

H2@Scale: Outlook of Hydrogen Carriers at Different Scales

D.D. Papadias, J-K Peng, and R.K. Ahluwalia

Department of Energy Hydrogen Carriers Workshop: Novel Pathways for Optimized Hydrogen Transport & Stationary Storage

Denver Marriott West Golden, CO November 13-14, 2019

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

H2@Scale: Hydrogen Carriers

Why hydrogen carriers

- Transmission over long distances including transoceanic
- Agnostic bulk storage at different scales and duration (daily to seasonal)

Scope of this study

- Representative one-way carriers: methanol and ammonia
- Representative two-way carrier: methyl-cyclohexane/toluene system
- Reference pathway: hydrogen production by steam methane reforming
- Comparative production, transmission and decomposition costs at different demands
- Transmission via trains vs. pipelines
- Storage costs at different scales

MP	BP	H ₂ Capacity		Production		Decomposition		
°C	°C	wt%	g/L	P, bar	T, °C	P, bar	T, °C	ΔH
								kJ/mol-H ₂
Ammon	iia							
-78	-33.4	17.6	121	150	375	20	800	30.6
				Haber-Bosch Process		High-Temperature Cracking		
				Fe Based Catalyst		Ni Catalyst		t
Methan	ol							
-98	64.7	18.75	149	51	250	3	290	16.6
				Cu/ZnO/Al ₂ O ₃ Catalyst		Steam Reforming		
MCH								
-127	101	6.1	47	10	240	2	350	68.3
				Non-PGM	I Catalyst	Pt/A	Al ₂ O ₃ Cata	lyst

Baseline Gaseous Hydrogen (GH₂) Pathway: 50 tpd-H₂

- Production site 150 km from city gate
- Distribution includes transmission from production site to city gate

Financial Assumptions	City annual average daily use = 50 tpd-H_2 ;				
	Operating capacity factor = 90% ;				
	Internal rate of return (IRR) = 10% ;				
	Depreciation (MACRS)=15 yrs;				
	Plant life=30 yrs; Construction period=3 yrs				
	NG	Electricity	Water		
Feedstock and Utilities	6.80 \$/MBtu	12 ¢/kWh	0.54 ¢/gal		
SMR Consumption, /kg-H ₂	0.156 MBtu	0.569 kWh	3.35 gal		
GH ₂ Terminal	HDSAM v 3	.1, Compress	ed Gas H ₂ Terminal		
H ₂ Storage	10-days geol	logic storage	of H_2 for plant outages		
H ₂ Distribution	400 kg/day H	H ₂ dispensing	rate at refueling station		
Tube Trailers	Payload	Volume			
	1042 kg	36 m ³			

DOE record: 13-16 \$/kg-H₂ dispensed for very low production volume

- GH₂ scenario includes 10-d (500 t-H₂) geologic storage which is not available at all sites
- Future liquid carrier scenarios will consider options to circumvent geologic storage

tpd: ton/day t: ton = 1000 kg

Baseline GH₂ scenario: Central SMR; GH₂ terminal: H₂ compression & storage; truck distribution;

Hydrogen Carrier Pathways – Large Production Plants

Scenario: Large hydrogenation plant for economy of scale

- Methanol Production: 10,000 tpd; syngas production by ATR
- Location: Gulf of Mexico; low NG price outlook; diverse sources; plethora of critical energy infrastructure
- Transmission: Unit train (once every 10 days) to storage terminal in California (3250 km); local transmission by truck (150 km) to city gate

2.62

8.04

2.65

7.47

5.73

6.80

- Similar pathway for ammonia
- MCH pathway includes a transmission leg for return of toluene to the production plant

EIA: Industrial NG \$/MBtu (2017 average)

3.11

5.0

Capital Cost of Methanol Plants

Capital cost minimized depending on scale

- ATR (auto-thermal reforming) for capacity >3000 tpd
- Two-step reforming for capacity >1800 tpd
- SMR (steam methane reforming) below 1500 tpd

Reformer, ASU and/or CO_2 removal account for ~50% of total capital costs

- Storage (30 days) of methanol accounts for a small fraction of total capital costs
- Capital cost: 202k\$/tpd at 5,000 tpd, 172k\$/tpd at 10,000 tpd

