

The #H2IQ Hour

Today's Topic: Analysis of Advanced H2 Production & Delivery Pathways

This presentation is part of the monthly H2IQ hour to highlight research and development activities funded by U.S. Department of Energy's Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy (EERE)

The #H2IQ Hour

During Q&A session:

Please type your questions into the **Q&A Box**

∨ Q&A	×
All (0)	

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately ...

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Analysis of Advanced H₂ Production & Delivery Pathways

Brian D. James (SA) Daniel A. DeSantis (SA) Jennie M. Huya-Kouadio (SA) Cassidy Houchins (SA) Genevieve Saur (NREL)

25 March 2020

H2A v3.2018 Resource

* » Hydrogen and Fuel Cells » H2A: Hydrogen Analysis Production Models

Fuel Cell Power Model

Hydrogen Financial Analysis Scenario Tool

Scenario Evaluation and Regionalization Analysis Model H2A: Hydrogen Analysis Production Models

The Hydrogen Analysis (H2A) hydrogen production models provide transparent reporting of process design assumptions and a consistent cost analysis methodology for hydrogen production at central and distributed (forecourt/filling-station) facilities.

The H2A central and distributed hydrogen production models, documentation, and copies of all technology case studies are available for free. NREL develops and maintains these models with support from the U.S. Department of Energy Fuel Cell Technologies Office.

Required input to the models includes capital and operating costs for the hydrogen production process, fuel type and use, and financial parameters such as the type of financing, plant life, and desired internal rate of return. The models include default values, developed by the H2A team, for many of the input parameters, but users may also enter their own values. The models use a standard discounted cash flow rate of return analysis methodology to determine the hydrogen selling cost for the desired internal rate of return.

Download Version 3.2018 Models

These files contain macros necessary for hydrogen price calculation.

H2A Central Hydrogen Production Model version 3.2018 🖈

H2A Current Distributed Hydrogen Production Model version 3.2018 🔀

- H2A v3.2018 is available at NREL website
 - <u>https://www.nrel.gov/hydrogen/h2a-production-</u> <u>models.html</u>
- Previously completed project records are also available from the same website
 - <u>https://www.nrel.gov/hydrogen/h2a-production-</u> <u>case-studies.html</u>
- User guide is also available
 - <u>https://www.nrel.gov/hydrogen/assets/pdfs/h2a-production-model-version-3-2018-user-guide-draft.pdf</u>

H2A Model Overview

H2A is:

- Excel-based discounted cash flow (DCF) model to project H₂ profited-cost (\$/kgH₂)
- Code written and maintained by NREL
- Two technology/deployment timeframes: Current & Future
- Two default production sizes: Distributed (1.5 tons per day) and Central (50 tons per day)
- Inputs:
 - Feedstock requirements
 - Energy Usage requirements
 - Site Capital Cost
 - Equipment Replacement schedule
 - Other cost inputs
 - Default relationships for easy use and comparison between cases

• <u>Outputs:</u>

- Levelized cost of H₂
- Cost contributions of capital cost, feedstocks, utilities, etc.
- Sensitivity analysis

Water Splitting by Electrolysis

Project Objective

Conduct technoeconomic analyses of various methods of water splitting:

- 1,500 kg H₂/day distributed production sites
- 50,000 kg H₂/day central production sites
- Two technology levels analyzed
 - Current: current technology (2019) at high-manufacturing rate (700MW/yr)
 - Future: future technology (2035) at high-manufacturing rate (700MW/yr)

Electrolyzer Technology	Production Sizes Reported	Technology Years Reported
Proton Exchange Membrane (PEM)	Distributed & Central	Current & Future
Solid Oxide Electrolysis (SOE)	Central	Current & Future
Alkaline Exchange Membrane (AEM)	Distributed	Future
 Approach Collect data via Industry Questic 	onnaire	In Progress

- Assess data for consensus and trends
- Validate with system modeling and other tools
- Run H2A model with system data to obtain projected H₂ cost (\$/kg)

Approach to data collection

Surveyed companies and research groups for key technical and cost parameters

- Data response was limited for some parameters which often left insufficient data for statistical analysis
- When possible, compared to previously conducted TEA/H2A work

Various responses received for each Electrolyzer Technology		Covered in today's presentation		
		Number of Respondents		
	PEM	5		
	SOE	4		
	AEM	1		

