to \$250M per year
- 100 to 200+ projects per year
- >100 organizations & extensive collaborations
- Includes H2, fuel cells and cross cutting RD&D:
 - H2 production, delivery, storage, utilization (including fuel cells)
 - Analysis, systems development/integration, safety, codes and standards, education & outreach
- Reduced fuel cell cost 60%, quadrupled durability, reduced electrolyzer cost 80% and other advances

Funding in \$K	FY 2018	FY 2019	FY 2020
Fuel Cell R&D	32,000	30,000	26,000
Hydrogen Fuel R&D	54,000	39,000	45,000
Hydrogen Infrastructure R&D	-	21,000	25,000
Technology Acceleration	19,000	21,000	41,000
Safety, Codes, and Standards	7,000	7,000	10,000
Systems Analysis	3,000	2,000	3,000
Total	\$115,000	\$120,000	\$150,000

DOE Office	Funding (in \$K)	 EERE: Energy Efficiency and 	
EERE (FCTO) - Lead	\$150,000	Renewable Energy Office	
Fossil Energy (SOFC)	\$30,000	• FCTO: Fuel Cell Technologies Office	
Nuclear Energy	\$11,000*	• SOFC: Solid Oxide Fuel Cell Office	

* FY20 Appropriations for nuclear to H2 demonstration project with FCTO (\$10M)

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

R&D focus is on Affordability and Performance: DOE Targets Guide R&D

Key Goals: Reduce the cost of fuel cells and hydrogen production, delivery, storage, and meet performance and durability requirements – guided by applications specific targets

[†]Storage costs based on preliminary 2019

storage cost record

Hydrogen R&D

⁺For range: H2 production from natural gas (NG), delivered dispensed at today's (2018) stations (~180kg/d) *For range: Assumes high volume manufacturing in 1) H2 production costs ranging from \$2/kg (NG) to \$5/kg (electrolysis manufactured at 700 MW/year), and 2) Delivery and dispensing costs ranging from \$3/kg (advanced tube trailers) to \$5/kg (liquid tanker or advanced pipeline technologies). ** Range assumes >10,000 stations at 1,000 kg/day capacity, to serve 10 million vehicles

[†]Based on commercially available FCEVs

*Based on state of the art technology

FUEL CELL TECHNOLOGIES OFFICE

Hydrogen R&D Areas – Examples

FUEL CELL TECHNOLOGIES OFFICE

Increased Activities on Hydrogen, Energy Storage, Hybrid Systems

New Project: Electrolyzer Operation at Nuclear Plant and In-House Hydrogen Supply

Clean H₂ production enabling dispatchable, carbon-free power

Objectives

- Develop an integrated hydrogen production, storage, and utilization facility at a nuclear plant site, based on a PEM electrolyzer
- Demonstration of economic supply of carbon-free hydrogen for internal nuclear site use.
- Dynamic control of the electrolyzer

Expected Outcomes

- Scaled-up hydrogen production in the U.S. power sector through a dynamically operable hydrogen production facility at a nuclear plant enabling nuclear units to be dispatchable.
- Demonstrated mechanism for hydrogen-based ٠ energy storage systems to improve nuclear plant participation in organized power markets.

Based on original proposal submission; final project under negotiation

Program Summary

Collaboration

8

Resources

Global Government Partnerships to Accelerate Progress on Hydrogen and Fuel Cells

Elected Chair and Vice-Chair, 2018

Mission Innovation Hydrogen Challenge Launched 2017

Hydrogen Energy Ministerial (HEM) Launched 2018

Clean Energy Ministerial Hydrogen Initiative Launched 2019

The International Partnership for Hydrogen and Fuel Cells in the Economy

Enabling the global adoption of hydrogen and fuel cells in the economy

Activities: Working Groups on Regulations, Codes, Standards & Safety; Education & Outreach

Develops country updates on policies, status, shares best practices Task force on developing H₂ production analysis methodology to facilitate international trade Coordinates activities among global and regional partnerships

Find IPHE on Facebook, Twitter and LinkedIn Follow IPHE @The_IPHE

www.iphe.net

Formed 2003

19 Countries and EC

International Energy Agency (IEA)

Roadmaps and Plans Developing in Multiple Regions

Drivers include: Energy security, energy efficiency & resiliency, economic growth, innovation & technology leadership, environmental benefits

Global Snapshot of Status and Goals Kingdom 100 18,000 STATIONS VEHICLES 100 600,000 VEHICLES 800,000 1.000.000 1,000,000 STATIONS VEHICLES VEHICLES VEHICLES 1,000 France 1,000 500 1.000 STATIONS STATIONS STATIONS STATIONS Germany United 12-50,000 VEHICLES 400 Japan STATIONS **States** 1.000 STATIONS China Sout

More than 1/3 million stationary fuel cells, 15,000 fuel cell electric vehicles, 400 stations Over 1 GW of fuel cells shipped in 2019 Plans developing for applications across sectors

Example of Collaboration: Global Center for H₂ Safety (CHS)

IPHE Steering Committee action: Increase awareness of safety partnership. Promotes safe operation, handling and use of hydrogen across all applications.

Includes over 40 partners from industry, government and academia

Access to >110 countries, 60,000 members

www.aiche.org/CHS

Information to be available in multiple languages

汚染物質、炭素抹出量、騒音の

削減手段として、トラックや船舶 にゼロエミッションの燃料電池 活用への関心が急速に高まっ

ている。

60 麵 燃料雪池雪車

Resources and Announcements

Save the Date

May 19 – 21, 2020 Annual Merit Review and Peer Evaluation Meeting for the Hydrogen and Fuel Cells Program in Washington D.C.

Oct 8 - Hydrogen and Fuel Cells Day (Held on its very own atomic-

weight-day 1 Hydrogen

Resources

Visit H2tools.org for hydrogen safety and lessons learned

https://h2tools.org/

Download the H2IQ resource for free: energy.gov/eere/fuelcells/downloads/increase-your-h2iq-trainingresource

Join monthly H2IQ hours to learn more about hydrogen and fuel cell topics .energy.gov/eere/fuelcells/fuel-cell-technologies-office-webinars

arn more:

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells AND www.hydrogen.energy.gov