Literature: ADI Analytics, Sojitz Corp., Foster & Wheeler

Capital Cost of Ammonia Plants

Capital Cost of Toluene Hydrogenation Plant

- Reactor operated at 240°C and 10 atm for nearly complete conversion. Excess H₂ and MCH vapor recycled (H₂/Toluene ratio = 4/1)
- Condenser included for 98.5% MCH recovery at 9.5 atm and 45°C
- Toluene makeup = 0.84% (due to dehydrogenation losses)
- Capital cost of 6,180-tpd MCH and SMR plants: (16+27)k\$/tpd-MCH

Lindfors, L.P. et. al. (1993). Kinetics of Toluene Hydrogenation on Ni/Al₂O₃ Catalyst. Chem. Eng. Sci., 48, 3813

Capital Cost of Methanol Decomposition Plant

- Methanol steam-reformed at 3 bar, 290°C
- Capital cost decreases from 662k\$/tpd at 50 tpd-H₂ to 396k\$/tpd at 350 tpd-H₂

Capital Cost of Ammonia Decomposition Plant

- Ammonia cracked at 20 bar, 800°C on a Ni catalyst
- Capital cost decreases from 405k\$/tpd at 50 tpd-H₂ to 257k\$/tpd at 350 tpd-H₂

Ammonia Cracker with PSA for H₂ Purification

Capital Cost of Methylcyclohexane Dehydrogenation Plant

- Reactor operated at 350°C and 2 atm. Conversion is 98% with 99.9% toluene selectivity. No side-reactions considered.
- Condenser included for 80% toluene recovery at 1.5 atm and 40°C, remaining during the compression cycle (4 stages) and chiller
- Capital cost decreases from 452k\$/tpd at 50 tpd-H₂ to 286k\$/tpd at 350 tpd-H₂

Int. J. Hydrogen Energy, 31, 1348.

Levelized Costs: Carrier Production

Levelized production cost (LPC) lowest for methanol carrier (\$1.22/kg-H₂)

- Methanol produced by very large one-step ATR plant (10,000 tpd)
- Methanol produced from NG without an explicit step for pure H₂ production by SMR

LPC highest for ammonia carrier (\$2.20/kg-H₂)

Ammonia plants more capital intensive than methanol plants: 1.28 vs. \$0.56/kg-H₂

LPC for MCH carrier competitive with methanol option (\$1.35/kg-H₂)

 MCH produced by a simple (exothermic) process for hydrogenating toluene Capital cost: \$0.32/kg-H₂ for SMR, \$0.30/kg-H₂ for hydrogenation

Levelized decomposition costs (LDC) are comparable for the three carriers: 0.61-0.78 $kg-H_2$ at 50 tpd-H₂

- At high throughput, LDC decreases most for ammonia. However, ammonia decomposes at a high temperature (800°C) using a catalyst (Ni) that may require further development and field testing
- Methanol decomposition method well established but requires steam reforming and water gas shift catalysts. Cost may decrease if methanol reformed at >3 atm.
- MCH decomposes at 2 bar using a PGM catalyst (Pt/Al₂O₃) and requires a large compressor

Levelized Costs: Transmission by Trains

Levelized Costs: Transmission by Pipelines

Transmission Cost lowest for methanol and ammonia, similar for H₂ and MCH/toluene

- Pipelines: API 5L Grade X52 tubes, 60-80 bar operating pressure, 20-bar pressure drop between pumping/compressor stations
- Max flow velocity: 20 m/s for H₂, 4 m/s for liquids
- Initial capital outlay for 6000 tpd-H₂ pipeline: 3.6M\$/mile for H₂, 1.6M\$/mile for liquids

Cost Factors

- Installed CapEx Factors: Pipe cost; labor; right of way (ROW); compressor/pumping stations
- Miscellaneous CapEx Factors: Eng. & design; project contingency; permitting & contractor
- Operating and Maintenance: Electricity (pumping and compression); maintenance

Hydrogen Carriers - Summary Levelized Cost of H₂ Distributed to Stations (50 tpd-H₂)

Large methanol scenario is competitive with the baseline GH₂ scenario

Slightly cheaper combined production and decomposition cost (\$0.30 \$/kg-H₂), offset by 0.33 \$/kg-H₂ higher transmission cost

