

Policy and Valuation: Purpose and Rationale

Provide tools, analysis and recommendations that maximize the value of energy storage to the electric and transportation systems and drive U.S. leadership in storage innovation, manufacturing, and commercial use.

Why does policy and valuation matter to storage?

Energy storage has the <u>potential to offer significant value</u> to the U.S. economy as both an end-use product and a source of industrial competitiveness.

But there are substantial barriers that <u>prevent the full realization of that value</u> and could slow the growth of the sector that require new policies, regulations, and analytical understanding to overcome.

Policy and Valuation: Getting Policies and Regulations Right

Policies are limited by incomplete understanding of:

- What can storage do? Technical capabilities and lifecycle costs
- What is it worth? The value of different services under different conditions
- How to integrate, operate, and pay for it? Planning, operation and compensation of storage in the power system

Who does this affect?

PUCs	ISO/RTOs	States	Utilities	
Developers	Consumers	Manufacturers	DOE	

What is the result? <u>Rules and policies that limit the value, compensation, and</u> <u>deployment of storage</u>

Policy and Valuation: DOE Role

DOE has the analytical capabilities, data and computing resources, and institutional credibility to inform more effective and cost effective policy and regulatory decisions.

Caveat: DOE does not make policy, but offers policymakers the tools to most effectively meet their own policy and regulatory goals.

But -- in order to be effective, DOE policy and valuation support must be:

- <u>Targeted</u> at the most pressing policy barriers or regulatory challenges, and the specific information gaps that prevent them from being addressed
- <u>Systematic</u> in proactively working with decision-makers to identify and provide all the information needed to enable effective decisions, rather than ad hoc support for targets of easiest opportunity.
- <u>**Coordinated</u>** across relevant offices in DOE, to ensure the right areas of expertise are applied to a given question and avoid conflicting information on a given topic.</u>
- Informed and objective, with support to decision-makers closely linked to the analysis informing it and avoiding any appearance of supporting one technology or office's mission over another's.

Policy and Valuation: DOE Role - Delivery

How can these products be delivered? Systematic policy support and technical assistance to critical organizations, supported by best-in-class <u>analysis</u> based on up-to-date <u>data</u> and improved <u>models</u>

Goal: Improve energy storage policy, regulations, and decision-making by providing coordinated technical assistance informed by cutting-edge data, tools, and analysis

Policy and Valuation: Existing DOE Work (Examples)

Implementation – DOE has many efforts that can help address these challenges – some examples:

OE Storage Regulatory Engagements and TA

- Informational workshop and technical assistance to states evaluating energy storage deployments.
- TPTA Technical Assistance Program

OE Storage Analysis

• Analytic tools for utilities and regulatory agencies to facilitate planning and implementation of energy storage in transmission and distribution infrastructure.

GMLC Analysis and Institutional SupportEIA• Institutional support framework for PUCs, ISOs/RTOs• Improved representation of storage in capacity expansion• Framework for valuation of grid services, grid architecture• Improved representation of storage in capacity expansion• Demonstration of storage contribution to black-start (Plum Island)• Annual Energy Outlook

EERE Strategic Programs (SPIA) Analysis

- Improved representation of storage in capacity expansion models
- Evaluation of long duration storage, hybrid systems Storage futures study Annual Technology Baseline

Individual EERE Offices

- Solar: Solar + storage for resilience; Integration costs of BTM storage + PV; SHINES demo projects
- Hydro: Storage data (w OE); valuation guidelines/tool for PSH; storage in power models; hydro in micro-grids, hydro + batteries;
- Fuel Cells: H2@scale for grid storage; Wind: grid services from grid and utility-scale wind + storage OWIP: State Energy Program

Goal: Improve energy storage policy, regulations, and decision-making by providing coordinated technical assistance informed by cutting-edge data, tools, and analysis

Goal: Improve energy storage policy, regulations, and decision-making by providing coordinated technical assistance informed by cutting-edge data, tools, and analysis