Developed technical and cost parameters from multiple sources

- Questionnaire responses
- Literature review
- Price quotes

7

- Techno-economic system analysis based on PFD (incl. DFMA)
- Learning Curves (for comparison to reported parameter values)

6 Key Cost Parameters For Electrolysis

- Current Density (A/cm²)
- Cell Voltage (V/cell)
- Electrical Usage (kWh/kg H₂)
 - Electrical requirement of the stack and plant to produce H₂
- Stack Cost (\$/cm²)
 - Normally reported in \$/ kW_{system input}
 - To decouple cost from performance, stack cost is based on active area in this analysis

Mechanical BoP Cost (\$/(kg H₂/day))

- Capital cost of pumps, dryers, heat exchangers, etc.
- Scaled with design flow rate of hydrogen
- Electrical BoP Cost (\$/kW_{system input})
 - Capital cost of Rectifier, Transformers

Proton Exchange Membrane Electrolyzer

PEM Process Flow Diagram

Solid Oxide Electrolysis

Process Flow Diagram

Solid Oxide Electrolysis, Current Case

- High Temperature 700 – 800°C
- Utilizes multiple heat recovery systems
- TSA Subsystem used to dry H₂
- All high temperature components in a pressure vessel
- Sweep air on O₂ side
- No O₂ recovery

Process Flow Diagram

Solid Oxide Electrolysis, Future Case

- High Temperature 700
 800°C
- Utilizes multiple heat recovery systems
- TSA Subsystem used to dry H₂
- All high temperature components in a pressure vessel
 - No air sweep
 - O₂ recovery for byproduct sales
- Water pressurized to ~375 psia (No compressor needed)

PEM Polarization Curves

tpd= metric tonnes per day

Current Case Polarization Curves

OP = Operation Point

14

A mathematical model developed by Hao et al and an Area Specific Resistance (ASR) from literature, were used to create polarization curves for each case

 The polarization curves were adjusted to go through the operating points

$$- E(V) = E_o + b \ln\left(\frac{i + i_{loss}}{i_{loss}}\right) + R * i$$

Mass transfer losses not considered

Incorporated degradation rates into cost analysis

- End of Life (EOL) polarization curves shown on graphs
- Constant voltage operation assumed in analysis
- Stacks were oversized to get an averaged targeted production rate of 1.5 tpd (Distributed) or 50 tpd (Central)

	Current	Future
Degradation Rate (mV/khrs)	1.5	1
Stack Lifetime (years)	7	10

Solid Oxide Electrolysis Polarization Curve

- Using the same mathematical model developed by Hao et al and an Area Specific Resistance (ASR) from literature, polarization curves were created for each case
 - The polarization curves were adjusted to go through the operating points

$$E(V) = E_o + b \ln\left(\frac{i + i_{loss}}{i_{loss}}\right) + R * i$$

- Mass transfer losses not considered
- A loss in production due to degradation was not modeled
 - Assumed that the operating temperature is increased as degradation increases, thus maintaining H₂ production

Basis for PEM Stack Price Projection

Limited data on stack cost provided in questionnaire

- Data available largely for respondents existing lowmanufacturing rate systems and projected future systems, at high manufacturing rates
- Current case stack price (\$1.30/cm²) is based on adjustment of the 2013 H2A stack price
 - The increase in price is proportional to the price increases reported by the respondents between old and new questionnaire values
 - The stack price is generally consistent with values reported by respondents in the previous questionnaire
 - The stack upper price bound is representative of the data for existing units produced at low manufacturing rates
 - The lower stack cost bound is found by learning-curve scaling (0.9 factor for every doubling) between low (existing) and high (current) manufacturing rates
- Future case stack price (\$0.77/cm²) is based on the new questionnaire data
 - Fairly good agreement of future price in questionnaire data
 - Adjusting an existing DFMA model for auto PEM stack price suggests that the price of the stack may be substantially lower (~\$0.21/cm²). This is taken as the stack price lower bound.
 - Upper bound (\$0.90/cm²) is informed by questionnaire data.
- Price includes manufacturer's markup

16

Basis for SOE Stack Price Projection

Limited data on stack price provided by questionnaires

- Data available largely for respondents existing lowmanufacturing rate systems and projected future systems, at high manufacturing rates
- Current case stack price (\$0.20/cm²) is based on DFMA analysis and questionnaire results
 - The lower stack price bound is based on the lowest value reported
 - The stack upper price bound is a midpoint of the data for units produced at low manufacturing rates
- Future case stack price (\$0.15/cm²) is based on the new questionnaire data
 - The lower bound for SOE cells is taken from the lowest stack price obtained from the questionnaire date (\$0.12/cm²).
 - Upper bound (\$0.25/cm²) is informed by questionnaire data.
- Price includes manufacturer's markup