As a carrier, ammonia is more expensive than methanol

 \$0.81 \$/kg-H₂ higher combined production and decomposition cost, 0.69 \$/kg-H₂ higher transmission cost

Centralized MCH production scenario slightly more expensive than ammonia

0.71 \$/kg-H₂ cheaper production and decomposition cost < 0.87 \$/kg-H₂ higher
 transmission cost

Levelized Cost of H₂ Distributed to Stations at Different Demands*

All carriers produced from natural gas as feedstock at commercially viable scale, independent of H_2 demand at city gate

- Methanol as hydrogen carrier may involve lower risk and be attractive in the transition phase, <50-tpd H₂ demand
- With pipelines, levelized cost decreases by ~1 \$/kg-H₂ for ammonia and MCH, methanol slightly cheaper than H₂
- Comparison between GH₂ and LHC scenarios sensitive to NG price differential

Bulk H₂ Storage: Outlook

- Underground pipes more economical than geological storage for <20-t usable stored H₂
- At large scale, salt caverns generally more economical than lined rock caverns
- Storing >750-t usable H₂ may require multiple caverns
- Possible role of carriers as bulk hydrogen storage medium when caverns not available

Parallel dehydrogenation steps

- Desirable to have a carrier (low ΔG and ΔH) that can be dehydrogenated under mild operating conditions
- Liquid phase decomposition at high pressures to ease compression requirements
- Minimal or no side products, simple purification steps

- 1. Methanol as hydrogen carrier may involve lower risk and be attractive in the transition phase, <50-tpd H_2 demand
- 2. Ranking of the three carriers by levelized production costs
 - Methanol (1.22 \$/kg-H₂)<MCH (1.35 \$/kg-H₂)<<Ammonia (2.20 \$/kg-H₂)
- 3. H_2 capacity of the carrier is an important factor in determining the transmission cost by trains
 - Toluene has nearly the same train transmission cost as methanol on tpd basis, but is >3X costlier on kg-H₂ basis
- 4. Toxicity and handling are also important factors in determining train transmission costs
 - Ammonia has nearly the same H₂ capacity as methanol but is >2X costlier to move by train
- 5. Long H_2 or carrier pipelines (>1000 mile) do not offer significant cost savings
 - Pipelines may not be economically viable for two-way carriers
- 6. Further study needed to evaluate the role of carriers as medium for bulk hydrogen storage

Methanol Production Plant Configurations

Energy Efficiency

Endothermic dehydrogenation step including PSA at city gate is the largest contributor to the increase in energy consumption

- Total energy includes fuel plus electrical energy, assuming 33% efficiency in generating electrical power
- Energy consumption (kWh/kWh-H₂): MCH (2.37) > ammonia (2.25) > methanol (2.14)
 > GH₂ (1.71)

Hydrogen Carriers: Outlook

Proposed LHC Targets for \$2/kg H₂ Production Cost

- \$1/kg-H₂ LHC production: at 50 tpd, \$1.22 for methanol and \$0.89 for fuel cell quality H₂
- \$0.50/kg-H₂ LHC transmission: at 50 tpd, \$0.63 for methanol
- \$0.50/kg-H₂ LHC decomposition and H₂ purification: at 50 tpd, \$0.61 for methanol

Current Status at 50 tpd: \$2.63 for methanol, \$4.13 for ammonia, \$4.29 for MCH/toluene

Next Step: Translate LHC cost targets to LHC material property targets

H₂ Production Cost at 350 tpd

	Levelized	Cost at Sta	ition (\$/kg-l	H ₂), 50 tpd	
	Methanol	Ammonia	MCH / Toluene	GH_2	Comments
H ₂ Production		0.96	0.89	2.30	Ammonia more expensive to produce than MCH from toluene
LHC Production	1.22	1.24	0.46		Methanol produced directly from NG under mild conditions
LHC Transmission	0.63	1.32	2.19		Refrigerated rail cars needed for ammonia
LHC Decomposition	0.78	0.61	0.75		H-capacity of MCH is only 47 g/L
GH ₂ Terminal & Storage	1.25	1.25	1.25	1.25	Ideally, LHC should decompose at PSA operating pressure
Distribution	1.10	1.10	1.10	1.40	GH ₂ distributed from production site to refueling station
Total	4.98	6.48	6.65	4.95	