Resilience

		Research Needs:	
	Long-term	• How can storage improve the resilience of the overall energy system under a variety of future threat, grid mix, grid architecture scenarios?	<u>Gap</u>: The value of bulk and distributed storage resources to power system resilience is poorly understood
Analysis	Near-term	 How is resilience valued by different customer types? Can storage systems cost-effectively provide black-start, other resilience services given different system configurations and threat types? 	Outcome: Limited understanding of resilience may lead to underrepresentation of storage in power system planning, insufficient compensation for storage systems, and regulations that do not encourage optimization of storage for system resilience
Tools	;	 Infrastructure & Grid System Resilience Models (NAERM) Microgrid & Facility Optimization Tools Outage Cost Calculator Resilience Value Methodology 	 Stakeholder Impacts: PUCs/ISOs: Develop regulations, rules, market products that artificially limit storage's contribution to resilience Utilities: Storage is not included in IRPs, or is incorporated in ways (e.g. size, location, operations) that do not reflect its resilience value
Data		 Energy Storage Cost , Performance, Financing Threat Probability (including cyber) Outage Duration & Cost Willingness-to-pay System/facility characteristics and requirements 	 Developers: Lack of compensation for resilience value leads to under-deployment and limited resilience benefits DOE & R&D Organizations: Reduced investment in technologies and configurations that maximize resilience

Assessing energy storage's contribution to system resilience requires understanding each technology's technical characteristics, its ability provide resilience services, and the value of those services under a wide range of power system conditions, structures, and generation/load mixes.

Long-term Planning

Research Needs:

Analysis	 How much, where, and at what duration will storage be needed in future grid scenarios? How will DER adoption impact bulk-side investment requirements? Assess how the technical characteristics of long-duration storage technologies should be valued in long-term planning tools? Deployment and value of storage technologies in long-term planning processes using imperfect foresight and stochastic optimization 	Gap: The full varepresented in lo <u>Outcome</u> : Unat can enable reliat that may have hi
Tools	 Capacity & Transmission Expansion Models (ReEDS, PSS/E) Dispatch/ Production Cost Models (PLEXOS, PROMOD) DER Adoption Models (dGEN, DER-CAM) Demand & Flexibility models (dsgrid) 	 Stakeholder In PUCs/ISOs: De storage's deplo Utilities: Do not
Data	 Future Storage Cost, Performance, and Financing Projections Market Rules, Policy, and Incentive Data Distribution & Transmission System Data Spatial & Temporal Demand Projections 	 States: Fail to r DOE & R&D Or investments th

riety of storage technologies are not adequately ong-term planning tools.

ple to assess if storage (especially long-duration storage) ble and cost-effective grid operation in future scenarios gher penetrations of variable renewable electricity.

npacts:

- evelop regulations, rules, market products that artificially limit oyment
- t invest in the right types or the right amount of storage
- meet policy objectives in a reliable, cost-effective way
- ganizations: Unable to effectively prioritize storage R&D at can provide the most future impact

Understanding how much, what types, and the locational value of energy storage in future scenarios requires the full variety of behind-the-meter and utility-scale storage technologies to be included in long-term planning tools.

Demand, DR, Buildings, and Energy Efficiency

Research Needs:

	Long-term	 How can changes in long-term energy demand projections impact the amount of storage needed and its value?
Analysis	Near-term	 How can grid interactive buildings compliment or compete with storage? How will changing patterns of human behavior impact the energy demand and the ability for demand sides resource to provide flexibility to the grid?
Tools	;	 Demand Profile and Flexibility Models Building Models (EnergyPlus, Scout) Stock Turnover Cost-effectiveness methodology
Data		 Spatial & Temporal Demand Projections Consumer Behavior Technology Performance Characteristics Cost and Avoided Cost Data

<u>Gap</u>: Storage is often not assessed relative to other technologies that can provide flexibility or under scenarios with varying demand.

Outcome: Unable to determine when and where storage can provide the most value, or if it is the most cost-effective solution for a given facility, portfolio of facilities, or for grid relative to other alternatives.