17

Basis for PEM Mechanical BoP Cost

The Current Distributed mechanical BoP is modeled as a single Mech. BoP module

- Mech. BoP provides all the supplemental equipment to run the electrolyzer
- BoP components sized for 1 module (i.e. 1 module of 1.5tpd)
- Costs based on quotes for each subsystem (see table)
- Future Distributed sites would also use 1 module
- Central models allow a larger BoP to handle the production rate
 - Current cases to have 4 BoP modules and are scaled by H₂ production rate (i.e. 4 modules of 12.5tpd)
 - Future cases are assumed to have 2 BoP modules and are scaled by both H₂ production (i.e. 2 modules of 25tpd)
- Costs are scaled for nth plant
 - Any piece of equipment with n>5 received a 10% discount (starting with n=5) for every 10x units.

$$- P_{n} = P_{5} \left[r^{\left(\frac{\ln(n)}{\ln(10)}\right)} \right] \\ - P_{n} = P_{5} \left[0.9^{\left(\frac{\ln(n)}{\ln(10)}\right)} \right]$$

Unit	Cost (\$)	Cost (\$/(kg H ₂ /day))
Main DI Pump w/motor	\$56,099	\$33.10
Cleanup Pump w/motor	\$4,863	\$2.87
Air Cooled Heat Exchanger	\$39 <i>,</i> 850	\$23.51
DI Water Tank	\$25,219	\$14.88
Hydrogen/Water KO Tank	\$37 <i>,</i> 079	\$21.88
H2/H2O Jacket Chiller	\$10,612	\$6.26
Absorbent Bed Dryer	\$42,697	\$25.19
Dryer H2 Compressor	\$81,898	\$48.32
Dryer KO Pot	\$36,829	\$21.73
Dryer KO Pot Jacket Chiller	\$10,612	\$6.26
Flow Filter	\$10,560	\$6.23
Deionizing Bed	\$10,236	\$6.04
Actuated Flow Valve	\$5,296	\$3.12
Other valves	\$3,513	\$2.07
Gas Filters	\$1,309	\$0.77
PRV	\$755	\$0.45
Indicator/Controllers	\$8,609	\$5.08
Piping and Tubing (ft)	\$11,544	\$6.81
Skid Structure	\$8,123	\$4.79
SubTotal/module	\$405,704	\$239
Total w/Markup	\$377,101	\$222
Total w/ Markup & Contingency	\$490,232	\$289

Current Distributed Case Mechanical BoP Considered 1 module for a production site

SOE

Mechanical BoP

- SA developed a component list from the PFD
 - Costs shown are the scaled uninstalled costs
 - Costs for the component list are based on ASPEN estimates, literature values, or quotes
 - Scaled literature values for nuclear supported SOE BoP costs
- Costs are scaled for nth plant
 - Any piece of equipment with n>5 received a 10% discount (starting with n=5) for every 10x units.

$$- P_{n} = P_{5} \left[r^{\left(\frac{\ln(n)}{\ln(n_{0})}\right)} \right]$$
$$- P_{n} = P_{5} \left[0.9^{\left(\frac{\ln(n)}{\ln(10)}\right)} \right]$$

