Morton Barlaz

Distinguished University Professor and Head Department of Civil, Construction, and Environmental Engineering North Carolina State University

- Comprehensive understanding of solid waste management practice
 - economics and constraints
 - work closely with industry
 - teaching
- Observed changes in waste composition over time

Landfill Processes

- Biological and chemical reactions in landfills
 - Anaerobic waste decomposition (methane yields and rates, inverse modeling, collection/recovery, leachate quality)
 - behavior of trace organics in landfills
 - long-term post-closure management of landfills
 - elevated temperature landfills
 - PFAS in landfill leachate and gas
- Modeling, experimental work at lab and field-scale

Application of Life-Cycle Assessment to Solid Waste Management

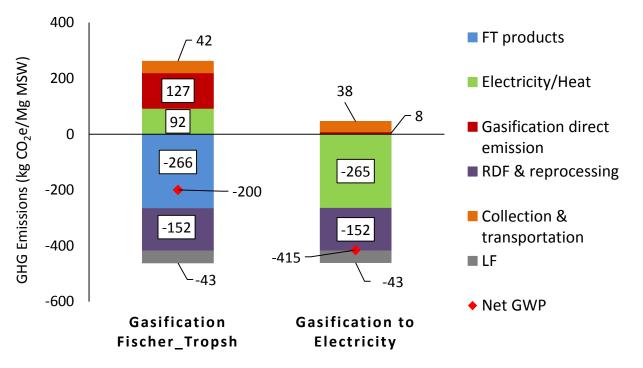
- Optimization model to describe solid waste management:
 - generation, collection, transport, separation, biological and thermal treatment, landfill disposal
 - process models for each solid waste unit operation
 - integrated into an optimization model
 - assessment of new technologies

The solid waste management system

Cases Studies

- County
- State
- industry

NC STATE UNIVERSITY


Scenarios:

- 1. Landfill
- 2. Mass Burn Waste-to-Energy
- 3. Gasification Fischer-Tropsch (GFT)
- 4. Gasification Combustion to Electricity (GC)
- 5. GC All Residuals to Landfill
- 6. GC Organic Residual to Compost
- 7. GC Organic Residual to Anaerobic Digestion

Results:

- Gasification-to-electricity led to lowest environmental impacts, while GFT and landfill had the greatest impacts.
- Separating organics for composting or anaerobic digestion generally increased environmental impacts.
- The GFT process typically performed worse than the other waste-to-energy processes primarily due to the level of compression required for the syngas.

Life-Cycle Modeling of Nutrient and Energy Recovery through Mixed Waste Processing Systems