Stakeholder Impacts:

- **PUCs/ISOs:** Develop regulations, rules, market products that artificially limit either storage or demand side flexibility resources to provide services and be appropriately compensated
- Utilities: Do not invest in the most cost-effective flexibility solutions, overcharge consumers
- States: Fail to meet policy objectives in a reliable, cost-effective way
- **Consumers:** Unable to effectively prioritize storage relative to other technology alternatives

It is imperative to understand what factors drive energy demand changes and consumer behavior patterns related to demand side flexibility in order accurately estimate how much storage the grid may need and whether it is cost competitive with other flexibility alternatives.

Technica Assistanc	al ce	ISO/RTOs Technical Assistance		Utility Technical Assistance		ility Inical Itance Public Utility Commission Technical Assist		State Legislatures Technical Assistance	State Energy Offices Technical Assistance	FERC Technical Assistance	Congress Techn Assista	sional ical ince	Local Community Technical Assistance	DOD Technical Assistance
								Universally Applic	adie Technicai Assista	nce)
								1						
Analycic	Long-term	How can changes in long-term energy demand projections impact storage?		Can storage defer or y ons investments ?		efer or T&D How much storage will be needed under evolving grid conditions?		r Can storage impro- the resilience of the overall energy system?	Can EVs (V2G) provide aggregated storage services to the grid?	How would increased H2 production impact the price and demand of other fuels?		What industrial policies could increase domestic storage manufacturing?		Should storage be embedded in the grid and have its costs socialized?
Analysis	How can grid interactive buildings compliment or compete with storage?		s ge?	How can s optimize d and syster	torage ispatch n stability?	How can s optimize d and syster	storage lispatch m stability	? How can storage cost-effectively minimize outages at critical facilities?	Can storage mitigate the potential impacts o EV charging on a giver distribution system?	Can storag the efficience reduce the industrial p	e improve cy and cost of rocesses?	What a bottler ion su	are the necks of lithium- pply chain?	What could be the impact of storage ITC?
		Demand Profiles & Flexibility Models		Distribution Distribution Feeder Models	istribution Bulk Distribution Bulk Distribution Plant Feeder Optimization Models		A Infrastructure & Grid Resilience Models Microgrid	Infrastructure & Grid Resilience Models Microarid		Cross-sectoral equilibrium models Integrated Industrial- Storage Models		Supply ChainTools	Rate Impact Tools	
Tools		Building Models Stock Turnover	_	Distribution Pow er Flow	Dispatch Models	Adoption	Expansion	Optimization Tools	Vehicle Adoption Models	Value of N (H ₂ , NH Methodo	ew Fuels ₃, etc.) llogies	N	laterial Flow Tools	
		Cost-effectiveness Methodology		Cost-effectiveness Methodology		Behind-the-meter and utility-scale storage valuation methodologies		Resilience Value Methodology	Value Methodologies	Industria Applio Method	Industrial Storage Application Methodologies Process E Competing Methodologies		ess Efficiency & npetitiveness ethodologies	Rate Impact Methodologies
		Consumer Behavi	or	Current	Current Spatial & Future Spatial &		Microgrid Data	Technology Penetration	Productio Characte	Production Cost Characteristics of		npetitiveness	Safety & Codes Federal Policy	
		Spatial & Tempora Demand	al	Temporal	Demand	Temporal	Demand	Willingness-to-Pa	y Infrastructure	Novel Industrial	Fuels Process	Crit	tical Minerals	Industrial Policy
Data		Tech Performanc	e	Current BTM & Utility		ility Future BTM & Utility Scale Tech Cost		Threat Probability	Spatial & Temporal Demand	Demands (Thermal & Electrical)		Proc	ess Efficiency	Cyber Policy Market Rules
		Cost & Avoided Co	woided Cost Performance, and Finance		Performance, and finance		Outage Cost & Duration	Vehicle & SubcomponentCost	Industrial Processes & Fuels Costs			Cost	Procurement Polices Taxes & Incentives	
		Demand, DF Buildings, E	R, E	Opera Plan	tional ning	Long Plar	term ning	Resilience	Transportation	Indust Other	rial & Fuels	Mar	ufacturing	Policy

