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Task 4: Recent Accomplishments

“*Modeling of grid forming inverters for
protection studies
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Publications:

> "Simulation of Grid-Forming Inverters Dynamic Models
using a Power Hardware-in-the-Loop Testbed”," IEEE
Photovoltaic Specialists Conference (PVSC), 2019.

- "Grid-forming Inverter Experimental Testing of Fault
Current Contfributions," IEEE Photovoltaic Specialists
Conference (PVSC)’ 20]9 N 4.‘96 4.‘98 é 5.62 5.64 5.66 5.(")8 511 5.‘12 5.I14 5.16

- “Redlistic Microgrid Test Bed for Protection and time(s)
Resiliency Studies,” North American Power Symposium
(NAPS), 2019.
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Inverter Short-Circuit Models

m

= |t is important to have accurate models of inverters for dynamic studies

and protection coordination

= |nitial spike (~0.1ms) depends on filter cap, system impedance, and pre-fault

condition
= Transients during control actions, lasting 2-8ms

= Steady-state fault current based on the current limiter
= Models are challenging to develop because there are stark differences

between manufacturers, single vs. three-phase inverters, PV vs. energy

storage vs. grid forming inverters.
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Inverter Tests - Fault Characterization )

Laboratories

= Best way to fully characterize inverters for all transient and steady-state
time scales is through testing (Sandia’s DETL)

= Grid-following inverters (GFLI) generally have very low fault current
contributions (1.1-1.2 of their rated current)

=  Grid-forming inverters (GFMI) can deliver 2x the rated current for about

60 seconds

. Fault Current Contributions from Inverter Tests
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Inverter Tests — Double-Line-to-Ground Fault (f) &

Double-Line-to-Ground
Fault Diagram
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Inverter Controls — Fault Current Limiter )

Laboratories

= Fault current contribution from inverters is determined by the inverter
current limiting control

= Each inverter and manufacturer have different magnitudes of fault
current, but they also produce different types of fault current

= Controlling current magnitude (sine wave) vs. controlling instantaneous current at the
H-bridge (square wave) vs. hysteresis control

= Speed of PLL (GFLI) or droop controls (GFMI)
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Installing, testing, and validating designs using
71| Power Hardware in the Loop (PHIL)

Demonstration of resilient nodes based on the framework.

Initial demonstration using PHIL at Sandia DETL

= Grid-forming inverters (GFMI) have been integrated into DETL for

demonstration

= This collection of single-phase and three-phase, solar GFMI and battery
GFMI, and different vendors allows us to demonstrate different systems
and test how various inverter designs will perform:
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Absiract — Modern power grids include a variety of renewable
with
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Validation of Grid-Forming Inverter Simulation i) e
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Designing adaptive protection schemes for

,| inverter-dominated microgrids.

Test System in Simulation
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Designing adaptive protection schemes for
o | inverter-dominated microgrids
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Protection System Changes for Islanding )
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= Must add protective devices to the generation (instead of self protection
when grid connection is lost)

= Sectionalizers must be removed because it cannot be coordinated with
multiple fault paths

Legend Description Bus5 Bus 8 Bus 10 Bus 15 —
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Adaptive Protection Scheme for Microgrids ()=

National
Laboratories

" Protection scheme must change with microgrid operation mode (Different
setting for grid-connected and islanded mode)
= Lower trip setting for islanded mode to operate for limited fault currents.
= Different coordination scheme for the changed network topology.
= Direction dependent coordination curves for forward and reverse
= Different trip setting depending on the direction of fault current.
= Recloser is backed up by Relay at Bus 15 for Forward direction fault (green)
= Recloser is backed up by IntelliRupter & Relay at bus 8 in reverse direction fault (red)
Legend Description Bus 5 Bus 9 Bus 10 Bus 15 —
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National Grid Test feeder for protection studies

13

< 13 KV class feeder with
voltage regulator, recloser
and fuses. Multiple voltage
regions on feeder connected
by step up/down
transformers.

<+ CYME model that will be
converted for use in HIL

“* Adaptive protection design

> Move design and testing from
sample IEEE test feeder and simplified
local feeder to the NG Test Feeder.

% Data gathering on types of
existing DER on feeder and

data for the substation
model ongoing.
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