Major pieces/systems of equipment	Current	Future
HTSE Vessel Shell	\$309,257	\$386,571
HTSE Vessel Isolation Valves	\$64,199	\$64,199
SOE Cells	\$12,836,906	\$7,958,333
SOEC Module Assembly	\$7,445,406	\$4,615,833
SOEC Electrical Connector Assemblies	\$245,749	\$245,749
Sleeved Process Connections	\$78,640	\$78 <i>,</i> 640
Steam/H ₂ PCHX Recuperator	\$1,016,265	\$203,253
Steam/ H_2^{-} Electrical Topping Heaters	\$409 <i>,</i> 869	\$409,869
Sweep Gas PCHX Recuperator	\$2,821,370	\$0
Sweep Gas Electrical Topping Heaters	\$281 <i>,</i> 836	\$0
DC Bus Power Distribution	\$393 <i>,</i> 872	\$393,872
Rectifier Power Transformers	\$6,708,319	\$4,854,583
Steam/H ₂ , Sweep, and Balancing Gas Piping	\$332,264	\$332,264
Debris Filter	\$424,555	\$424,555
Balancing Gas Compressor	\$570,260	\$570,260
Interstage Cooler	\$99,945	\$99 <i>,</i> 945
Purified Water Storage Tank	\$1,866,393	\$1,866,393
Hydrogen H ₂ O KO Pot	\$4,680	\$4,680
Non-HTSE System Steam/H2 Piping	\$1,756	\$1,756
Feedwater Pumps	\$6,267	\$39 <i>,</i> 363
Hydrogen H ₂ O KO Pot Cooler	\$76,771	\$13,834
H ₂ O KO Pot	\$48,800	\$92 <i>,</i> 827
Hydrogen H ₂ O Adsorbing Columns	\$2,149,232	\$2,149,232
Adsorber Cooling Unit	\$102,742	\$102,742
Hydrogen H ₂ O Adsorber Regen Heater	\$57,132	\$57,132
Hydrogen Compression	\$1,135,407	\$0
Low Temperature O ₂ /Steam Recuperator HX	\$0	\$19,050
Sweep/H ₂ Low Temperature HX	\$32,866	\$43 <i>,</i> 848
Steam/ H_2 Low Temperature HX	\$48,625	\$167,617
External Heat Source HX	\$58,547	\$228,852
Total	\$39,627,930	\$26,457,918

Basis for Electrical BoP Cost Projection

Electrical BoP is based on (modified) rectifier quotes

- Quoted rectifier is approximately \$0.11/W (SRC rectifier for high efficiency)
- 20% increase for ancillary equipment is added for all cases
- The quote is reduced 10% for central plants
- A corporate mark-up of 43% is applied to all cases
- Future cases receive a 20% discount for technology improvements
 - E.g. system voltage increase which allows nearly same cost but higher power capacity

Costs were compared to reported BoP costs in questionnaire

- Generically speaking, the developed cost was near the mid-point or above the midpoint of the questionnaire data
- +/-25% error range is estimated for the electrical BoP cost
 - Limited spread among the data required a generic error range be applied

Key Technical and Cost Parameters

	Units	Current Distributed	Current Central	Future Distributed	Future Central
Plant Size	kg H₂ day⁻¹	1,500	50,000	1,500	50,000
Mechanical BoP Modules	#	1	4	1	2
Stack Pressure	psia	350	350	720	720
System Outlet Pressure	psia	300	300	700	700
Current Density	A cm ⁻²	2	2	3	3
Voltage	V	1.9	1.9	1.8	1.8
Total Electrical Usage	kWh/kg H ₂	55.8	55.5	51.4	51.3
Stack Electrical Usage	kWh/kg H ₂	50.4	50.4	47.8	47.8
BoP Electrical Usage	kWh/kg H ₂	5.4	5.1	3.6	3.5
Stack Cost	\$ cm ⁻²	\$1.30	\$1.30	\$0.77	\$0.77
Mechanical BoP Cost	\$ kg ⁻¹ day ⁻¹	\$289	\$76	\$278	\$46
Electrical BoP Cost	\$ kW⁻¹	\$121	\$82	\$97	\$68
System Cost	\$ kW ⁻¹	\$601	\$460	\$379	\$234
Stack Cost	\$ kW⁻¹	\$342	\$342	\$143	\$143
Total BoP Cost	\$ kW⁻¹	\$259	\$118	\$237	\$91
Mechanical BoP Cost	\$ kW⁻¹	\$138	\$36	\$140	\$23
Electrical BoP Cost	\$ kW⁻¹	\$121	\$82	\$97	\$68

General agreement for current density and voltage among survey respondents

- Given current density and voltage, stack electrical usage can be calculated
- Data provided for BoP Electrical Usage was consistent with values used in previous H2A cases and are unchanged

Limited new data provided from questionnaire made analysis difficult

- When possible, used information from respondents for cost data
 - Most data provided was for existing case
- Generated data for different system sizes and case parameters with several techniques:
 - Simple ground-up techno-economic analysis at the subsystem level
 - Learning curves