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Extras

Near-term and Operational Planning

Research Needs:

	Long-term	 Can storage defer or eliminate new T&D investments ? How can storage optimize dispatch and system stability? 	<u>Ga</u> re: <u>O</u> 1
Analysis	Near-term	• How do different technical characteristics and systems configurations change the dispatch and operational profiles of storage technologies?	un cor op
Tools	5	 Dispatch/ Production Cost Models (PLEXOS, PROMOD) Power Flow & System Stability Models (Open DSS, PSLF, PSS/E) Distribution Systems Models (SMART-DS) 	
Data		 Storage Performance Characteristics Current Storage Technology Cost Distribution & Transmission System Data Spatial & Temporal Electricity Demand 	•

<u>Gap</u>: The value of bulk and distributed storage resources to power system resilience is poorly understood

Outcome: Limited understanding of resilience may lead to underrepresentation of storage in power system planning, insufficient compensation for storage systems, and regulations that do not encourage optimization of storage for system resilience

Stakeholder Impacts:

- **PUCs/ISOs:** Develop regulations, rules, market products that artificially limit storage's contribution to resilience
- **Utilities:** Storage is not included in IRPs, or is incorporated in ways (e.g. size, location, operations) that do not reflect its resilience value
- **Developers:** Lack of compensation for resilience value leads to under-deployment and limited resilience benefits
- DOE & R&D Organizations: Reduced investment in technologies and configurations that maximize resilience

Storage technologies' dynamic performance characteristics need to be incorporated into near-term operational planning tools so developers and planners can assess behind-the-meter and utility-scale storage's ability to improve dispatch and power flow while minimizing system costs.

Transportation

		Research Needs:	<u>Ga</u>
	Long-term	 Can EV and/or fuel cell vehicles (V2G) provide aggregated storage services to the grid? Can transportation storage assets increase grid resilience? 	tha the <u>Ou</u>
Analysis	Near-term	 Can storage mitigate the potential impacts of EV charging on a given distribution system? What is the cost relationship between power sector storage and transportation storage? 	cor sto cos <u>St</u> a
Tools	;	 Transportation System Models (TEMPO) Chagrining/Fueling Infrastructure Models (EVI-Pro) Vehicle Adoption Models (MA3T, ADOPT) Mobility Flow Model Value to Grid Methodology 	•
Data		 Technology Penetration Charging/Fueling Infrastructure Characteristics Spatial and Temporal Charging/Fueling Demand Vehicle and Subcomponent Performance Vehicle and Subcomponent Cost 	•

Gap: Lack ability to quantify the potential amount and value of services that transportation storage assets (EVs/fuel cell vehicles) can provide to the grid

Outcome: Fail to remove initial obstacles for V2G interactions and consumers/utilities are unable to utilize EVs or fuel cell vehicles as a storage resource for the grid thereby increasing system and consumer costs

Stakeholder Impacts:

- **Manufactures:** Do not resolve warranty issues that prevent consumers from using EVs or fuel cell to provide grid services
- Utilities: Vehicle-to-grid potential is not included in IRPs, forcing the procurement of otherwise unnecessary capacity
- PUCs: Unable to assess what benefits and costs of different V2G mechanisms
- Consumers: Inability to be compensated for potential services to the grid, reduces the value of EVs and fuel cell vehicles, and decreases vehicle deployment

Developing methodologies and tools that can quantify the potential value that transportation-related storage assets (EVs, fuel cell vehicles, etc.) provide the grid is crucial if we want to maximize the value of existing storage assets and diversify the types of storage available to grid.