SOE

Key Technical and Cost Parameters

Parameter	Units	Current	Future	
Plant Size	kg H₂ day⁻¹	50,000	50,000	
Stack Pressure	psia	72.5	300	
Outlet Pressure	psia	300	300	
Current Density	A cm ⁻²	1.00	1.20	
Voltage	V	1.285	1.285	
Total Energy Usage	kWh/kg H ₂	46.6	44.2	
Stack Electrical Usage	kWh/kg H ₂	34.0	34.0	
Thermal Energy Usage	kWh/kg H ₂	6.86	7.10	
BoP Electrical Usage	kWh/kg H ₂	5.76	3.06	SOE Stack cost is
Stack Cost	\$ cm ⁻²	\$0.20	\$0.15	~1/5 th of PEM
Mechanical BoP Cost	\$ kg ⁻¹ day ⁻¹	\$402	\$228	stack cost
Electrical BoP Cost	\$ kW ⁻¹	\$85	\$65	SOE System cost is
System Cost	\$ kW ⁻¹	\$522	\$326	~39% higher than
Stack Cost	\$ kW ⁻¹	\$155	\$100	PEM
Mechanical BoP Cost	\$ kW ⁻¹	\$282	\$160	
Electrical BoP Cost	\$ kW⁻¹	\$85	\$65	

H2A Cost Results – PEM Electrolysis

- Electricity Price continues to be the most significant cost element of PEM electrolysis
 - Effective electricity price over the life of the modeled production site is shown in the labels of each bar above
 - · Start-up year changes raised electricity prices between the previous case study and this years update
 - · Electricity prices increased according to AEO projections
- Capital cost reduction was largely offset by several factors
 - Incorporation of degradation losses into analysis
 - Electricity price increases between start-up years

H2A Cost Results – PEM Electrolysis

- · Electricity Price continues to be the most significant cost element of PEM electrolysis
 - · Effective electricity price over the life of the modeled production site is shown in the labels of each bar above
 - · Start-up year changes raised electricity prices between the previous case study and this years update
 - Electricity prices increased according to AEO projections
- Capital cost reduction was largely offset by several factors
 - Incorporation of degradation losses into analysis
 - Electricity price increases between start-up years

SOE H2A Cost Results

- Electricity remains a the primary cost driver in Solid Oxide Electrolysis
- Thermal energy costs (feedstock) are secondary to electrical costs
 - Cost is assumed to be agnostic of the source of heat

SOE H2A Cost Results

- Electricity remains a the primary cost driver in Solid Oxide Electrolysis
- Thermal energy costs (feedstock) are secondary to electrical costs
 - Cost is assumed to be agnostic of the source of heat

PEM Sensitivity Studies

SOE Sensitivity Study

Summary

Overview

- Examine H₂ Production Technologies by techno economic analysis
 - Specific focus on electrolyzers

Relevance

- Cost analysis is a useful tool because it:
 - Defines a complete production and delivery pathway
 - Identifies key cost-drivers and helps focus research on topics that will lower cost
 - Generates transparent documentation available to the community with relevant data for improved collaboration

• Approach

- Utilize various cost analysis methods for determining system cost: DFMA[®] and H2A
- Collaborate with NREL, ANL, DOE, and tech experts to model SOA and future systems

Accomplishments

- H2A Model and Case Study Updates
- Analyzed three electrolyzer system: PEM, SOE, AEM (Ongoing)
- Future Work
 - Complete AEM Electrolyzer case study

Q&A Session

The #H2IQ Hour

∨ Q&A

All (0)

Please type your questions into the **Q&A Box**

Select a question and then type your answer here, There's a 256-character limit.

Send

Send Privately ...

×

Thank You

Dan DeSantis ddesantis@sainc.com

Brain James bjames@sainc.com James Vickers James.vickers@ee.doe.gov

Eric Parker DOEFuelCellWebinars@ee.doe.gov

Genevieve Saur <u>Genevieve.Saur@nrel.gov</u>

> Looking for more info? #H2IQ

www.energy.gov/fuelcells www.hydrogen.energy.gov

Backup Slides

TSA Subsystem

Recycle Compresser

Pressure Credit

- H2A baseline has an outlet pressure of H₂ at 300 psi
- Future case PEM systems were run at 700 psi
 - A "credit" is applied to the final cost to account for their excess pressure
- The credit pressure is based off of a nominal cost of compression
 - Compression costs determined by HDSAM
- Future Distributed received a \$0.09/kg H₂ credit
- Future Central received a \$0.05/kg H₂ credit
 - Cost variation is largely due to the cost of the compressor which is larger and more expensive in the central case

Cost Analysis Process

(Uses H2A but additional modeling is also required)

H2A Inputs