Industrial & Other Fuels

Research Needs:

Analysis	Long-term	 How would increased H₂ or other fuel production impact the price and demand of other types of energy? How could legacy infrastructure be used to support the deployment of hydrogen or other types of emerging fuels?
	Near-term	 Can storage improve the efficiency and reduce the cost of industrial processes? Framework for comparing the performance characteristics and tradeoffs between renewable fuel pathways
Tools		 Cross-Sectoral (Supply, Demand, Price) Equilibrium Models Integrated Industrial Storage Models (He production)
Tools		 Value of new fuels (H₂, NH₃, etc.) Methodologies Industrial Storage application Methodologies
Data		 Production cost and characteristics of novel fuels to store energy Cost of industrial processes & fuel Industrial Processes Temporal Energy Demonds (cleatric)
		and thermal)

Gap: Ability to quantify the benefits coupling different energy storage technologies with industrial processes or the value and services that novel energy mediums/fuels can provide.

Outcome: Unable to assess if storage can be cost-effectively paired with industrial processes, miss opportunity to support energy mediums/fuels that can provide a wide range of services across multiple sectors.

Stakeholder Impacts:

- **Consumers:** Miss opportunity to invest in systems that can make their businesses more efficient, profitable, and resilient
- States: Fail to meet policy objectives in a reliable, cost-effective way
- DOE & R&D Organizations: Unable to effectively prioritize storage R&D investments that can provide the most future impact

Need to assess how storage can increase industrial efficiency/productivity and if new energy medium/fuels can costeffectively provide a wider array of services across multiple sectors.

Manufacturing

		<u>Research Needs:</u>	
	Long-term	 How can the U.S. increase it storage manufacturing competitiveness? What factors make different economies competitive storage manufacturers? 	
nalysis	Near-term	 What are supply chain bottlenecks of each storage technology? What are the key drivers of manufacturing cost? 	(s t
Tools		 Supply Chain Analysis Tools Material Flow Tools Process Efficiency & Competitiveness Methodologies 	•
Data		 Competitiveness Statistics Critical Mineral Supply Chain Data Process Efficiency Manufacturing Costs 	•

Gap: Challenging to assess what factors enable economies to be competitive manufacturers of energy storage as well as how supply chain constraints might limit storage deployment in the future.

Outcome: U.S. misses an opportunity to become a leader in energy storage manufacturing, especially for the next generation of storage technologies.

Stakeholder Impacts:

- **Developers:** Have to purchase products and subcomponents that are manufactured abroad, opening themselves up to unnecessary risk
- **Customers:** May pay premium if energy storage technologies are more costly than they otherwise could be due to supply chain bottlenecks
- Federal Government/ States: Lose opportunity to create new jobs and catalyze economic activity up and down the energy storage supply chain

Understanding how much, what types, and the locational value of energy storage in future scenarios requires the full variety of behind-the-meter and utility-scale storage technologies to be included in long-term planning tools.

Policy, Regulations, and Markets

Research Needs:

	Long-term	 How will market changes and the creation new products impact storage's value and operation? How will markets evolve in scenarios with high penetrations of zero-marginal cost generators?
Analysis	Near-term	 How will market rules impact how storage technologies are operatized and compensated? How could new incentives (ITC) impact the deployment of storage technologies?
Tools		 Rate Impact Tools Policy and Rate Impact Methodologies
Data		 Safety & Codes Market Rules Taxes & Incentives Procurement Policies Cyber Policy Industrial Policy

Gap: Limited ability to comprehensively understand how policies, regulations, and market rules interact to the value, operation, and deployment of energy storage technologies.

Outcome: Ineffective policies limit the optimal operation of storage technologies, minimize value, and decrease deployment.

Stakeholder Impacts:

- **ISOs/RTOs:** Develop regulations, rules, market products that artificially limit storage's contribution to energy, capacity, and essential reliability service markets
- Utilities: Less likely to include storage in future planning because of uncertainty caused by market rules, regulations, codes and standards
- **Developers:** Less likely to build storage because they are unable to receive adequate compensation or deploy storage in an optimal fashion

Understanding the impact of regulations, market rules, and other policies is critical to identifying the types of services storage technologies will be compensated for providing, the potential for future energy storage deployment under different scenarios, and ways to enhance existing rules to minimize costs, and increase the reliability and resilience of the grid